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Abstract. It is shown how to define difference equations on particular
lattices {xn}, n ∈ Z, where the xns are values of an elliptic function at
a sequence of arguments in arithmetic progression (elliptic lattice). So-
lutions to special difference equations (elliptic Riccati equations) have
remarkable simple (!) interpolatory continued fraction expansions.

1. Difference equations and lattices.

Simplest difference equations relate two values of the unknown func-
tion f : say, f(ϕ(x)) and f(ψ(x)).

Most instances [19] are (ϕ(x), ψ(x)) = (x, x + h), or the more sym-
metric (x − h/2, x + h/2), or also (x, qx) in q−difference equations

[7, 11, 12]. Recently, more complicated forms (r(x) −
√

s(x), r(x) +
√

s(x)) have appeared [1, 3, 11, 12, 16, 17, 20, 21], where r and s are
rational functions.

This latter trend will be examined here: we need, for each x, two
values f(ϕ(x)) and f(ψ(x)) for f .
A first-order difference equation is F (x, f(ϕ(x)), f(ψ(x))) = 0, or
f(ϕ(x)) − f(ψ(x)) = G (x, f(ϕ(x)), f(ψ(x))) if we want to emphasize
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the difference of f . There is of course some freedom in this latter
writing. Only symmetric forms in ϕ and ψ will be considered here:

(Df)(x) = F (x, f(ϕ(x)), f(ψ(x))) , (1)

where D is the divided difference operator

(Df)(x) =
f(ψ(x)) − f(ϕ(x))

ψ(x) − ϕ(x)
, (2)

and where F is a symmetric function of its two last arguments.
For instance, a linear difference equation of first order may be written

as a(x)f(ϕ(x)) + b(x)f(ψ(x)) + c(x) = 0,
as well as α(x)(Df)(x) = β(x)[f(ϕ(x)) + f(ψ(x))] + γ(x),
with α(x) = [b(x)−a(x)][ψ(x)−ϕ(x)]/2, β(x) = −[a(x)+ b(x)]/2, and
γ(x) = −c(x).

2. Elliptic grid, or lattice.

2.1. Definition of elliptic grid.

x0 x1

y0

y1

y2 The simplest choice for ϕ and ψ is to take
the two determinations of an algebraic func-
tion of degree 2, i.e., the two y−roots of

F (x, y) = X0(x) +X1(x)y +X2(x)y
2 = 0, (3a)

where X0, X1, and X2 are rational func-
tions.

Remark that the sum and the product of ϕ and ψ are the rational
functions

ϕ+ ψ = −X1/X2, ϕψ = X0/X2. (3b)

When the divided difference operator D of (2) is applied to a rational
function, the result is still a rational function. However, polynomials
are normally not sent to polynomials, for instance,

Dx2 = −X1(x)/X2(x),Dx
3 = (X2

1 (x) −X0(x)X2(x))/X
2
2 (x).

But difference equations must allow the recovery of f on a whole set
of points! An initial-value problem for a first order difference equation
starts with a value for f(y0) at x = x0, where y0 is one root of (3a) at
x = x0. The difference equation at x = x0 relates then f(y0) to f(y1),
where y1 is the second root of (3a) at x0. We need x1 such that y1 is
one of the two roots of (3a) at x1, so for one of the roots of F (x, y1) = 0
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which is not x0. Here again, the simplest case is when F is of degree 2
in x:

F (x, y) = Y0(y) + Y1(y)x + Y2(y)x
2 = 0. (3c)

Both forms (3a) and (3c) hold simultaneously when F is biquadratic:

F (x, y) =
2

∑

i=0

2
∑

j=0

ci,jx
iyj . (4)

Definition. A sequence {. . . , x−1, x0, x1, . . .} is an elliptic lattice if
there exists a sequence {. . . , y−1, y0, y1, . . .} and a biquadratic polyno-
mial (4) such that F (xn, yn) = 0 and F (xn, yn+1) = 0, for n ∈ Z.

