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’We must always remember that we are part [sic] of the Continent,

but we must never forget that we are neighbours to it.

Bolingbroke, quoted in André Maurois’s History of England,
the English translation of 1937. The original French text gives the right translation

”voisins, mais non partie”.

Abstract. We consider a special family of classical biorthogonal rational functions and
their differential equations. They are NOT hypergeometric, but neighbours to it, actually,
Heun ’s differential equations!

1. Biorthogonal rational functions.

1.1. Orthogonality.

Let two sequences {a0, a1, . . . }, {b0, b1, . . . } be given. With polynomials Pn and Qm of
degrees 6 n and m, let

pn(x) =
Pn(x)

(x − a0) · · · (x − an)
and qm(x) =

Qm(x)

(x − b0) · · · (x − bm+1)
(1)

be orthogonal when m 6= n with respect to the bilinear form

〈f, g〉 =

∫ d

c

f(t)g(t)w(t)dt.

1
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This also means that, when n > 1, Pn is orthogonal to all polynomials of degree < n

with respect to
w(t)

(t − x0)(t − x1) · · · (t − x2n+1)
, where x2k = ak, x2k+1 = bk, k = 0, 1, . . . So,

P0 = 1, P1(x) = x − x3 −
µ2

µ3
, where µr =

∫ d

c

w(t)dt

(t − x0) · · · (t − xr)
.

Existence, and unicity up to multiplication by constants, depends on the nonvanishing
of some determinants of the moments µrs [17, 18], see also, of course, introductions to
biorthogonality in general [3], [4, § 2.6].

Of course, Qm satisfies similar, but not exactly the same, orthogonality conditions. Or-

thogonality now holds with respect to
w(t)

(t − a0)(t − a1) · · · (t − am−1)(t − b0)(t − b1) · · · (t − bm+1)
=

w(t)

(t − x0)(t − x1) · · · (t − x2m−2)(t − x2m−1)(t − x2m+1)(t − x2m+3)
. The polynomials Qm will

not be needed further here.

1.2. Recurrence relations.

One has

Pn+1(x) = (rnx + r′n)Pn(x) + sn(x − x2n)(x − x2n+1)Pn−1(x), P−1(x) ≡ 0, P0(x) ≡ 1. (2)

cf. RII-type in Ismail & Masson [9, p. 14].
Indeed, with rnx + r′n being the first degree polynomial interpolating Pn+1(x)/Pn(x) at

x = x2n and x2n+1, see that
Pn+1(x) − (rnx + r′n)Pn(x)

(x − x2n)(x − x2n+1)
is orthogonal to any polynomial of

degree < n − 1 with respect to w(t)/[(t− x0)(t − x1) · · · (t − x2n−1)].

2. Rational interpolation.

There is a polynomial Nn of degree n + 1 such that Nn/Pn interpolates the Stieltjes, or
Markov, function of w:

S(x) =

∫ d

c

w(t)dt

x − t

at x0, x1, . . . , x2n+1 [12, § 3].
Polynomial interpolation of Pn(x)S(x) at x0, . . . , x2n+1 has normally a degree 2n+1, but

the actual degree is found by describing the interpolant from

Pn(x)S(x) =

∫ d

c

Pn(x) − Pn(t)

x − t
w(t)dt

︸ ︷︷ ︸

a polynomial

+

∫ d

c

Pn(t)w(t)dt

x − t
, where we replace 1/(x − t) by

its polynomial interpolant in x at x = x0, . . . , x2n+1. This interpolant, for a fixed t,

is
(t − x0) · · · (t − x2n+1) − (x − x0) · · · (x − x2n+1)

(t − x0) · · · (t − x2n+1)(x − t)
, and is a linear combination of ratios

tr − xr

x − t
with r 6 2n + 2, so of terms tuxv with u + v = r − 1 6 2n + 1. From the orthog-

onality properties of Pn, the integrals of Pn(t)tu vanish when u < n, only xv remain when
u > n, so v = r − 1 − u 6 r − 1 − n 6 2n + 1 − n = n + 1.
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Nn(x)

Pn(x)
= r−1x + r′

−1 +
s0(x − x0)(x − x1)

r0x + r′0 +
s1(x − x2)(x − x3)

. . .

rn−2x + r′n−2 +
sn−1(x − x2n−2)(x − x2n−1)

rn−1x + r′n−1

P−1 = 0, P0 = 1, P1(x) = r0x + r′0, P2(x) = (r0x + r′0)(r1x + r′1) + s1(x − x0)(x − x1).
N−1 = 1, N0(x) = r−1x + r′

−1, N1 = (r0x + r′0)(r−1x + r′
−1) + s0(x − x0)(x − x1), etc.

