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ELLIPTIC HYPERGEOMETRIC FUNCTIONS

V. P. SPIRIDONOV

Introduction. The wonderful book by Andrews, Askey, and Roy [2] is mainly
devoted to special functions of hypergeometric type – to the plain and q-hypergeo-
metric series and integrals. Shortly before its publication, examples of a third type
of such functions, related to elliptic curves, began to appear. A systematic theory of
elliptic hypergeometric functions was constructed in 2000-2004 over a short period
of time. The present complement reviews briefly the status of this theory to the
end of 2006. It repeats where possible the structure of the complemented book [2],
and it is based mainly on the material [44].

The theory of quantum and classical completely integrable systems played a
crucial role in the discovery of these new special functions. An elliptic extension
of the terminating very well poised balanced q-hypergeometric series 10ϕ9 with
discrete values of parameters appeared for the first time in elliptic solutions of the
Yang-Baxter equation [14] associated with the exactly solvable models of statistical
mechanics [9]. The same terminating series with arbitrary parameters appeared
in [47] as a particular solution of a pair of linear finite difference equations, the
compatibility condition of which yields the most general known (1+1)-dimensional
nonlinear integrable chain analogous to the discrete time Toda chain. In [35],
the generalized gamma functions were investigated in detail, including one of the
elliptic analogues of Euler’s gamma function, which appeared implicitly already in
Baxter’s eight vertex model. The appearance of such mathematical objects was
quite unexpected, since no handbook or textbook of special functions contained
any hint of their existence. Some relatives of these functions were considered only
in the old original papers by Barnes [6] and Jackson [19].

Generalized gamma functions. In the beginning of the XX-th century
Barnes [6] suggested a multiple zeta function depending on m quasiperiods ωj ∈ C:

ζm(s, u;ω) =
∑

n1,...,nm∈N

1

(u + Ω)s
, Ω = n1ω1 + . . .+ nmωm, N = {0, 1, . . .},

where the series converges for Re(s) > m and under the condition that if ωj/ωk ∈ R,
then ωj/ωk > 0. Using an integral representation for ζm, Barnes also defined
the multiple gamma function Γm(u;ω) = exp(∂ζm(s, u;ω)/∂s)|s=0, which has the
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infinite product representation

1

Γm(u;ω)
= e

Pm
k=0

γmk
uk

k! u

∞
∏

n1,...,nm=0

′
(

1 +
u

Ω

)

e
Pm

k=1
(−1)k uk

kΩk , (1)

where γmk are some constants analogous to Euler’s constant (in [6], the normal-
ization γm0 = 0 was used). The primed product means that the point n1 = . . . =
nm = 0 is excluded from it. The function Γm(u;ω) satisfies m finite difference
equations of the first order

Γm(u+ ωj ;ω) = Γ−1
m−1(u;ω(j)) Γm(u;ω), j = 1, . . . ,m, (2)

where ω(j) = (ω1, . . . , ωj−1, ωj+1, . . . , ωm) and Γ0(u;ω) := 1/u. The function
Γ1(ω1x;ω1) essentially coincides with Euler’s gamma function Γ(x). The plain, q-,
and elliptic hypergeometric functions are respectively connected to Γm(u;ω) for
m = 1, 2, 3.

We define three base variables p, q, r ∈ C related to the pairwise incommensurate
quasiperiods ω1,2,3 as follows:

q = e2πi
ω1

ω2 , p = e2πi
ω3

ω2 , r = e2πi
ω3

ω1 ,

q̃ = e−2πi
ω2

ω1 , p̃ = e−2πi
ω2

ω3 , r̃ = e−2πi
ω1

ω3 ,

where q̃, p̃, r̃ denote the modular transformed bases. For |p|, |q| < 1, the infinite
products

(z; q)∞ =
∞
∏

j=0

(1 − zqj), (z; p, q)∞ =
∞
∏

j,k=0

(1 − zpjqk)

are well defined. It is easy to derive equalities [19]

(z; q)∞
(qz; q)∞

= 1 − z,
(z; q, p)∞
(qz; q, p)∞

= (z; p)∞,
(z; q, p)∞
(pz; q, p)∞

= (z; q)∞. (3)

The odd Jacobi theta function (see formula (10.7.1) in [2]) can be written as

θ1(u|τ) = −i
∞
∑

n=−∞

(−1)neπiτ(n+1/2)2eπi(2n+1)u

= ip1/8e−πiu (p; p)∞ θ(e2πiu; p), u ∈ C,

where p = e2πiτ . The shortened theta function (see Theorem 10.4.1 in [2])

θ(z; p) := (z; p)∞(pz−1; p)∞ =
1

(p; p)∞

∑

k∈Z

(−1)kpk(k−1)/2zk (4)

plays a crucial role in the following. It obeys the following properties:

θ(pz; p) = θ(z−1; p) = −z−1θ(z; p) (5)

and θ(z; p) = 0 for z = pk, k ∈ Z. We denote

θ(a1, . . . , ak; p) := θ(a1; p) · · · θ(ak; p), θ(at±; p) := θ(at; p)θ(at−1; p).
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Then the Riemann identity for products of four theta functions takes the form

θ(xw±, yz±; p) − θ(xz±, yw±; p) = yw−1θ(xy±, wz±; p) (6)

(the ratio of the left- and right-hand sides is a bounded function of x ∈ C∗, and it
does not depend on x due to the Liouville theorem, but for x = w the equality is
evident).

Euler’s gamma function can be defined as a special meromorphic solution of
the functional equation f(u + ω1) = uf(u). q-Gamma functions are connected to
solutions of the equation f(u+ω1) = (1−e2πiu/ω2)f(u) with q = e2πiω1/ω2 . For |q| <
1, one of its solutions has the form Γq(u) = 1/(e2πiu/ω2 ; q)∞ defining the standard q-
gamma function (it differs from function (10.3.3) in [2] by the substitution u = ω1x
and some elementary multiplier). The modified q-gamma function (“the double
sine”, “hyperbolic gamma function”, etc), which remains well defined even for |q| =
1, has the form

γ(u;ω) = exp

(

−
∫

R+i0

eux

(1 − eω1x)(1 − eω2x)

dx

x

)

, (7)

where the contour R + i0 coincides with the real axis deformed to pass clockwise
the point x = 0 in an infinitesimal way. If Re(ω1),Re(ω2) > 0, then the integral
converges for 0 < Re(u) < Re(ω1 + ω2). Under appropriate restrictions upon u
and ω1,2, the integral can be computed as a convergent sum of the residues of
poles in the upper half plane. When Im(ω1/ω2) > 0, this yields the expression
γ(u;ω) = (e2πiu/ω1 q̃; q̃)∞/(e

2πiu/ω2 ; q)∞, which can be extended analytically to the
whole complex u-plane. This function, serving as a key building block of the q-hy-
pergeometric functions for |q| = 1, was not considered in [2] and [16]; for its detailed
description see [20, 23, 35, 50] and the literature cited therein.

In an analogous way, elliptic gamma functions are connected to the equation

f(u+ ω1) = θ(e2πiu/ω2 ; p)f(u). (8)

Using the factorization (4) and equalities (3), it is not difficult to see that the ratio

Γ(z; p, q) =
(pqz−1; p, q)∞

(z; p, q)∞
(9)

satisfies the equations

Γ(qz; p, q) = θ(z; p)Γ(z; p, q), Γ(pz; p, q) = θ(z; q)Γ(z; p, q).