As yn and yn+1 are the two roots in t of F (xn, t) = X0(xn)+X1(xn)t+
X2(xn)t2 = 0, useful identities are

yn + yn+1 = −
X1(xn)

X2(xn)
, ynyn+1 =

X0(xn)

X2(xn)
, (5)

and the direct formula

yn and yn+1 =
−X1(xn) ±

√

P (xn)

2X2(xn)
, (6)

where

P = X2

1 − 4X0X2 (7)

is a polynomial of degree 4.
Also, as xn+1 and xn are the two roots in t of F (t, yn+1) = 0,

xn + xn+1 = −
Y1(yn+1)

Y2(yn+1)
, xnxn+1 =

Y0(yn+1)

Y2(yn+1)
. (8)

Of course, the sequence {yn} is elliptic too.
Note that the names of the x− and y− lattices are sometimes in-

verted, as in [31, eq. (1.2)]
The construction above is called “T-algorithm” in [31, Theorem 6].
As the operators considered here are symmetric in ϕ(x) and ψ(x),

we do not need to define precisely what ϕ and ψ are. However, once a
starting point (x0, y0) is chosen, it will be convenient to define ϕ(xn) =
yn and ψ(xn) = yn+1, n ∈ Z.

Special cases. We already encountered the usual difference operators
(ϕ(x), ψ(x)) = (x, x+h) or (x−h, x) or (x−h/2, x+h/2) corresponding
to X2(x) ≡ 1, X1 of degree 1, X0 of degree 2 with P = X2

1 − 4X0X2 of
degree 0. For the geometric difference operator, P is the square of a first
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degree polynomial. For the Askey-Wilson operator [1,3,9,11,16,17], P
is an arbitrary second degree polynomial.

2.2. Equivalent definitions. The companion sequence {yn} is not
needed in the definition of an elliptic lattice, but the definition above
is best suited to the description of difference equations.

A relation involving only xn and xn+1 is obtained by the elimi-
nation of yn+1 through the resultant of the two polynomials in yn+1

from (8) P1(yn+1) = (xn + xn+1)Y2(yn+1) + Y1(yn+1) and P2(yn+1) =
xnxn+1Y2(yn+1) − Y0(yn+1).

The form of this resultant is most easily found through interpolation
at the two zeros u and v of Y2: let Y2(y) = α(y − u)(y − v), Y0(y) =
β(y − u)(y − v) + β ′(y − u) + β ′′(y − v), and
Y1(y) = γ(y − u)(y − v) + γ ′(y − u) + γ′′(y − v), then, with y = yn+1,
S = xn + xn+1 and Π = xnxn+1,

S = −
Y1(y)

Y2(y)
= −

γ(y − u)(y − v) + γ ′(y − u) + γ′′(y − v)

α(y − u)(y − v)
,

Π =
Y0(y)

Y2(y)
=
β(y − u)(y − v) + β ′(y − u) + β ′′(y − v)

α(y − u)(y − v)
,

αS + γ = −
γ′(y − u) + γ′′(y − v)

(y − u)(y − v)
, αΠ − β =

β′(y − u) + β ′′(y − v)

(y − u)(y − v)
,

β′(αS + γ) + γ′(αΠ − β) =
β′′γ′ − β′γ′′

y − u
,

β′′(αS + γ) + γ′′(αΠ − β) =
β′γ′′ − β′′γ′

y − v
, and, eliminating y,

v − u

β′′γ′ − β′γ′′
=

1

β′(αS + γ) + γ′(αΠ − β)
+

1

β′′(αS + γ) + γ′′(αΠ − β)
(9)

which leads clearly to a polynomial of degree 2 in xn+xn+1 and xnxn+1,
so

2.2.1. Definition 2. An elliptic lattice, or grid, is a sequence satisfying
a symmetric biquadratic relation [31, Theorem 5]

E(xn, xn+1) = d0,0 + d0,1(xn + xn+1) + d0,2(xn + xn+1)
2 + d1,1xnxn+1

+ d1,2xnxn+1(xn + xn+1) + d2,2x
2
nx

2
n+1 = 0. (10)

Conversely, let us show that Definition 2 implies the main definition:
from a sequence {xn} satisfying (10), let us build a valid sequence {yn}.
We must construct F (x, y) = α(y − u)(y − v)x2 + [γ(y − u)(y − v) +
γ′(y − u) + γ′′(y − v)]x+ β(y − u)(y − v) + β ′(y − u) + β ′′(y − v) such
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that the resultant (9) is deduced from (10) when S = xn + xn+1 and
Π = xnxn+1, i.e.,

d0,0 + d0,1S + d0,2S
2 + d1,1Π + d1,2ΠS + d2,2Π

2 = 0. (11)

Let us decide that α = 1. Then, one chooses (−γ, β) = (S,Π) as a
point1 on the conic (11). We now have

d0,2(S+γ)2+d1,2(Π−β)(S+γ)+d2,2(Π−β)2+d′0,1(S+γ)+d′1,1(Π−β) = 0,

with d′0,1 = −2d0,2γ + d1,2β + d0,1 and d′1,1 = −d1,2γ + 2d2,2β + d1,1.