N0 interpolates S at x0 and x1, so r−1 =
S(x1) − S(x0)

x1 − x0
= µ1.

Casorati:

Nn−1(x)Pn(x) − Nn(x)Pn−1(x) = (−1)ns0 · · · sn−1(x − x0) · · · (x − x2n−1) (3)

Two-Points Padé Approximants occur when ak = a, bk = b, ∀k. The interpolation

property is then an order property
Nn(x)

Pn(x)
− S(x) = O([(x − a)(x − b)]n+1), and (3) above

is now

Nn−1(x)Pn(x) − Nn(x)Pn−1(x) = (−1)ns0 · · · sn−1(x − a)n(x − b)n (4)

The rather strange choice in (1) (why bm+1?) ensures same powers of (x− a) and (x− b)
in (4).

Laurent expansions setting. Let z =
x − a

x − b
, so, x =

bz − a

z − 1
. Taylor series in powers

of x − a and x − b are expansions in x − a =
(a − b)z

1 − z
= (a − b)(z + z2 + z3 + · · · ) and

x − b =
a − b

z − 1
= (a − b)(z−1 + z−2 + · · · ).

3. Classical families.

Among the various ways to define a classical family of orthogonal functions [2, § 5],
consider the Sonine-Hahn criterion: the derivatives P ′

n are themselves involved in some
family of biorthogonal rational functions, so they satisfy recurrence relations leading to
differential relations and equations for Pn.

Zhedanov [19] finds linear recurrence relations for the coefficients of the Laurent ex-

pansion of S in powers of z =
x − a

x − b
, leading to a differential equation of the form

AdS/dz = BS, with polynomials A and B of degrees 2 and 1.
Returning to x such that z = (x − a)/(x − b), one finds X(x)S ′(x) = Y (x)S(x), and we

may suspect that its rational approximation Nn(x)/Pn(x) = S(x) + O([(x− a)(x− b)]n+1)
satisfies almost the same differential equation, and this also leads to differential relations
and equations for Pn (Laguerre [11]).

Most general classical weight function for orthogonal polynomials is essentially the Jacobi
(d − t)α(t − c)β. Then,
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(x−c)(x−d)S(x) =

∫ d

c

(x − c)(x − d) − (t − c)(t − d)

x − t
w(t)dt−

∫ d

c

(d − t)α+1(t − c)β+1

x − t
dt,

d[(x − c)(x − d)S(x)]/dx = µ0,0 −

∫ d

c

d[(d − t)α+1(t − c)β+1]/dt

x − t
dt,

(x−c)(x−d)S ′(x)+(2x−c−d)S(x) = µ0,0 +(α+1)[−µ0,0 +(x−c)S(x)]− (β +1)[µ0,0−
(x − d)S(x)]:

(x − c)(x − d)S ′(x) = [(α + β)x − αc − βd]S(x) − (α + β + 1)µ0,0.
Of special interest is α + β + 1 = 0, we then have S(x) = a constant times

(x − d)α(x − c)−1−α, studied by Grosjean [6], by Komlov and Suetin [10].

4. Chebyshev family of biorthogonal rational

functions.

We even take a simpler case α = β = −1/2, d = −c, b = −a, so to have a completely
symmetric situation. In order to have S(a) = 1, let

S(x) =

√

a2 − c2

x2 − c2
, (5)

where the square root is a continuous function outside x ∈ [c,−c], so that S is an odd
function.

4.1. Recurrence relations.

In particular, S(b) = S(−a) = −1, whence the first approximation N0(x)/P0(x) = x/a
with r−1 = 1/a. All the r′n = 0.