Therefore the function f(u) = Γ(e2πiu/ω2 ; p, q) defines a solution of equation (8)
valid for |q|, |p| < 1, which is called the (standard) elliptic gamma function [35]. It
can be defined uniquely as a meromorphic solution of three equations: (8) and

f(u+ ω2) = f(u), f(u+ ω3) = θ(e2πiu/ω2 ; q)f(u)

with the normalization f(
∑3

m=1 ωm/2) = 1, since there do not exist non-trivial
triply periodic functions. The reflection formula for it has the form Γ(z; p, q)
Γ(pq/z; p, q) = 1. For p = 0, we have Γ(z; 0, q) = 1/(z; q)∞.
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The modified elliptic gamma function, which is well defined for |q| = 1, has the
form [41]

G(u;ω) = Γ(e2πi u
ω2 ; p, q)Γ(re−2πi u

ω1 ; q̃, r). (10)

It yields the unique solution of three equations: (8) and

f(u+ ω2) = θ(e2πiu/ω1 ; r)f(u), f(u+ ω3) = e−πiB2,2(u;ω)f(u)

with the normalization f(
∑3

m=1 ωm/2) = 1. Here

B2,2(u;ω) =
u2

ω1ω2
− u

ω1
− u

ω2
+

ω1

6ω2
+

ω2

6ω1
+

1

2

denotes the second Bernoulli polynomial appearing in the modular transformation
law for the theta function

θ
(

e−2πi u
ω1 ; e−2πi

ω2

ω1

)

= eπiB2,2(u;ω)θ
(

e2πi u
ω2 ; e2πi

ω1

ω2

)

. (11)

One can check [12] that the same three equations and normalization are satisfied
by the function

G(u;ω) = e−πiP (u)Γ(e
−2πi u

ω3 ; r̃, p̃), (12)

where |p̃|, |r̃| < 1, and the polynomial of the third degree P (u) has the form

P

(

u+

3
∑

m=1

ωm

2

)

=
u(u2 − 1

4

∑3
m=1 ω

2
m)

3ω1ω2ω3
.

Functions (10) and (12) therefore coincide, and their equality defines one of the laws
of the SL(3; Z)-group of modular transformations for the elliptic gamma function
[13]. From expression (12), the function G(u;ω) is easily seen to remain meromor-
phic when ω1/ω2 > 0, i.e. |q| = 1. The reflection formula for this function has

the form G(a;ω)G(b;ω) = 1, a+ b =
∑3

k=1 ωk. In the regime |q| < 1 and p, r → 0
(i.e., Im(ω3/ω1), Im(ω3/ω2) → +∞), expression (10) obviously degenerates to the
modified q-gamma function γ(u;ω). Representation (12) yields an alternative way
of reduction to γ(u;ω); a rigorous limiting connection of such a type was built for
the first time in a different way by Ruijsenaars [35].

As shown by Barnes, the q-gamma function 1/(z; q)∞ with z = e2πiu/ω2 and
q = e2πiω1/ω2 , Im(ω1/ω2) > 0, equals in essence to the product Γ2(u;ω1, ω2)Γ2(u−
ω2;ω1,−ω2). Analogously, the modified q-gamma function γ(u;ω) coincides in es-
sence with the ratio Γ2(ω1 +ω2 −u;ω)/Γ2(u;ω). Since θ(z; q) = (z; q)∞(qz−1; q)∞,
the Γ2(u;ω)-function represents “a quarter” of the θ1(u/ω2|ω1/ω2) Jacobi theta
function (in the sense of the number of divisor points). Correspondingly, one can
consider equation (8) as a composition of four equations for Γ3(u;ω) with different
arguments and quasiperiods and represent the elliptic gamma functions as ratios
of four Barnes gamma functions of the third order with some simple exponential
multipliers [15, 41]. For some other important results for the generalized gamma
functions, see [25, 30].
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The elliptic beta integral. It is convenient to use the compact notation

Γ(a1, . . . , ak; p, q) := Γ(a1; p, q) · · ·Γ(ak; p, q),

Γ(tz±; p, q) := Γ(tz; p, q)Γ(tz−1; p, q), Γ(z±2; p, q) := Γ(z2; p, q)Γ(z−2; p, q)

for working with elliptic hypergeometric integrals. We start consideration from the
elliptic beta integral discovered by the author in [38].

Theorem 1. We take eight complex parameters tj , j = 1, . . . , 6, and p, q, satisfying

the constraints |p|, |q|, |tj | < 1 and
∏6

j=1 tj = pq. Then the following equality is valid

κ

∫

T

∏6
j=1 Γ(tjz

±; p, q)

Γ(z±2; p, q)

dz

z
=

∏

1≤j<k≤6

Γ(tjtk; p, q), (13)

where T denotes the positively oriented unit circle and κ = (p; p)∞(q; q)∞/4πi.

The first proof of this formula was based on the elliptic extension of Askey’s
method [3]. A rather short proof was given in [43], but still it does not fit the
margins of this page and we skip it. The elliptic beta integral (13) defines the
most general known univariate exact integration formula generalizing Euler’s beta
integral. For p → 0, one obtains the Rahman integral [26] (see Theorem 10.8.2 in
[2]), which goes to the well known Askey-Wilson q-beta integral [4] (see Theorem
10.8.1 in [2]), if one of the parameters vanishes.

We replace T by a contour C which separates sequences of poles converging to
zero along the points z = tjq

kpm, k,m ∈ N, from their reciprocals obtained by the
change z → 1/z, which diverge to infinity. This allows us to lift the constraints
|tj | < 1 without changing the right-hand side of (13). We substitute t6 = pq/A,

A =
∏5

s=1 ts, and suppose that |tm| < 1, m = 1, . . . , 4, |pt5| < 1 < |t5|, |pq| < |A|,
and that the arguments of ts, s = 1, . . . , 5, and p, q are linearly independent over
Z. Then the following equality takes place [10]:

κ

∫

C

∆E(z, t)
dz

z
= κ

∫

T

∆E(z, t)
dz

z
+ c0(t)

∑

|t5qn|>1, n≥0

νn(t), (14)

where ∆E(z, t) =
∏5

m=1 Γ(tmz
±; p, q)/Γ(z±2, Az±; p, q) and

c0(t) =

∏4
m=1 Γ(tmt

±
5 ; p, q)

Γ(t−2
5 , At±5 ; p, q)

, νn(t) =
θ(t25q

2n; p)

θ(t25; p)

5
∏

m=0

θ(tmt5)n

θ(qt−1
m t5)n

qn.

We have introduced here the new parameter t0 with the help of the relation
∏5

m=0 tm = q and used the elliptic Pochhammer symbol

θ(t)n =

n−1
∏

j=0

θ(tqj ; p) =
Γ(tqn; p, q)

Γ(t; p, q)
, θ(t1, . . . , tk)n :=

k
∏

j=1

θ(tj ; p)n

(the indicated ratio of elliptic gamma functions defines θ(t)n for arbitrary n ∈ C).
The multiplier κ is absent in the coefficient c0 due to the relation limz→1(1 −
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z)Γ(z; p, q) = 1/(p; p)∞(q; q)∞ and doubling of the number of residues because of
the symmetry z → z−1.