Let ρ1 and ρ2 be the two roots of d2,2ρ
2 + d1,2ρ + d0,2 = 0, then,

d2,2[Π−β−ρ1(S+γ)][Π−β−ρ2(S+γ)]+d′0,1(S+γ)+d′1,1(Π−β) = 0,
and we divide by [Π − β − ρ1(S + γ)][Π − β − ρ2(S + γ)]:

d2,2 +
µ

Π − β − ρ1(S + γ)
+

η

Π − β − ρ2(S + γ)
= 0,

with µ = (d′1,1ρ1 + d′0,1)/(ρ1 − ρ2) and η = (d′1,1ρ2 + d′0,1)/(ρ2 − ρ1). We
now compare with (9):

γ′ =
η(v − u)

(ρ2 − ρ1)d2,2

, γ′′ =
µ(v − u)

(ρ2 − ρ1)d2,2

, β′ = −ρ1γ
′, β′′ = −ρ2γ

′′.

The degrees of freedom are therefore u, v, and (−γ, β) = (S,Π) on
the conic (11).

2.2.2. Definition 3. An elliptic lattice is a sequence xn = E(nh + u0),
where E is any elliptic function of order 2 (i.e., with 2 zeros and 2 poles
in a fundamental parallelogram of periods).

From the main definition, one may establish that the biquadratic
curve F (x, y) = 0 in (4) has genus 1 and a parametric representation

x = E1(s), y = E2(s),

with E1 and E2 elliptic functions of order 2.
Indeed, a birational transformation (x, y) ↔ (ξ, η) sending the bi-

quadratic curve (4) F (x, y) = 0 to the canonical elliptic curve η2 =
Q(ξ), where Q is a polynomial of third degree, see [2, p.292]: from
(6), choose w = a square root of P (x), so that y = (−X1(x) +
w)/(2X2(x)) ↔ w = X1(x) + 2yX2(x), and x = z1 + 1/ξ, where z1

is one of the four roots of P (x) = 0. Then, with P (z1 +1/ξ) = Q(ξ)/ξ4

and η = wξ2, η2 = Q(ξ).
Then, the Weierstrass representation holds ξ = ℘(hu + u0), η =

℘′(hu+ u0). So, x = z1 + 1/℘, y = (−X1 + ℘′/℘2)/(2X2).

1The importance of this conic has been stressed by A.Ronveaux [22].
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However, the authors of [14] recommend the biquadratic setting in-
stead of the more familiar cubic one, see [14, pp. 300-301].

Now, let sn and s′n correspond to the two points (xn, yn) and (xn, yn+1).
As E1(sn) = E1(s

′

n) with yn+1 normally different from yn, sn + s′n = a
constant, say γ1 (as sn and s′n are integrals involving the square root of a
polynomial on two paths with the same endpoints [the second endpoint
being xn], the square roots are opposite on a part of the paths). Simi-
larly, s′n + sn+1 = another constant, say γ2. Therefore, sn+1 = sn + h,
with h = γ2 − γ1, and this establishes Definition 3 with E = E1.

Conversely, from Definition 3, one recovers Definition 2 by recogniz-
ing (10) as an addition formula for elliptic functions [31].

The essential parameters in the description of an elliptic sequence
are the modulus k and the step h. The modulus is also related to the
ratio ω1/ω2 of periods. Finally, in a multiplicative setting, the main
parameters are the nome p and the multiplier q, which are basically
(i.e., up to multiplication by constants) the exponentials of the periods
ratio and the step.

The modulus and the step depend only on F in (4) (or E in (10)).
For each starting point (x0, y0), or s0 = h0, there is a different elliptic
lattice with the same k and h.

It is always possible to relate E2 to E1 through a rational transfor-

mation of first degree E2(s) =
αE1(s+ h/2) + β

γE1(s+ h/2) + δ
[31, p. 298].

2.3. A brief history [4, 5, 14, 31]. Elliptic lattices were developed
by Baxter in the solution of special problems of statistical physics,
they appear in works by Fritz John, in many treatments of a Poncelet
problem [4, 5] [31, § 6], and go back to pioneering work by Euler2 on
the addition formulas of elliptic functions, that’s why the symmetric
biquadratic polynomial (10) has been called the Euler polynomial in
[31, p. 294].