We start the continued fraction expansion:

S(x) =

√

a2 − c2

x2 − c2
=

x

a
+

√

a2 − c2

x2 − c2
−

x

a
=

x

a
+

a2 − c2

x2 − c2
−

x2

a2
√

a2 − c2

x2 − c2
+

x

a

=
x

a
+

x2 − a2

a2
x2 − c2

c2 − a2 − x2

[√

a2 − c2

x2 − c2
+

x

a

]

= 2a
c2 − a2

2a2 − c2
x + O(x2 − a2)

, yielding the ratio

s0/r0. A convenient choice is r0 = 2(1− a2/c2) and as0 = −1 + 2a2/c2. More details on rn

and sn are not given here, they involve values of the Chebyshev polynomials Tn and Un at
the argument a/c, see the method suggested in § 5.

4.2. Differential relations.

We expect the approximation Nn/Pn to satisfy differential relations close to the differ-
ential equation (x2 − c2)dS(x)/dx+xS(x) = 0: (x2 − c2)(Nn(x)/Pn(x))′ +xNn(x)/Pn(x) =
O((x2−a2)n). Multiply by P 2

n(x), the left-hand side being a polynomial, so is the right-hand
side:

(x2 − c2)[N ′

n(x)Pn(x) − Nn(x)P ′

n(x)] + xNn(x)Pn(x) = (x2 − a2)nΘn(x),
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where Θn is a polynomial of degree 2 (Laguerre’s [11] notations!)
Θ0(x) = (2x2 − c2)/a, etc.
We also have

[(x2 − c2)1/2Nn(x)]′Pn(x) − (x2 − c2)1/2Nn(x)Pn(x)′ = (x2 − c2)−1/2(x2 − a2)nΘn(x). (6)

With Pn(x) = Cnxn + · · · and (x2 − c2)1/2Nn(x) = xn+2/a + · · · for large x, we find the
coeff. of x2 to be 2Cn: Θn(x) = 2Cnx

2 + Θn(0).
To get rid of the numerator polynomials Nn, subtract

(x2 − c2)

(
Nn+1(x)

Pn+1(x)
−

Nn(x)

Pn(x)

)
′

+ x

(
Nn+1(x)

Pn+1(x)
−

Nn(x)

Pn(x)

)

=
(x2 − a2)n+1Θn+1(x)

P 2
n+1(x)

−
(x2 − a2)nΘn(x)

P 2
n(x)

.

and derivate the Casorati identity (4) in the left-hand side, so

(−1)ns0 · · · sn

[

(x2 − c2)

(
(x2 − a2)n+1

Pn(x)Pn+1(x)

)
′

+ x
(x2 − a2)n+1

Pn(x)Pn+1(x)

]

=
(x2 − a2)n+1Θn+1(x)

P 2
n+1(x)

−
(x2 − a2)nΘn(x)

P 2
n(x)

or (−1)ns0 · · · sn{(x
2−c2)[2(n+1)xPn(x)Pn+1(x)−(x2−a2)(P ′

n(x)Pn+1(x)+Pn(x)P ′

n+1(x))]+
x(x2 − a2)Pn(x)Pn+1(x)} = (x2 − a2)Θn+1(x)P 2

n(x) − Θn(x)P 2
n+1(x)

Now, from APn +BPn+1 ≡ 0, form A ≡ ΩnPn+1 and B ≡ −ΩnPn, with a polynomial Ωn

(Laguerre [11, § 5, eq. (8)] again!).

(x2 − c2)[2(n + 1)xPn(x) − (x2 − a2)P ′

n(x)] + x(x2 − a2)Pn(x) +
(−1)nΘn(x)

s0 · · · sn
Pn+1(x) =

Ωn(x)Pn(x),
which is our differential relation

UP ′

n = VnPn + WnPn+1, (7a)

with U(x) = (x2 − a2)(x2 − c2), Vn(x) = 2(n + 1)x(x2 − c2) + x(x2 − a2) − Ωn(x), and

Wn(x) =
(−1)nΘn(x)

s0 · · · sn
.