In the limit t5t4 → q−N , N ∈ N, the integral value in the left-hand side of (14),
i.e. the right-hand side of (13), and the multiplier c0(t) in front of the sum of
residues on the right-hand side diverge, whereas the integral over the unit circle
T remains finite. After dividing all the terms by c0(t) and going to the limiting
relation, we obtain the Frenkel-Turaev summation formula

N
∑

n=0

νn(t) =
θ(qt25,

q
t1t2

, q
t1t3

, q
t2t3

)N

θ( q
t1t2t3t5

, qt5
t1
, qt5

t2
, qt5

t3
)N

, (15)

which was established for the first time in [14] by a completely different method.
For p → 0 and fixed parameters, equality (15) reduces to the Jackson sum for a
terminating 8ϕ7-series (see formula (12.3.5) in [2]).

General elliptic hypergeometric functions. Definitions of the general ellip-
tic hypergeometric series and integrals were respectively given and investigated in
detail in [39] and [41]. So, formal series

∑

n∈Z
cn are called the elliptic hypergeo-

metric series, if cn+1 = h(n)cn, where h(n) is some elliptic function of n ∈ C. It
is well known [5], that an arbitrary elliptic function h(u) of order s + 1 with the
periods ω2/ω1 and ω3/ω1 can be represented in the form

h(u) = y

s+1
∏

k=1

θ(tkz; p)

θ(wkz; p)
, (16)

where z = qu. The equality h(u + ω2/ω1) = h(u) is evident, and the periodicity

h(u+ω3/ω1) = h(u) brings in the balancing condition
∏s+1

k=1 tk =
∏s+1

k=1 wk. Because
of the factorization of h(n), in order to determine the coefficients cn it suffices to
solve the equation an+1 = θ(tqn; p) an, which leads to the elliptic Pochhammer
symbol an = θ(t)n a0. The explicit form of the bilateral elliptic hypergeometric
series is now easily found to be

s+1Gs+1

(

t1, . . . , ts+1

w1, . . . , ws+1
; q, p; y

)

:=
∑

n∈Z

s+1
∏

k=1

θ(tk)n

θ(wk)n
yn,

where we have chosen the normalization c0 = 1. By setting ws+1 = q, ts+1 ≡ t0,
we obtain the one sided series

s+1Es

(

t0, t1, . . . , ts
w1, . . . , ws

; q, p; y

)

:=
∑

n∈N

θ(t0, t1, . . . , ts)n

θ(q, w1, . . . , ws)n
yn. (17)

For fixed tj and wj , the function s+1Es degenerates in the limit p→ 0 to the basic
q-hypergeometric series s+1ϕs with the condition

∏s
k=0 ts = q

∏s
k=1 ws. There

are some problems with the convergence of infinite series (17), and therefore we
assume that they terminate due to the condition tk = q−NpM for some k and
N ∈ N, M ∈ Z. For consideration of some questions, the additive system of notation
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for the elliptic hypergeometric series is more convenient (see, e.g., Ch. 11 in [16] or
[44]), but we skip it here.

Series (17) is called well poised, if t0q = t1w1 = . . . = tsws. In this case the

balancing condition takes the form t1 · · · ts = ±q(s+1)/2t
(s−1)/2
0 , and the functions

h(u) and s+1Es become invariant under the changes tj → ptj , j = 1, . . . , s − 1,
and t0 → p2t0. For odd s and the balancing condition of the form t1 · · · ts =

+q(s+1)/2t
(s−1)/2
0 , there appears the symmetry t0 → pt0 and s+1Es becomes an

elliptic function of all free parameters log tj , j = 0, . . . , s − 1, with equal periods
(such functions were called in [39, 44] the totally elliptic functions). Under the four

additional constraints ts−3 = q
√
t0, ts−2 = −q√t0, ts−1 = q

√

t0/p, ts = −q√pt0,
connected with the doubling of the argument of theta functions, the series are called
very well poised. In [40], a special notation was introduced for the very well poised
elliptic hypergeometric series:

s+1Es

(

t0, t1, . . . , ts−4, q
√
t0,−q

√
t0, q

√

t0/p,−q
√
pt0

qt0/t1, . . . , qt0/ts−4,
√
t0,−

√
t0,

√
pt0,−

√

t0/p
; q, p;−y

)

(18)

=

∞
∑

n=0

θ(t0q
2n; p)

θ(t0; p)

s−4
∏

m=0

θ(tm)n

θ(qt0t
−1
m )n

(qy)n =: s+1Vs(t0; t1, . . . , ts−4; q, p; y),

where the balancing condition has the form
∏s−4

k=1 tk = ±t(s−5)/2
0 q(s−7)/2, and for

odd s we assume the positive sign choice for preserving the symmetry t0 → pt0. For
the y argument value y = 1, it is omitted in the series notation. Summation formula
(15) thus gives a closed form expression for the terminating 10V9(t0; t1, . . . , t5; q, p)-
series.

Contour integrals
∫

C
∆(u)du are called the elliptic hypergeometric integrals, if

the function ∆(u) satisfies the system of three equations

∆(u + ωk) = hk(u)∆(u), k = 1, 2, 3, (19)

where ω1,2,3 ∈ C are some pairwise incommensurate parameters and hk(u) – some
elliptic functions with periods ωk, ωk+1 (we set ωk+3 = ωk). One can weaken
requirement (19) by leaving only one equation, but then there appears a functional
freedom in the choice of ∆(u), which should be fixed in some other way.

Omitting the details of consideration [41, 44], we present the general form of
permissible ∆(u). We suppose that this function satisfies equations (19) for k = 1, 2,
where

h1(u) = y1

s
∏

j=1

θ(tje
2πiu/ω2 ; p)

θ(wje2πiu/ω2 ; p)
, h2(u) = y2

ℓ
∏

j=1

θ(t̃je
−2πiu/ω1 ; r)

θ(w̃je−2πiu/ω1 ; r)
,
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with |p|, |r| < 1 and
∏s

j=1 tj =
∏s

j=1 wj ,
∏ℓ

j=1 t̃j =
∏ℓ

j=1 w̃j . If we take |q| < 1,

then the most general meromorphic function ∆(u) has the form

∆(u) =

s
∏

j=1

Γ(tje
2πi u

ω2 ; p, q)

Γ(wje
2πi u

ω2 ; p, q)

ℓ
∏

j=1

Γ(t̃je
−2πi u

ω1 ; q̃, r)

Γ(w̃je
−2πi u

ω1 ; q̃, r)

m
∏

k=1

θ(ake
2πi u

ω2 ; q)

θ(bke
2πi u

ω2 ; q)
ecu+d, (20)

where the parameters d and m are arbitrary, and ak, bk, c are connected with y1
and y2 by the relations y2 = ecω2 and y1 = ecω1

∏m
k=1 bka

−1
k . It appears that the

function h3(u) cannot be arbitrary – it is determined from expression (20).
For |q| = 1, it is necessary in (20) to choose ℓ = s and to fix parameters in such

a way that the Γ-functions are combined to the modified elliptic gamma function
G(u;ω) (it is precisely in this way that this function was built in [41]):

∆(u) =

s
∏

j=1

G(u+ gj ;ω)

G(u + vj ;ω)
ecu+d, (21)

where the parameters gj, vj are connected with tj , wj by the relations tj = e2πigj/ω2 ,

wj = e2πivj/ω2 , and y1,2 = ecω1,2 . The integrals
∫

C ∆(u)du with kernels of the in-
dicated form define elliptic analogues of the Meijer function. A more general theta
hypergeometric analogue of the Meijer function was constructed in [41], but we skip
it here.