Even the name of our subject is not easy to choose: “elliptic se-
quences” seems perfect, but this name is used by other sequences
related in another way to elliptic functions (sequences {An} where
An−1An+1/A

2
n is our xn, [32]), “elliptic lattice” may by used for the

repetitions of the periods parallelogram of an elliptic function, “ellip-
tic grid” means a convenient mesh for discretizing over ellipses, and
“elliptic difference operator” is a partial difference operator extending
partial differential operator of elliptic type.

2and perhaps even to Fermat [communicated by R. Askey]!
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3. Elliptic Pearson equation.

A famous theorem by Pearson( [6, (2.25) p.152]; [8]) relates the clas-
sical orthogonal polynomials to the differential equation w′ = rw sat-
isfied by the weight function, where r is a rational function of degree
6 2.

Even without this constraint on the degree, the Stieltjes transform

f(z) =

∫ b

a

w(t) dt

z − t
of w satisfies the differential equation f ′(z) =

r(z)f(z) + s(z), where s is a rational function3too. A suitable con-
tinued fraction expansion of f leaves then important informations on
the relevant orthogonal polynomials (theory of Laguerre [13]).

The Pearson equation has of course been extended to various differ-
ence calculus settings [1, 9, 18, 20,21], here is the elliptic version:

3.1. Theorem. Let (x′0, y
′

0) be a point on the biquadratic curve F = 0
of (4), {(x′k, y

′

k)} the elliptic lattice starting from this point. If there
are polynomials a and c, with

a(x′0) − (y′1 − y′0)c(x
′

0) = a(x′N) + (y′N+1 − y′N )c(x′N ) = 0, (12)

and a sequence {w0, . . . , wN+1} such that

a(x′k)

wk+1

Y2(y′k+1
)(x′k+1

− x′k)
−

wk

Y2(y′k)(x
′

k − x′k−1
)

y′k+1
− y′k

= c(x′k)

[

wk+1

Y2(y′k+1
)(x′k+1

− x′k)
+

wk

Y2(y′k)(x
′

k − x′k−1
)

]

, (13)

k = 0, 1, . . . , N , and w0 = wN+1 = 0, then,

f(x) =
N

∑

k=1

wk

x− y′k
(14)

satisfies

a(x)Df(x) = a(x)
f(ψ(x)) − f(ϕ(x))

ψ(x) − ϕ(x)
= c(x)[f(ϕ(x))+f(ψ(x))]+d(x),

(15)

3s(z) = D(z)/A(z), where the polynomials A and D are related to bound-
ary conditions for the weight function w at a and b: the product Ar = C
must be a polynomial and A(t)w(t) must vanish at t = a and t = b. Then

D(z) = −

∫ b

a

[

A(z) − A(t) − (z − t)A′(t)

(z − t)2
+

C(z) − C(t)

z − t

]

w(t)dt. So, even in the

Legendre case, where w(t) ≡ 1, r = C = 0, one must take A(z) = 1 − z2, and
D(z) = 2 follows.
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where d is a polynomial too.
We already used the writing (xn, yn) = (E1(s0 +nh), E2(s0 +nh)) for

a generic elliptic lattice, normally to be used as interpolation points.
We here need a function with poles on another lattice with same mod-
ulus and step, but with another starting point, and it is written here
(x′n, y

′

n) = (E1(s
′

0 + nh), E2(s
′

0 + nh)).

Remark that (13) is a recurrence relation for the w̃k =
wk

Y2(y′k)(x
′

k − x′k−1
)
,

which is

[a(x′k) − (y′k+1 − y′k)c(x
′

k)]w̃k+1 = [a(x′k) + (y′k+1 − y′k)c(x
′

k)]w̃k, (16)

k = 0, . . . , N , so that (12) ensures the boundary conditions w0 =
wN+1 = 0.
Proof:

f(ψ(x)) − f(ϕ(x))

ψ(x) − ϕ(x)
= −

N
∑

1

wk

(ϕ(x) − y′k)(ψ(x) − y′k)
= −

N
∑

1

wkX2(x)

F (x, y′k)

= −

N
∑

1

wkX2(x)

Y2(y′k)(x− x′k−1
)(x− x′k)

= X2(x)

N
∑

0

w̃k+1 − w̃k

x− x′k

where w̃k =
wk

Y2(y′k)(x
′

k − x′k−1
)
, and with w0 = wN+1 = 0,

f(ψ(x))+f(ϕ(x)) = −

N
∑

1

wk[X1(x) + 2y′kX2(x)]