The second equation is

−(x2 − c2)(x2 − a2)P ′

n+1(x) − (x2 − a2)
(−1)nΘn+1(x)

s0 · · · sn

Pn(x) = −Ωn(x)Pn+1(x), or

U(x)P ′

n+1(x) = [2(n+1)x(x2−c2)+x(x2−a2)−Vn(x)]Pn+1(x)+sn+1(x
2−a2)Wn+1(x)Pn(x)

(7b)
n → n + 1 in (7a) and subtraction:

Vn+1(x)Pn+1(x) + Wn+1(x)[

rn+1xPn+1(x)
︷ ︸︸ ︷

Pn+2(x) − sn+1(x
2 − a2)Pn(x)]− [2(n + 1)x(x2 − c2) + x(x2 −

a2) − Vn(x)]Pn+1(x) = 0 ,
so Vn+1(x) + Vn(x) + rn+1xWn+1(x) − 2(n + 1)x(x2 − c2) − x(x2 − a2) = 0, or
2(n + 2)x(x2 − c2) + x(x2 − a2) + rn+1xWn+1(x) = Ωn+1(x) + Ωn(x), confirming by the

way that the Ωns are polynomials, here: odd cubics.

When x is a zero of U , i.e., when x = ±a or x = ±c, (7a-7b) show
Pn+1(x)

Pn(x)
= −

Vn(x)

Wn(x)
=

−
sn+1(x

2 − a2)Wn+1(x)

2(n + 1)x(x2 − c2) + x(x2 − a2) − Vn(x)
= −

sn+1(x
2 − a2)Wn+1(x)

Vn+1(x) + rn+1xWn+1(x)
,
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so, Vn(x)[Vn+1(x) + rn+1xWn+1(x)] = sn+1(x
2 − a2)Wn(x)Wn(x) at the zeros of U .

4.3. Differential equation.

From UP ′

n = VnPn + WnPn+1, put P ′

n+1 = {Vn+1Pn+1 + Wn+1[rn+1xPn+1(x) + sn+1(x
2 −

a2)Pn(x)]}/U , into the derivative of Pn+1 = [UP ′

n − VnPn]/Wn:
[
UP ′

n − VnPn

Wn

]
′

=
Vn+1 + rn+1xWn+1

U

UP ′

n − VnPn

Wn
+

sn+1(x
2 − a2)Wn+1Pn

U
,

UWnP
′′

n +







U ′Wn − UW ′

n − Wn[ Vn + Vn+1 + rn+1xWn+1
︸ ︷︷ ︸

x[2(n + 1)(x2 − c2) + x2 − a2]







P ′

n

+

[

VnW
′

n − V ′

nWn + Wn(x)
Vn(Vn+1 + rn+1xWn+1) − sn+1(x

2 − a2)Wn+1Wn(x)

U(x)

]

Pn = 0

Remark that the coefficient of P ′

n inside the curly braces is −UWn times the logarithmic
derivative of the Wronskian which is therefore Wn(x) = (x2 − c2)−1/2(x2 − a2)nWn(x),
and that is exactly (6)! So that the solutions of the differential equation are y = Pn(x)
AND y = (x2 − c2)1/2Nn(x) [10] in

U(x)Wn(x)

{

y′′ +

[
x

x2 − c2
−

2nx

x2 − a2
−

W ′

n(x)

Wn(x)

]

y′

}

+ Kn(x)y = 0, (8)

where Kn is a polynomial of degree 6 4.

4.4. Heun.

Let Wn(x) = (W ′′

n/2)(x2 − θn). The equation (8) has three singular points a2, c2, and θn

in the bounded x2−plane. This suggests that we are close to the Heun equation

(u − a)(u − b)(u − c)

{
d2Y

du2
+

[
γ

u − a
+

δ

u − b
+

ǫ

u − c

]
dY

du

}

+ (αβu − Q)Y = 0. (9)

When u → ∞, a uρ behaviour implies ρ(ρ − 1) + (γ + δ + ǫ)ρ + αβ = 0 ⇒ ρ = −α
and −β, with α + β = γ + δ + ǫ − 1 [5, 8, 13, 15, 16]. It seems obvious that (8) becomes
(9) by taking u = x2, but a new singularity rises then at the origin. Considering that
the expansions of the two solutions of (8) for large x are Pn(x) = Cnxn + O(xn−2) and
(x2 − c2)1/2Nn(x) = xn+2/a + O(xn), we kill the singularity at x = ∞ by building the
differential equation for x−n−2y, and by taking the new variable t = 1/x2.

4.4.1. First. , the equation for ỹ = x−n−2y:

U(x)Wn(x)

{

x2ỹ′′ + 2(n + 2)xỹ′ + (n + 2)(n + 1)ỹ +

[
x

x2 − c2
−

2nx

x2 − a2
−

W ′

n(x)

Wn(x)

]

[x2ỹ′ + (n + 2)xỹ]

}

+ Kn(x)x2ỹ = 0.