We limit consideration to the choice ℓ = m = 0 in (20). The correspond-
ing integrals are called well poised, if t1w1 = . . . = tsws = pq. The additional
condition of very well poisedness fixes eight parameters ts−7, . . . , ts = {±(pq)1/2,
±q1/2p, ±p1/2q,±pq} and doubles the argument of the elliptic gamma function:
∏s

j=s−7 Γ(tjz; p, q) = 1/Γ(z−2; p, q). The most interesting are the very well poised
elliptic hypergeometric integrals with even number of parameters

I(m)(t1, . . . , t2m+6) = κ

∫

T

∏2m+6
j=1 Γ(tjz

±; p, q)

Γ(z±2; p, q)

dz

z
,

2m+6
∏

j=1

tj = (pq)m+1, (22)

with |tj | < 1 and the “correct” choice of the sign in the balancing condition. They
represent integral analogues of the s+1Vs-series with odd s, “correct” balancing
condition and the argument y = 1, in the sense that these series appear as residue
sums of particular pole sequences of the kernel of I(m). We note that I(0) coincides
with the elliptic beta integral.

Properties of the elliptic functions explain the origins of the old hypergeometric
notions of balancing, well poisedness, and very well poisedness. However, strictly
speaking these notions are consistently defined only at the elliptic level, because
there are limits to such q-hypergeometric identities in which they are not conserved
any more [28, 40]! The fact of unique determination of the balancing condition
for series (18) with odd s and integrals (22) (precisely these objects emerge in the
main part of interesting applications) illustrates a deep internal tie between the
“elliptic” and “hypergeometric” classes of special functions. Multivariable elliptic
hypergeometric series and integrals are defined analogously to the univariate case
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– it is necessary to use systems of finite difference equations for kernels with the
coefficients which are elliptic functions of all summation or integration variables
[39, 41], which is a natural generalization of the approach of Pochhammer and
Horn to the functions of hypergeometric type [2, 17].

An elliptic analogue of the Gauss hypergeometric function. We take
eight parameters t1, . . . , t8 ∈ C and two base variables p, q ∈ C satisfying the con-

straints |p|, |q| < 1 and
∏8

j=1 tj = p2q2 (the balancing condition). For |tj | < 1, j =

1, . . . , 8, an elliptic analogue of the Gauss hypergeometric function 2F1(a, b; c;x) is
defined by the integral representation [44]

V (t1, . . . , t8; p, q) = κ

∫

T

∏8
j=1 Γ(tjz

±; p, q)

Γ(z±2; p, q)

dz

z
, (23)

i.e. by the choice m = 1 in expression (22). For other admissible values of pa-
rameters, the V -function is defined by the analytical continuation of expression
(23). From this continuation one can see that the V -function is meromorphic in all
parameters for arbitrary tj ∈ C∗ – it is sufficient for this to compute residues of
the integrand and to define analytically continued function as a sum of the integral
over some fixed contour and residues of the poles crossing this contour. For a more
detailed analysis of the meromorphic character of the elliptic hypergeometric inte-
grals and an interesting role of the “correct” sign choice in the balancing condition
played in that, see [27].

The first nontrivial property of function (23) consists in its reduction to the ellip-
tic beta integral under the condition tjtk = pq for an arbitrary pair of parameters
tj and tk (expression (13) appears from t7t8 = pq). The V -function is evidently
symmetric in p and q. It is invariant also under the S8-group of permutations of
parameters tj isomorphic to the A7 Weyl group. We consider the double integral

κ

∫

T2

∏4
j=1 Γ(ajz

±, bjw
±; p, q) Γ(cz±w±; p, q)

Γ(z±2, w±2; p, q)

dz

z

dw

w
,

where aj , bj , c ∈ C, |aj |, |bj|, |c| < 1, and c2
∏4

j=1 aj = c2
∏4

j=1 bj = pq. Using for-

mula (13) for integrations over z or w (the permutation of the order of integrations
is permitted), we obtain the following transformation formula:

V (t) =
∏

1≤j<k≤4

Γ(tjtk, tj+4tk+4; p, q)V (s), (24)

where we used the compact notation V (t) = V (t1, . . . , t8; p, q),
{

sj = ρ−1tj , j = 1, 2, 3, 4
sj = ρtj , j = 5, 6, 7, 8

; ρ =

√

t1t2t3t4
pq

=

√

pq

t5t6t7t8
,

and |tj |, |sj | < 1. This fundamentally important relation was obtained by the
author in [41], where the function V (t) appeared for the first time. It represents an
elliptic analogue (moreover, its integral generalization) of the Bailey transformation
for four non terminating 10ϕ9-series [16].
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We repeat transformation (24) once more with the parameters s3,4,5,6, playing
the role of t1,2,3,4, and permute parameters t3, t4 with t5, t6 in the result. This
yields the relation

V (t) =

4
∏

j,k=1

Γ(tjtk+4; p, q) V (T
1

2/t1, . . . , T
1

2/t4, U
1

2/t5, . . . , U
1

2/t8), (25)

where T = t1t2t3t4, U = t5t6t7t8 and |T |1/2 < |tj | < 1, |U |1/2 < |tj+4| < 1, j =
1, 2, 3, 4. We equate now the right-hand sides of relations (24) and (25), express
parameters tj in terms of sj and obtain the third relation

V (s) =
∏

1≤j<k≤8

Γ(sjsk; p, q)V (
√
pq/s1, . . . ,

√
pq/s8), (26)

where |pq|1/2 < |sj | < 1 for all j.
We consider Euclidean space R8 with the scalar product 〈x, y〉 and an orthonor-

mal basis ei ∈ R
8, 〈ei, ej〉 = δij . The root system A7 consists of the vectors

v = {ei − ej, i 6= j}. Its Weyl group is composed from the reflections x→ Sv(x) =

x− 2v〈v, x〉/〈v, v〉 acting in the hyperplane orthogonal to the vector
∑8

i=1 ei (i.e.,

the coordinates of the vectors x =
∑8

i=1 xiei satisfy the constraint
∑8

i=1 xi = 0),
and it coincides with the permutation group S8.

We connect parameters of the V (t)-function with the coordinates xj by the

relations tj = e2πixj (pq)1/4. Then the balancing condition assumes that
∑8

i=1 xi =
0. The first coordinate transformation (24) is now easily seen to correspond to

the reflection Sv(x) for the vector v = (
∑8

i=5 ei −
∑4

i=1 ei)/2 having the canonical
length 〈v, v〉 = 2. This reflection extends the group A7 to the exceptional Weyl
group E7. Relations (25) and (26) were proved in a different way by Rains in [27],
where it was indicated that these transformations belong to the group E7.