X2(x)(ϕ(x) − y′k)(ψ(x) − y′k)
= −

N
∑

1

wk[X1(x) + 2y′kX2(x)]

F (x, y′k)

= −

N
∑

1

wk[X1(x) + 2y′kX2(x)]

Y2(y′k)(x− x′k−1
)(x− x′k)

=

N
∑

0

w̃k+1[X1(x) + 2y′k+1X2(x)] − w̃k[X1(x) + 2y′kX2(x)]

x− x′k
,

therefore the rational functions aDf and c(f(ϕ) + f(ψ)) differ by a
polynomial if all the residues are equal:
a(x′k)X2(x

′

k)(w̃k+1−w̃k) = c(x′k)(w̃k+1[X1(x
′

k)+2y′k+1X2(x
′

k)]−w̃k[X1(x
′

k)+
2y′kX2(x

′

k)]) for k = 0, 1, . . . , N . Or, as X1(x
′

k) = −(y′k + y′k+1)X2(x
′

k),
a(x′k)(w̃k+1 − w̃k) = c(x′k)(y

′

k+1 − y′k)(w̃k+1 + w̃k), which is exactly (16).

4. Interpolatory continued fraction expansion and

Riccati equations.

Let f0(x) = f(x)− f(y0) be expanded in an interpolatory continued
fraction (RII−fraction [9, 10, 30, 33], or contracted Thiele’s continued
fraction [19, Chap. 5])
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f0(x) =
x− y0

α0x+ β0 −
(x− y1)(x− y2)

. . .

αn−2x+ βn−2 +
(x− y2n−3)(x− y2n−2)

αn−1x+ βn−1 + · · ·

making clear that the nth approximant (stopped at, and including
the αn−1x+βn−1 term) is the rational function of degree n interpolating
f0 at x = y0, y1, . . . , y2n.

Let pn be the denominator of this nth approximant. If f is a Stieltjes
transform, it is known [10, 30] [33, § 5] [34] that {pn(x)/((x− y0)(x −
y2) . . . (x − y2n)} and {pm(x)/((x − y1)(x − y3) . . . (x − y2m+1)} are
biorthogonal sequences of rational functions.

From fn(x) =
x− y2n

αnx+ βn − (x− y2n+1)fn+1(x)
, αnx+ βn is the poly-

nomial interpolant of degree 1 to (x − y2n)/fn(x) at y2n+1 and y2n+2,
so we need fn(y2n+1) and fn(y2n+2) in order to find αn and βn.

If fn satisfies a difference equation of first order Fn (x, fn(ϕ(x)), fn(ψ(x))) =
0, we find fn(y2n+1) from the equation at x2n, as ϕ(x2n) = y2n, ψ(x2n) =
y2n+1, and fn(y2n) = 0. Next, the equation at x = x2n+1 yields
fn(y2n+2).

As seen in the section 3 on the Pearson equation, a linear difference
equation of first order easily involves a weight function useful in orthog-
onality considerations. However, Riccati equations are better suited to
continued fraction constructions [7, 15]. Of course, linear difference
equations of first order are special cases of Riccati equations, that is
why the coefficients in (15) are written a(x), c(x), and d(x), whereas
b(x) is the coefficient of the nonlinear part of a Riccati equation.

So, if fn satisfies the Riccati equation

an(x)
fn(ψ(x)) − fn(ϕ(x))

ψ(x) − ϕ(x)
= bn(x)fn(ϕ(x))fn(ψ(x))

+ cn(x)(fn(ϕ(x)) + fn(ψ(x))) + dn(x), (17)

one finds at x = x2n, ϕ(x) = y2n, ψ(x) = y2n+1, and knowing that

fn(y2n) = 0, an(x2n)
fn(y2n+1)

y2n+1 − y2n

= cn(x2n)fn(y2n+1) + dn(x2n) yields

fn(y2n+1) =
dn(x2n)

an(x2n)

y2n+1 − y2n

− cn(x2n)

and

αny2n+1 + βn =
y2n+1 − y2n

fn(y2n+1)
=
an(x2n) − (y2n+1 − y2n)cn(x2n)

dn(x2n)
, (18)
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and at x = x2n+1, an(x2n+1)

y2n+2 − y2n

αny2n+2 + βn

−
y2n+1 − y2n

αny2n+1 + βn

y2n+2 − y2n+1

=

bn(x2n+1)
y2n+2 − y2n

αny2n+2 + βn

y2n+1 − y2n

αny2n+1 + βn

+cn(x2n+1)