U(x)Wn(x)

{

x2ỹ′′ + x

[

3 +
c2

x2 − c2
−

2na2

x2 − a2
−

2θn

x2 − θn

]

ỹ′

}

+ K̃n(x)ỹ = 0, with

K̃n(x) = (n + 1)(n + 2)UWn + (n + 2)xUWn

[
x

x2 − c2
−

2nx

x2 − a2
−

W ′

n(x)

Wn(x)

]

+ x2Kn(x),

an even polynomial of degree 6 6.
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Seems worse than before, but the degree of K̃n is only 2! Indeed, put the solution
ỹ = ax−n−2(x2 − c2)1/2Nn(x) = 1 + ζn/x

2 + · · · for large x in the differential equation:

K̃n(x) = −U(x)Wn(x)

{

x2 ỹ′′

ỹ
+ x

[

3 +
c2

x2 − c2
−

2na2

x2 − a2
−

2θn

x2 − θn

]
ỹ′

ỹ

}

= O(x2).

K̃n(0) = (n + 1)(n + 2)U(0)Wn(0) = −(n + 1)(n + 2)a2c2θn is especially interesting,

K̃n(x) = (K̃ ′′

n/2)x2 − (n + 1)(n + 2)a2c2θn.

4.4.2. Finally. , t = 1/x2 : x = t−1/2, Y (t) = ỹ(x),

(1/t−a2)(1/t−c2)(1/t−θn)

{

t−12t3/2 d

dt

[

2t3/2 dY

dt

]

− 2t−1/2

[

3 +
c2

1/t − c2
−

2na2

1/t − a2
−

2θn

1/t − θn

]

t3/2 dY

dt

}

+

[(K̃ ′′

n/2)t−1 − (n + 1)(n + 2)a2c2θn]Y = 0,

(1 − a2t)(1 − c2t)(1 − θnt)

{

4
d2Y

dt2
− 2

[
c2

1 − c2t
−

2na2

1 − a2t
−

2θn

1 − θnt

]
dY

dt

}

+ tK̃n(t−1/2)Y = 0

(t − 1/a2)(t − 1/c2)(t − 1/θn)

{
d2Y

dt2
+

[
1/2

t − 1/c2
−

n

t − 1/a2
−

1

t − 1/θn

]
dY

dt

}

+

[

(n + 1)(n + 2)

4
t −

K̃ ′′

n/2

4a2c2θn

]

Y = 0 (10)

is our Heun equation. It has two Frobenius-polynomial solutions t(n+2)/2Pn(t−1/2),
(t − 1/c2)1/2t(n+1)/2Nn(t−1/2), a much studied property [5, 7, 8, 13, 15, 16].

5. Another square root story.

There is of course an ∞ simpler continued fraction expansion of our square root function,
with constant coefficients:

√

a2 − c2

x2 − c2
=

1

x/a +
c2(x2 − a2)/[a2(a2 − c2)]

2x/a +
c2(x2 − a2)/[a2(a2 − c2)]

2x/a +
.. .

see also Ismail & Masson [9, Example 3.1, p. 18]. Let P̃n be the polynomials of interest here.

They are now true Chebyshev polynomials P̃n(x) =

(
c2(x2 − a2)

a2(c2 − a2)

)n/2

Tn

(

x

c

√

c2 − a2

x2 − a2

)

,

orthogonal with respect to w(t)/(t2 − a2)n instead of w(t)/(t2 − a2)n+1. This means that
the Pn of before is related to a modified weight function involving multiplication or division

by a polynomial (Christoffel, Uvarov):
Pn+2(x)Pn(a) − Pn+2(a)Pn(x)

x2 − a2
= constant P̃n(x).

Recurrence relations of the Pns involve special values

P̃n(a) = limx→a 2n−1

(
c2(x2 − a2)

a2(c2 − a2)

)n/2
(

x

c

√

c2 − a2

x2 − a2

)n

= 2n−1.

Coefficient of xn in P̃n =

(
c2

a2(c2 − a2)

)n/2

Tn

(√

1 − a2/c2
)

.
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This may lead to recurrence coefficients, and even differential properties and equations,
by particular methods [13, 14], but we plan to study other classical biorthogonal rational
functions, when these modified weight function techniques do not apply.
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