We denote by V (qtj , q
−1tk) elliptic hypergeometric functions contiguous to V (t)

in the sense that tj and tk are respectively replaced by qtj and q−1tk. The following
contiguous relation for the V -functions is valid

t7θ
(

t8t
±
7 /q; p

)

V (qt6, q
−1t8) − (t6 ↔ t7) = t7θ

(

t6t
±
7 ; p

)

V (t), (27)

where (t6 ↔ t7) denotes the permutation of parameters in the preceding expres-
sion (such a relation was used already in [38]). Indeed, for y = t6, w = t7, and
x = q−1t8 the Riemann identity (6) is equivalent to the q-difference equation for V -

function’s integrand ∆(z, t) =
∏8

k=1 Γ(tkz
±; p, q)/Γ(z±2; p, q) coinciding with (27)

after replacement of V -functions by ∆(z, t) with appropriate parameters. Integra-
tion of this equation over the contour T yields (27). We now substitute symmetry
transformation (26) in (27) and obtain the second contiguous relation

t6θ
( t7
qt8

; p
)

5
∏

k=1

θ
( t6tk
q

; p
)

V (q−1t6, qt8) − (t6 ↔ t7) = t6θ
( t7
t6

; p
)

5
∏

k=1

θ(t8tk; p))V (t).
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An appropriate combination of these two equalities yields the equation

A(t)
(

U(qt6, q
−1t7) − U(t)

)

+ (t6 ↔ t7) + U(t) = 0, (28)

where we have denoted U(t) = V (t)/Γ(t6t
±
8 , t7t

±
8 ; p, q) and

A(t) =
θ(t6/qt8, t6t8, t8/t6; p)

θ(t6/t7, t7/qt6, t6t7/q; p)

5
∏

k=1

θ(t7tk/q; p)

θ(t8tk; p)
. (29)

Substituting tj = e2πigj/ω2 , one can check that the potential A(t) is a modular
invariant elliptic function of the variables g1, . . . , g7, i.e. it does not change after
the replacements gj → gj + ω2,3 and (ω2, ω3) → (−ω3, ω2).

We introduce now the new notation for parameters: t6 = cx, t7 = c/x, and

εk =
q

ctk
, k = 1, . . . , 5, ε8 =

c

t8
, ε7 =

ε8
q
.

Setting c =
√
ε6ε8/p

2, we find that the balancing condition in terms of εk takes

the form
∏8

k=1 εk = p2q2. After the replacement of U(t) in (28) by some unknown
function f(x), we obtain a q-difference equation of the second order which is called
the elliptic hypergeometric equation:

A(x) (f(qx) − f(x)) +A(x−1)
(

f(q−1x) − f(x)
)

+ νf(x) = 0, (30)

A(x) =

∏8
k=1 θ(εkx; p)

θ(x2, qx2; p)
, ν =

6
∏

k=1

θ

(

εkε8
q

; p

)

. (31)

We have already one functional solution of this equation

f1(x) =
V (q/cε1, . . . , q/cε5, cx, c/x, c/ε8; p, q)

Γ(c2x±/ε8, x±ε8; p, q)
, (32)

where, for the choice C = T of the integration contour in the definition of the V -
function, it is necessary to impose the constraints (in the previous parametrization)
√

|pq| < |tj | < 1, j = 1, . . . , 5, and
√

|pq| < |q±1t6|, |q±1t7|, |q±1t8| < 1, which can
be relaxed by analytical continuation. Other independent solutions can be obtained
by the multiplication of one of the parameters ε1, . . . , ε5, and x by some powers of
p or by permutations of ε1, . . . , ε5 with ε6.

We denote εk = e2πiak/ω2 , x = e2πiu/ω2 , and f1(x) =: F1(u; a;ω1, ω2, ω3). After
these changes one can check that equation (30) is invariant with respect to the
modular transformation (ω2, ω3) → (−ω3, ω2). One of the linear independent solu-
tions of (30) therefore has the form F2(u; a;ω1, ω2, ω3) := F1(u; a;ω1,−ω3, ω2). The
same solution would be obtained if we repeat the derivation of equation (30) and its
solution (32) after replacing the Γ-functions by the modified elliptic gamma func-
tion G(u;ω). The F2-function is therefore well defined even for |q| = 1. Different
limiting transitions from the V -function and other elliptic hypergeometric integrals
to q-hypergeometric integrals of the Mellin-Barnes or Euler type are described in
[44, 45] and much more systematically in [8, 30].
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Biorthogonal functions of the hypergeometric type. In analogy with the
residue calculus for the elliptic beta integral (14), one can consider the sum of
residues for a particular geometric progression of poles of the V -function kernel for
one of the parameters. This leads to the very well poised 12V11-elliptic hypergeomet-
ric series the termination condition of which is guaranteed by a special discretization
of the chosen parameter. In this way one can derive contiguous relations for the
terminating 12V11-series [47, 48] out of the contiguous relations for the V -function,
which we omit due to the lack of space. For instance, this yields the following
particular solution of the elliptic hypergeometric equation (30):

Rn(x; q, p) = 12V11

(

ε6
ε8

;
q

ε1ε8
,
q

ε2ε8
,
q

ε3ε8
,
qp

ε4ε8
,
qp

ε5ε8
, ε6x,

ε6
x

; q, p

)

, (33)

valid under the condition pq/ε4ε8 = q−n, n ∈ N (we remind that
∏8

k=1 εk =
p2q2). We describe below properties of the Rn-function found in [41] in the notation
passing to our after the replacements t0,1,2 → ε1,2,3, t3 → ε6, t4 → ε8, µ→ ε4ε8/pq,
and Aµ/qt4 → pq/ε5ε8.

Equation (30) is symmetric in ε1, . . . , ε6. Since series (18) are elliptic in all pa-
rameters, function (33) is symmetric in ε1, . . . , ε5 and each of them can be used for
the termination of series. A permutation of ε1, ε2, ε3, ε5 with ε6 yields Rn(z; q, p) up
to some multiplier independent on x due to an elliptic analogue of the Bailey trans-
formation for terminating 12V11-series [14], which can be obtained by degeneration
from equality (24).

The same contiguous relations for the 12V11-series yield the following three term
recurrence relation for Rn(x; q, p) in the index n:

(z(x) − αn+1)ρ(Aq
n−1/ε8) (Rn+1(x; q, p) −Rn(x; q, p)) + (z(x) − βn−1) (34)

×ρ(q−n) (Rn−1(x; q, p) −Rn(x; q, p)) + δ(z(x) − z(ε6))Rn(x; q, p) = 0,

z(x) =
θ(xξ±; p)

θ(xη±; p)
, αn = z(qn/ε8), βn = z(Aqn−1),

ρ(t) =
θ
(

t, ε6

ε8t ,
qε6

ε8t ,
qt

ε1ε2
, qt

ε2ε3
, qt

ε1ε3
, q2tη±

A ; p
)

θ
(

qt2ε8

A , q2t2ε8

A ; p
) ,

δ = θ

(

q2ε6
A

,
q

ε1ε8
,
q

ε2ε8
,
q

ε3ε8
, ε6η

±; p

)

,

where A = ε1ε2ε3ε6ε8, and ξ and η are arbitrary gauge parameters, ξ 6= η±1pk, k ∈
Z. The initial conditions R−1 = 0 and R0 = 1 guarantee that all the dependence
on the variable x enters only through z(x), and that Rn(x) is a rational function
of z(x) with poles at the points α1, . . . , αn.