[

y2n+2 − y2n

αny2n+2 + βn

+
y2n+1 − y2n

αny2n+1 + βn

]

+

dn(x2n+1), or

an(x2n+1)(αny2n + βn) = bn(x2n+1)(y2n+2 − y2n)(y2n+1 − y2n)

+ cn(x2n+1)[(y2n+2 − y2n)(αny2n+1 + βn) + (y2n+1 − y2n)(αny2n+2 + βn)]

+ dn(x2n+1)(αny2n+1 + βn)(αny2n+2 + βn). (19)

which shows how to extract αn and βn from an, . . . at x2n and x2n+1.
Remark also that at x = x2n−1, knowing that fn(ψ(x2n−1)) = fn(y2n) =

0, (17) yields
[

an(x2n−1)

y2n − y2n−1

+ cn(x2n−1)

]

fn(y2n−1) + dn(x2n−1) = 0. (20)

And here is how the Riccati form is well suited to continued fraction
progression:

4.1. Theorem.

If fn satisfies the Riccati equation (17) with rational coefficients an,

bn, cn, and dn, and if fn(x) =
x− y2n

αnx+ βn − (x− y2n+1)fn+1(x)
, then

fn+1 satisfies an equation of same complexity (degree of the rational
functions) of its coefficients.

(Actually, the degrees of an, etc. will at most exceed the degrees at
n = 0 by 3 units).

Proof. Let us start with (17) at n = 0 with polynomial coefficients
a0, b0, c0, and d0. Suppose that, at the nth step, an, etc. are polyno-
mials with bn and dn containing the factors X2 and x − x2n−1, and
cn containing the factor X2 (from (3a) and (4), X2 is a polynomial of
degree 6 2).

Of course, if the initial coefficients a0, etc. do not contain such
factors, we may have to multiply the four coefficients of (17) at n = 0
by one or several factors of (x− x−1)X2(x), that’s why the degrees are
liable to have to be augmented by up to 3 units, but this operation has
to be done only at n = 0.

We suppose therefore that bn(x) = (x − x2n−1)X2(x)b̃n(x), cn(x) =

X2(x)c̃n(x), and dn(x) = (x− x2n−1)X2(x)d̃n(x) in (17), where b̃n, c̃n,
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and d̃n are polynomials, so that (17) is now

an(x)
fn(ψ(x)) − fn(ϕ(x))

ψ(x) − ϕ(x)
= (x−x2n−1)X2(x)b̃n(x)fn(ϕ(x))fn(ψ(x))

+X2(x)c̃n(x)(fn(ϕ(x)) + fn(ψ(x))) + (x− x2n−1)X2(x)d̃n(x), (21)

in which we enter fn(x) =
x− y2n

αnx+ βn − (x− y2n+1)fn+1(x)
.

After multiplication by (αnϕ+βn − (ϕ− y2n+1)fn+1(ϕ))(αnψ+βn −
(ψ − y2n+1)fn+1(ψ)):

an

(ψ − y2n)[αnϕ+ βn − (ϕ− y2n+1)fn+1(ϕ)] − (ϕ− y2n)[αnψ + βn − (ψ − y2n+1)fn+1(ψ)]

ψ − ϕ

= an

[

αny2n + βn +

(

ϕψ −
(y2n + y2n+1)(ϕ+ ψ)

2
+ y2ny2n+1

)

fn+1(ψ) − fn+1(ϕ)

ψ − ϕ

+
y2n+1 − y2n

2
(fn+1(ϕ) + fn+1(ψ)

]

= (x− x2n−1)X2b̃n(ϕ− y2n)(ψ − y2n)

+X2c̃n[(ψ−y2n)[αnϕ+βn−(ϕ−y2n+1)fn+1(ϕ)]+(ϕ−y2n)[αnψ+βn−(ψ−y2n+1)fn+1(ψ)]]

+(x−x2n−1)X2d̃n[αnϕ+βn−(ϕ−y2n+1)fn+1(ϕ)][αnψ+βn−(ψ−y2n+1)fn+1(ψ)]

which is the Riccati equation for fn+1, ân+1

fn+1(ψ) − fn+1(ϕ)

ψ − ϕ
= b̂n+1fn+1(ϕ)fn+1(ψ)+

ĉn+1(fn+1(ϕ)+fn+1(ψ))+d̂n+1, where ân+1 etc. are symmetric functions
of ϕ and ψ, so are rational functions thanks to (3b):

ân+1 =

(

ϕψ −
(y2n + y2n+1)(ϕ+ ψ)