The elliptic hypergeometric equation for the Rn-function can be rewritten in the
form of a generalized eigenvalue problem D1Rn = λnD2Rn for some q-difference
operators of the second order D1,2 and discrete spectrum λn [41]. We denote by φλ

solutions of an abstract spectral problem D1φλ = λD2φλ, and by ψλ solutions of the
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equation DT
1 ψλ = λDT

2 ψλ, where DT
1,2 are the operators conjugated with respect

to some inner product 〈ψ|φ〉, i.e. 〈DT
1,2ψ|φ〉 = 〈ψ|D1,2φ〉. Then 0 = 〈ψµ|(D1 −

λD2)φλ〉 = (µ − λ)〈DT
2 ψµ|φλ〉, i.e. the function DT

2 ψµ is orthogonal to φλ for
µ 6= λ. This simple observation was put by Zhedanov into the basis of the theory of
biorthogonal rational functions generalizing orthogonal polynomials [54] (see also
[47, 48]). Analogues of the functions DT

2 ψµ for Rn(z; q, p) have the form

Tn(x; q, p) = 12V11

(

Aε6
q

;
A

ε1
,
A

ε2
,
A

ε3
, ε6x,

ε6
x
,
qp

ε4ε8
,
qp

ε5ε8
; q, p

)

, (35)

which are rational functions of z(x) with poles at the points β1, . . . , βn.
We denote Rnm(x) ≡ Rn(x; q, p)Rm(x; p, q) and Tnm(x) ≡ Tn(x; q, p)Tm(x; p, q),

where all the 12V11-series terminate simultaneously because of the modified termi-
nation condition ε4ε8 = pm+1qn+1, n,m ∈ N. The functions Rnm solve now not
one but two generalized eigenvalue problems which differ from each other by the
permutation of p and q.

Theorem 2. The following two-index biorthogonality relation is valid:

κ

∫

Cmn,kl

Tnl(x)Rmk(x)

∏

j∈S Γ(εjx
±; p, q)

Γ(x±2, Ax±; p, q)

dx

x
= hnl δmn δkl, (36)

where S = {1, 2, 3, 6, 8}, Cmn,kl denotes the contour separating sequences of points

εjp
aqb (j = 1, 2, 3, 6), ε8p

a−kqb−m, pa+1−lqb+1−n/A, a, b ∈ N, from their x → x−1

reciprocals, and the normalization constants have the form

hnl =

∏

j<k, j,k∈S Γ(εjεk; p, q)
∏

j∈S Γ(Aε−1
j ; p, q)

hn(q, p) · hl(p, q),

hn(q, p) =
θ(A/qε8; p)θ(q, qε6/ε8, ε1ε2, ε1ε3, ε2ε3, Aε6)n q

−n

θ(Aq2n/qε8; p)θ(1/ε6ε8, ε1ε6, ε2ε6, ε3ε6, A/qε6, A/qε8)n
.

This theorem was proved in [41] by direct computation of the integral in the left-
hand side with the help of formula (13). Appearance of the two-index orthogonality
relations for functions of one variable is a new phenomenon in the theory of special
functions. It should be remarked that only for k = l = 0 there exists the limit
p → 0 and functions Rn(x; q, 0), Tn(x; q, 0), appearing from that, coincide with
Rahman’s family of continuous 10ϕ9-biorthogonal rational functions [26]. A special
limit Im(ω3) → ∞ in the modular transformed Rnm and Tnm leads to the two-index
biorthogonal functions which are expressed as products of two modular conjugated

10ϕ9-series [44]. A special restriction for one of the parameters in Rn(x; q, p) and
Tn(x; q, p) leads to the biorthognal rational functions of a discrete argument [47]
generalizing Wilson’s functions [53]. All these functions are natural generalizations
of the Askey-Wilson polynomials [4]. Note that Rnm(x) and Tnm(x) are mero-
morphic functions of x ∈ C∗ with essential singularities at x = 0,∞ and only for
k = l = 0 or n = m = 0 do they become rational functions of some argument
depending on x. It is expected that there are more general systems of biorthogonal
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functions based on the V -function and connected to solutions of the generalized
eigenvalue problem with continuous spectrum or recurrence relation (34) with the
shifted index n.

Elliptic beta integrals on root systems. We introduce an analogue of the
constant κ for the Cn (or BCn) root system κn = (p; p)n

∞(q; q)n
∞/(2πi)

n2nn! and
describe a Cn-elliptic beta integral representing a multiparameter generalization of
integral (13).

Theorem 3. We take n variables z1, . . . , zn ∈ T and complex parameters t1, . . . ,

t2n+4 and p, q satisfying the constraints |p|, |q|, |tj| < 1 and
∏2n+4

j=1 tj = pq. Then

κn

∫

Tn

∏

1≤j<k≤n

1

Γ(z±j z
±
k ; p, q)

n
∏

j=1

∏2n+4
m=1 Γ(tmz

±
j ; p, q)

Γ(z±2
j ; p, q)

dz1
z1

· · · dzn

zn

=
∏

1≤m<s≤2n+4

Γ(tmts; p, q). (37)

Formula (37) was suggested and partially confirmed in [11], and it was proved
by different methods in [27, 43, 44]. It reduces to one of Gustafson’s integration
formulas [18] in a special p→ 0 limit.

Theorem 4. We take complex parameters t, tm (m = 1, . . . , 6), p and q restricted

by the conditions |p|, |q|, |t|, |tm| < 1, and t2n−2
∏6

m=1 tm = pq. Then

κn

∫

Tn

∏

1≤j<k≤n

Γ(tz±j z
±
k ; p, q)

Γ(z±j z
±
k ; p, q)

n
∏

j=1

∏6
m=1 Γ(tmz

±
j ; p, q)

Γ(z±2
j ; p, q)

dz1
z1

· · · dzn

zn

=
n
∏

j=1





Γ(tj ; p, q)

Γ(t; p, q)

∏

1≤m<s≤6

Γ(tj−1tmts; p, q)



 . (38)

In order to prove (38), we consider the following (2n− 1)-tuple integral

κnκn−1

∫

T2n−1

∏

1≤j<k≤n

1

Γ(z±j z
±
k ; p, q)

n
∏

j=1

∏5
r=0 Γ(trz

±
j ; p, q)

Γ(z±2
j ; p, q)

×
∏

1≤j≤n

1≤k≤n−1

Γ(t1/2z±j w
±
k ; p, q)

∏

1≤j<k≤n−1

1

Γ(w±
j w

±
k ; p, q)

×
n−1
∏

j=1

Γ(w±
j t

n−3/2
∏5

s=1 ts; p, q)

Γ(w±2
j , w±

j t
2n−3/2

∏5
s=1 ts; p, q)

dw1

w1
· · · dwn−1

wn−1

dz1
z1

· · · dzn

zn
, (39)

with p, q, t and tr, r = 0, . . . , 5, lying inside the unit circle such that tn−1
∏5

r=0 tr =
pq. We denote the integral in the left-hand side of (38) as In(t, t1, . . . , t5; p, q).
Integration over the w-variables with the help of formula (37) brings expression
(39) to the form Γn(t)Γ−1(tn) In(t, t1, . . . , t5; p, q), where we have introduced the
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parameter t6 via the relation t2n−2
∏6

j=1 tj = pq. Because the integrand is bounded
on the integration contour, we can change the order of integrations. As a result,
integration over the z-variables with the help of formula (37) brings expression (39)
to the form Γn−1(t)

∏

0≤r<s≤5 Γ(trts) In−1(t, t
1/2t1, . . . , t

1/2t5; p, q), i.e. we obtain
the following recurrence relation in the dimensionality of the integral of interest n:

In(t, t1, . . . , t5; p, q) =
Γ(tn; p, q)

Γ(t; p, q)

∏

0≤r<s≤5

Γ(trts; p, q) In−1(t, t
1/2t1, . . . , t

1/2t5; p, q).

Iterating it with known initial condition (13) for n = 1, we obtain (38).
Integral (38) was suggested by van Diejen and the author in [10]. The given proof

is taken from [11], it models Anderson’s proof of the Selberg integral described in
[2] (see Theorem 8.1.1 and Sect. 8.4). It represents also a direct generalization of
Gustafson’s method [18] of derivation of the multiple q-beta integral obtained from
(38) after expressing t6 via other parameters, removing the multipliers pq with the
help of the reflection formula for Γ(z; p, q), and taking the limit p → 0. A num-
ber of further limiting relations in parameters leads to the Selberg integral – the
fundamentally important integral because of many applications in mathematical
physics. Therefore formula (38) represents an elliptic analogue of the Selberg in-
tegral (an analogous extension of Aomoto’s integral described in Theorem 8.1.2 of
[2] is derived in [27]). It can be interpreted also as an elliptic extension of the BCn

Macdonald-Morris constant term identities.
There are several other elliptic beta integrals on root systems. In particular, the

author has suggested three different integrals for the An root system (two of them
look different for even and odd values of n) in [41]. In [46], Warnaar and the author
have found one more An-integral which appeared to be new even after degeneration
to the q- and plain hypergeometric levels.

In analogy with the one dimensional case [41], it is natural to expect that the
multiple elliptic beta integrals define measures in the biorthogonality relations for
some functions of many variables generalizing relations (36). In [27, 28], Rains
has constructed the first system of such functions on the basis of integral (38).
These functions generalize also the Macdonald and Koornwinder orthogonal poly-
nomials, as well as the interpolating polynomials of Okounkov. In this sense, the
results of [27, 28] represent to the present moment the top level achievements of
the theory of elliptic hypergeometric functions of many variables. The author espe-
cially likes the following BCn-generalization of transformation (24) proven in [27]:
I(t1, . . . , t8; t; q, p) = I(s1, . . . , s8; t; q, p), where

I(t1, . . . , t8; t; q, p)
∏

1≤j<k≤8 Γ(tjtk; p, q, t)
= κn

∫

Tn

∏

1≤j<k≤n

Γ(tz±j z
±
k ; p, q)

Γ(z±j z
±
k ; p, q)

n
∏

j=1

∏8
k=1 Γ(tkz

±
j ; p, q)

Γ(z±2
j ; p, q)

dzj

zj
,

{

sj = ρ−1tj , j = 1, 2, 3, 4
sj = ρtj , j = 5, 6, 7, 8

; ρ =

√

t1t2t3t4
pqt1−n

=

√

pqt1−n

t5t6t7t8
, |t|, |tj |, |sj | < 1,
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and Γ(z; p, q, t) =
∏∞

j,k,l=0(1 − ztjpkql)(1 − z−1tj+1pk+1ql+1) is the elliptic gamma

function of the higher level connected to the Barnes gamma function Γ4(u;ω).
Integral analogues of the Bailey chains. The Bailey chains, discovered by

Andrews, serve as a powerful tool for building constructive identities for hypergeo-
metric series (see Ch. 12 in [2]). They describe mappings of given sequences of
numbers to other sequences with the help of matrices admitting explicit inversions.
So, the most general Bailey chain for the univariate q-hypergeometric series sug-
gested in [1] is connected with the matrix attached to the 8ϕ7 Jackson sum [7]. An
elliptic generalization of this chain for the s+1Vs-series was built in [40], but we do
not consider here neither it nor its complement [52]. Instead of that, we present a
generalization of the formalism of Bailey chains to the level of integrals discovered
in [42].

We say that two functions α(z, t) and β(z, t) form an elliptic integral Bailey pair
with respect to the parameter t, if they are connected by the relation

β(w, t) = κ

∫

T

Γ(tw±z±; p, q)α(z, t)
dz

z
. (40)

Theorem 5. For a given elliptic integral Bailey pair α(z, t) and β(z, t) with respect

to the parameter t, the functions

α′(w, st) =
Γ(tuw±; p, q)

Γ(ts2uw±; p, q)
α(w, t),

β′(w, st) = κ
Γ(t2s2, t2suw±; p, q)

Γ(s2, t2, suw±; p, q)

∫

T

Γ(sw±x±, ux±; p, q)

Γ(x±2, t2s2ux±; p, q)
β(x, t)

dx

x
,

where w ∈ T, form a new Bailey pair with respect to the parameter st, and the

functions

α′(w, t) = κ
Γ(s2t2, uw±; p, q)

Γ(s2, t2, w±2, t2s2uw±; p, q)

∫

T

Γ(t2sux±, sw±x±p, q)

Γ(sux±; p, q)
α(x, st)

dx

x
,

β′(w, t) =
Γ(tuw±; p, q)

Γ(ts2uw±; p, q)
β(w, st)

form a new Bailey pair with respect to the parameter t.

The proof is sufficiently simple. In the first case, it is necessary to substitute
the key relation for β(x, t) in the definition of β′(w, st), to change the order of
integrations and to take off one of the integrations with the help of the elliptic
beta integral (we omit restrictions for the parameters necessary for validity of this
procedure). The second relation is proved in a similar way. These chain substitution
rules introduce two new parameters u and s at each step of their application. In
fact, they are related to each other by the inversion of the integral operator entering
the definition of integral Bailey pairs [46].

This theorem is used in a way analogous to the series case: it is necessary to take
initial α(z, t) and β(z, t), found, say, from formula (13), and to generate new pairs
with the help of the described chain substitution rules. Equality (40) for these pairs
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leads to a binary tree of identities for elliptic hypergeometric integrals of different
multiplicities. As an illustration, we would like to give one nontrivial relation. With
the help of formula (13), one can easily verify validity of the following recurrence
relation

I(m+1)(t1, . . . , t2m+8) =

∏

2m+5≤k<l≤2m+8 Γ(tktl; p, q)

Γ(ρ2
m; p, q)

(41)

× κ

∫

T

∏2m+8
k=2m+5 Γ(ρ−1

m tkw
±; p, q)

Γ(w±2; p, q)
I(m)(t1, . . . , t2m+4, ρmw, ρmw

−1)
dw

w
,

where ρ2
m =

∏2m+8
k=2m+5 tk/pq and the integral I(m) was defined in (22). By an

appropriate change of notation for parameters, we obtain a concrete realization of
the Bailey pairs: α ∝ I(m) and β ∝ I(m+1). For m = 0, substitution of the explicit
expression for I(0) (13) in the right-hand side of (41) yields identity (24). Other
interesting consequences of recursion (41) (an elliptic analogue of formula (2.2.2)
in [2]) are considered in [44]. Various generalizations of the integral transformation
(40) to root systems and their inversions are described in [46].