2
+ y2ny2n+1

)

an+
y2n+1 − y2n

2
(ψ−ϕ)2X2c̃n

+
αny2n+1 + βn

2
(ψ−ϕ)2(x−x2n−1)X2d̃n =

(

X0 +
(y2n + y2n+1)X1

2
+ y2ny2n+1X2

)

X2

an

+
[y2n+1 − y2n]c̃n + (αny2n+1 + βn)(x− x2n−1)d̃n

2

X2
1 − 4X0X2

X2

(22a)

b̂n+1 = (x−x2n−1)X2d̃n(ϕ−y2n+1)(ψ−y2n+1) = (x−x2n−1)d̃n(X0+y2n+1X1+y
2

2n+1X2)
(22b)
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ĉn+1 = −(y2n+1−y2n)an−

(

ϕψ −
(y2n + y2n+1)(ϕ+ ψ)

2
+ y2ny2n+1

)

X2c̃n

−

(

αn

(

ϕψ − y2n+1

ϕ+ ψ

2

)

+ βn

(

ϕ+ ψ

2
− y2n+1

))

(x− x2n−1)X2d̃n

= −(y2n+1 − y2n)an −

(

X0 +
(y2n + y2n+1)X1

2
+ y2ny2n+1X2

)

c̃n

−

(

αn

(

X0 + y2n+1

X1

2

)

− βn

(

X1

2
+ y2n+1X2

))

(x− x2n−1)d̃n

(22c)

d̂n+1 = −(αny2n + βn)an + (x− x2n−1)X2b̃n(ϕ− y2n)(ψ − y2n)

+X2c̃n[(ψ − y2n)(αnϕ+ βn) + (ϕ− y2n)(αnψ + βn)]]

+ (x− x2n−1)X2d̃n(αnϕ+ βn)(αnψ + βn)

= −(αny2n + βn)an + (x− x2n−1)b̃n(X0 + y2nX1 + y2

2nX2)

+c̃n[αn(2X0+y2nX1)−βn(X1+2y2nX2)]+(x−x2n−1)d̃n(α2
nX0−αnβnX1+β

2
nX2)
(22d)

The first coefficient ân+1 is not a polynomial, but a rational function
of denominator X2. We recover polynomials by multiplying the four
coefficients ân+1, b̂n+1, ĉn+1, and d̂n+1 by X2. Moreover, this already

restores the factor X2 in X2b̂n+1, X2ĉn+1, and X2d̂n+1!
However, the degrees of the new coefficients are higher than before.

The problem is settled by seeing that the four polynomials X2ân+1,

b̂n+1, ĉn+1, and d̂n+1 vanish at x = x2n−1 and at x = x2n. Then, we will
simply divide the four of them by (x− x2n−1)(x− x2n).

(1) The most obvious case is (22b): b̂n+1(x) = (x−x2n−1)d̃n(x)(X0(x)+

y2n+1X1(x) + y2
2n+1X2(x)) = (x − x2n−1)d̃n(x)F (x, y2n+1) =

(x − x2n−1)d̃n(x)Y2(y2n+1)(x − x2n)(x − x2n+1), shows indeed
the factors x− x2n−1 and x− x2n, as well as x− x2n+1, so that

b̃n+1(x) =
b̂n+1(x)

(x− x2n−1)(x− x2n)(x− x2n+1)
= Y2(y2n+1)d̃n(x).

(2) Next, from (22d), d̂n+1(x2n−1) = (αny2n + βn)[−an(x2n−1) −
(y2n−y2n−1)cn(x2n−1)] = 0 from (20), knowing that dn(x2n−1) =
0,
d̂n+1(x2n) = (αny2n + βn)[−an(x2n) + (y2n+1 − y2n)cn(x2n) +
(αny2n+1 + βn)dn(x2n)] =

(αny2n+βn)(y2n+1−y2n)

[

−
an(x2n)

y2n+1 − y2n

+ cn(x2n) +
dn(x2n)

fn(y2n+1)

]

=
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0, as the last factor is the Riccati equation (17) at x = x2n di-
vided by fn(y2n+1) (see also (18)).

d̂n+1(x2n+1) = −(αny2n+βn)an(x2n+1)+bn(x2n+1)(y2n+1−y2n)(y2n+2−
y2n)+cn(x2n+1)[(y2n+2−y2n)(αny2n+1+βn)+(y2n+1−y2n)(αny2n+2+
βn)]] + dn(x2n+1)(αny2n+1 + βn)(αny2n+2 + βn) = 0, from (19).