Conclusion. We would like to finish by listing some other achievements of the
theory of elliptic hypergeometric functions. Multiple elliptic hypergeometric series
were considered for the first time by Warnaar [51]. We described mostly properties
of the elliptic hypergeometric integrals, since many results for the elliptic hyper-
geometric series represent their particular subcases and they can be derived via
the residue calculus. A combinatorial derivation of the Frenkel-Turaev summation
formula is given in [37]. Various generalizations of this sum to the root systems were
found in [10, 31, 41, 51], and multivariable analogues of the Bailey transformation
were described in [21, 27, 31, 51]. Expansions in partial fractions of the products of
theta functions and the identities connected to them were discussed by Rosengren
[31] (see also [11, 27]). The terminating continued fraction generated by three term
recurrence relation (34) and the Racah type termination condition was computed
in [48]. The raising and lowering operators connected with rational functions were
discussed in [27, 49]. Connection to the Sklyanin algebra is considered in [24, 28,
32, 33]. In particular, in [33] Rosengren proved an old Sklyanin conjecture on the
reproducing kernel. A systematic treatment of the elliptic determinant formulas
connected to the root systems is given in the work of Rosengren and Schlosser [34].
In [22], it was shown that the 12V11-series appears as a particular solution of the
elliptic Painlevé equation discovered by Sakai [36]. An analogous role is played
by the general solution of the elliptic hypergeometric equation [44, 45] and some
multiple elliptic hypergeometric integrals [29]. The page limits of the present review
did not allow the author to cite a number of other interesting results, an essentially
more complete review of the literature is given in [44].

Derivation of the 12V11-function from a similarity reduction of some discrete
integrable system, given in [47], reflects the essence of a heuristic approach to all
special functions of one variable. This approach is described in detail in [44] using
a number of examples, including some other new special functions.
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The main part of the plain hypergeometric constructions admits thus natural
elliptic generalization, although such parallels emerge for a rather large number
of free parameters and structural restrictions. Nevertheless there remain many
open problems, in particular, analysis of the conditions of convergence of infinite
elliptic hypergeometric series, investigation of specific properties of the points of
finite order on the elliptic curve, computation of the nonterminating elliptic hy-
pergeometric continued fraction, detailed analysis of the non-self-dual biorthogonal
functions of [47] and construction of their multivariable analogues, and so on.

I am indebted to Yu. A. Neretin for the suggestion to write this complement and
to G. E. Andrews, R. Askey, and R. Roy for an enthusiastic support of this idea. I
am grateful to the Kyoto University (Research Institute for Mathematical Sciences
and Graduate School of Informatics) for a hospitality and a support of my stay,
during which the material of this review was presented in a lecture series. This
work is partially supported by the Russian foundation for basic research (RFBR),
grant no. 05-01-01086.

References

[1] G. E. Andrews, Bailey’s transform, lemma, chains and tree, Proc. NATO ASI Special
functions-2000, Kluwer, Dordrecht, 2001, pp. 1–22.

[2] G. E. Andrews, R. Askey, and R. Roy, Special Functions, Encyclopedia of Math. Appl.
71, Cambridge Univ. Press, Cambridge, 1999.

[3] R. Askey, Beta integrals in Ramanujan’s papers, his unpublished work and further ex-
amples, Ramanujan Revisited, Academic Press, Boston, 1988, pp. 561–590.

[4] R. Askey and J. Wilson, Some basic hypergeometric orthogonal polynomials that gener-
alize Jacobi polynomials, Mem. Amer. Math. Soc. 54 (1985), no. 319.

[5] N. I. Akhiezer, Elements of the theory of elliptic functions, Moscow: Nauka, 1970.
[6] E. W. Barnes, On the theory of the multiple gamma function, Trans. Cambridge Phil.

Soc. 19 (1904), 374–425.

[7] D. M. Bressoud, A matrix inverse, Proc. Amer. Math. Soc. 88 (1983), 446–448.
[8] F. J. van de Bult, E. M. Rains, and J. V. Stokman, Properties of generalized univariate

hypergeometric functions, arXiv:math.CA/0607250.
[9] E. Date, M. Jimbo, A. Kuniba, T. Miwa, and M. Okado, Exactly solvable SOS models,

II: Proof of the star-triangle relation and combinatorial identities, Adv. Stud. in Pure
Math. 16 (1988), 17–122.

[10] J. F. van Diejen and V. P. Spiridonov, An elliptic Macdonald-Morris conjecture and
multiple modular hypergeometric sums, Math. Res. Letters 7 (2000), 729–746.

[11] J. F. van Diejen and V. P. Spiridonov, Elliptic Selberg integrals, Internat. Math. Res.
Notices, no. 20 (2001), 1083–1110.

[12] J. F. van Diejen and V. P. Spiridonov, Unit circle elliptic beta integrals, Ramanujan J.
10 (2005), 187–204.

[13] G. Felder and A. Varchenko, The elliptic gamma function and SL(3, Z) ⋉ Z
3, Adv. in

Math. 156 (2000), 44–76.
[14] I. B. Frenkel and V. G. Turaev, Elliptic solutions of the Yang-Baxter equation and mod-

ular hypergeometric functions. The Arnold-Gelfand mathematical seminars, Birkhäuser
Boston, Boston, MA, 1997, pp. 171–204.

[15] E. Friedman and S. Ruijsenaars, Shintani-Barnes zeta and gamma functions, Adv. in
Math. 187 (2004), 362–395.

http://arxiv.org/abs/math/0607250


ELLIPTIC HYPERGEOMETRIC FUNCTIONS 19

[16] G. Gasper and M. Rahman, Basic Hypergeometric Series, Encyclopedia of Math. Appl.
96, Cambridge Univ. Press, Cambridge, 2004.

[17] I. M. Gelfand, M. I. Graev, V. S. Retakh, General hypergeometric systems of equations
and series of hypergeometric type, Uspekhi Mat. Nauk 47 (4) (1992), 3–82 (Russ. Math.
Surveys 47 (4) (1992), 1–88).

[18] R. A. Gustafson, Some q-beta integrals on SU(n) and Sp(n) that generalize the Askey-
Wilson and Nassrallah-Rahman integrals, SIAM J. Math. Anal. 25 (1994), 441–449.

[19] F. H. Jackson, The basic gamma-function and the elliptic functions, Proc. Roy. Soc.
London A 76 (1905), 127–144.

[20] M. Jimbo and T. Miwa, Quantum KZ equation with |q| = 1 and correlation functions of
the XXZ model in the gapless regime, J. Phys. A: Math. Gen. 29 (1996), 2923–2958.

[21] Y. Kajihara and M. Noumi, Multiple elliptic hypergeometric series. An approach from
the Cauchy determinant, Indag. Math. 14 (2003), 395–421.

[22] K. Kajiwara, T. Masuda, M. Noumi, Y. Ohta, and Y. Yamada, 10E9 solution to the
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