(3) In order to show that ân+1 and ĉn+1 both vanish at x = x2n−1

and x2n, we consider
an

ψ − ϕ
± cn:

ân+1(x)

ψ(x) − ϕ(x)
+ ĉn+1(x) =

(ϕ(x)−y2n+1)

[

(ψ(x) − y2n)

(

an(x)

ψ(x) − ϕ(x)
− cn(x)

)

− (αnψ(x) + βn)dn(x)

]

vanishes at x = x2n, as the big factor is an(x2n) − (y2n+1 −
y2n)cn(x2n) − (αny2n+1 + βn)dn(x2n) = 0 from (18). At x =
x2n−1, we already encountered the condition an(x2n−1) + (y2n −
y2n−1)cn(x2n−1) = 0 from (20) and dn(x2n−1) = 0.

The obvious vanishing of the first factor at x = x2n+1 will al-
low the same condition at x2n+1: an+1(x2n+1)+(y2n+2−y2n+1)cn+1(x2n+1) =
0, and this will imply fn+1(y2n+2) = 0 at the next step.

(4)
ân+1(x)

ψ(x) − ϕ(x)
− ĉn+1(x) =

(ψ(x)−y2n+1)

[

(ϕ(x) − y2n)

(

an(x)

ψ(x) − ϕ(x)
+ cn(x)

)

+ (αnϕ(x) + βn)dn(x)

]

obviously vanishes now at x = x2n; at x = x2n−1, the big factor
is −an(x2n−1) − (y2n − y2n−1)cn(x2n−1) = 0 as already encoun-
tered (in (20), together with dn(x2n−1) = 0).

We proceed therefore with an+1(x) =
X2(x)ân+1(x)

(x− x2n−1)(x− x2n)
, bn+1(x) =

X2(x)b̂n+1(x)

(x− x2n−1)(x− x2n)
, cn+1(x) =

X2(x)ĉn+1(x)

(x− x2n−1)(x− x2n)
, dn+1(x) =

X2(x)d̂n+1(x)

(x− x2n−1)(x− x2n)
.

�

A very interesting identity is â2
n+1 − (ψ − ϕ)2ĉ2n+1 = (ϕ − y2n)(ψ −

y2n)(ϕ− y2n+1)(ψ− y2n+1)(a
2
n− (ψ−ϕ)2c2n)− (ψ−ϕ)2b̂n+1[d̂n+1− (ϕ−

y2n)(ψ − y2n)bn], or â2
n+1 − (ψ − ϕ)2(ĉ2n+1 − b̂n+1d̂n+1) = (ϕ− y2n)(ψ −

y2n)(ϕ− y2n+1)(ψ − y2n+1)(a
2
n − (ψ − ϕ)2(c2n − bndn))

c2n(x) − bn(x)dn(x)

X2
2(x)

P (x)−a2

n(x) = Cn

x− x2n−1

x− x−1

[

c20(x) − b0(x)d0(x)

X2
2 (x)

P (x) − a2

0(x)

]

,

(23)

where Cn =
Y2(y2n−1)Y2(y2n−3) · · ·Y2(y1)

Y2(y2n−2)Y2(y2n−4) · · ·Y2(y0)
, and P from (7).
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5. Classical elliptic biorthogonal rational functions.

The smallest possible degree for an, bn, cn, and dn according to the
theory above, happens to be three. Then, bn(x) = ξn(x− x2n−1)X2(x)
and dn(x) = ζn(x−x2n−1)X2(x) are already known, up to a single con-
stant each. The equations (22a) and (22c) should care for the evolution
of an and cn with n, but (23) yields directly the values of a2

n(x) at the
four zeros of P = X2

1 − 4X0X2. Equation (22a) also provides a sim-
ple relation between ân+1(x) (therefore, an+1(x)), and an(x) at each of
these four zeros, which is enough for a full determination of the third
degree polynomials an.

I hope to recover in this way the results of Spiridonov and Zhedanov
[28, 29], obtained through elliptic hypergeometric identities [23, 24, 25,
26,27].

Note however that Theorem 4.1 also makes room for coefficients of
degree > 3, therefore to new families of biorthogonal functions.
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287-328. http://www.ensmp.fr/aflb/AFLB-26j/aflb26jp287.pdf

[15] A.P.Magnus, Riccati acceleration of Jacobi continued fractions and Laguerre-
Hahn orthogonal polynomials, pp 213-230 in: H. Werner and H.J. Bünger,
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