
Rational interpolation to solutions of Riccati difference equations on

elliptic lattices.

Alphonse Magnus, Université Catholique de Louvain.
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Difference equations and lattices.

(Df)(x) =
f(ψ(x)) − f(ϕ(x))

ψ(x) − ϕ(x)
, (1)

x0 x1

y0

y1

y2 The simplest choice for ϕ and ψ is to take

the two determinations of an algebraic function

of degree 2, i.e., the two y−roots of

F (x, y) = X0(x) +X1(x)y +X2(x)y
2 = 0, (2a)

where X0,X1, and X2 are rational functions.
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The difference equation at x = x0 relates then f(y0) to

f(y1), where y1 is the second root of (2a) at x0. We need x1

such that y1 is one of the two roots of (2a) at x1, so for one

of the roots of F (x, y1) = 0 which is not x0. Here again, the

simplest case is when F is of degree 2 in x:

F (x, y) = Y0(y) + Y1(y)x+ Y2(y)x
2 = 0. (2b)

Both forms (2a) and (2b) hold simultaneously when F is

biquadratic:

F (x, y) =
2
∑

i=0

2
∑

j=0

ci,jx
iyj. (3)
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Pons asinorum

Find f such that Df(x) = x.

i.e.,

f

(

Q(x) +
√

P (x)

R(x)

)

− f

(

Q(x) −
√

P (x)

R(x)

)

2
√

P (x)/R(x)
= x,

where P,Q,R are given polynomials of degrees 4, 2, and 2!
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Why elliptic?

-Orthogonal polynomials on several intervals,

-contined fraction continuation,

-band structure in solid-state physics

Let S be a polynomial of degree 2 and we consider the root

of

ζ0(z−z0)(z−x0)f
2(z)−2S(z)f(z)+ζ1(z−z0)(z−x1) = 0 (4)
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which is regular at z0. It is also

f(z) =
S(z) −

√

P (z)

ζ0(z − z0)(z − x0)
.

f(z) =
z − z0

α0z + β0 −
(z − z0)

2

α1z + β1 −
(z − z0)

2

α2z + β2 − · · ·

, (5)

or fn(z) =
z − z0

αnz + βn − (z − z0)fn+1(z)
, n = 0, 1, . . . (6)

with f0 = f .
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The form of f is kept in all the fn’s (basically from Perron):

ζn(z−z0)(z−xn)f2
n(z)−2Sn(z)fn(x)+ζn+1(z−z0)(z−xn+1) = 0,

(7)

and we have the

PropositionThe continued fraction expansion (5) of the

quadratic function f defined by (4) involves a sequence of

quadratic functions defined by (7). The related sequence {xn}

is an elliptic sequence.
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One has

2n

∫ z1

z0

dt
√

P (t)
=

∫ x0

z1

dt
√

P (t)
±

∫ xn

z0

dt
√

P (t)
+2
∑

j

Nj

∫ zj+1

z1

dt
√

P (t)
,

(8)

Elliptic functions, at last:

θ(u; p) =
∞
∏

j=0

(1 − pju)(1 − pj+1/u),

xn = C
θ(qnq0η0)θ(q

nq0/η0)

θ(qnq0η∞)θ(qnq0/η∞)
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What’s going on here.

A special (bi-)orthogonal set of functions is known if one

has

1. a formula for the scalar product, measure, weight, Stieltjes

transform

2. a formula, or at least a recurrence relation formula, for the

(bi-)orthogonal functions

3. difference relations and equations

4. hypergeometric expansions
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Elliptic Pearson’s equation.

A famous theorem by Pearson relates the classical orthogonal

polynomials to the differential equation w′ = rw satisfied by

the weight function, where r is a rational function of degree

6 2.

Theorem. Let {(x(s0 + k), y(s0 + k))} be an elliptic lattice

built on the biquadratic curve (2a)-(2b)-(3). If there are

polynomials a and c, with

a(x(s0)) + (y(s0 + 1) − y(s0))c(x(s0)) = 0,

a(x(s0 +N))− (y(s0 +N +1)− y(s0 +N))c(x(s0 +N)) = 0,
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such that

a(x′k)

wk+1

Y2(y′k+1
)(x′k+1

− x′k)
−

wk

Y2(y′k)(x
′

k − x′k−1
)

y′k+1
− y′k

= c(x′k)

[

wk+1

Y2(y′k+1
)(x′k+1

− x′k)
+

wk

Y2(y′k)(x
′

k − x′k−1
)

]

, (9)

k = 0, 1, . . . , N , where (x′k, y
′

k) is a shorthand for (x(s0 +
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k), y(s0 + k)), and w0 = wN+1 = 0, then,

f(x) =
N
∑

k=1

wk

x− y′k
(10)

satisfies

a(x)Df(x) = a(x)
f(ψ(x)) − f(ϕ(x))

ψ(x) − ϕ(x)
= c(x)[f(ϕ(x))+f(ψ(x))]+d(x),

(11)

where d is a polynomial too.
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“Elliptic logarithm”

We extend f(x) = log
x− a

x− b
which satisfies f ′(x) =

a− b

(x− a)(x− b)
by looking for a function whose divided

difference is a rational function of low degree.

Answer: wk = (x′k − x′k−1
)Y2(y

′

k),

Df(x) =
(x′N − x′0)X2(x)

(x− x′0)(x− x′N)
.
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Orthogonality and biorthogonality.

Padé expansion to f about z0: denominators of

qn(x)

pn(x)
= α′

0+
x− z0

α0x+ β0 −
(x− z0)

2

. . .

αn−2x+ βn−2 +
(x− z0)

2

αn−1x+ βn−1

satisfy pn+1(x) = (αnx+ βn)pn(x) − (x− z0)
2pn−1(x),

asks for f(z0), f
′(z0), f

′′(z0), . . . available if f is solution to a

differential equation.Elliptic Riccati, Luminy, July 2007. 18



Recurrences of biorthogonal rational

functions.

qn(x)

pn(x)
= α′

0+
x− y0

α0x+ β0 −
(x− y1)(x− y2)

. . .

αn−2x+ βn−2 +
(x− y2n−3)(x− y2n−2)

αn−1x+ βn−1

which agree with a given set up to x = y2n.

The recurrence relations for pn and qn are
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pn+1(x) = (αnx+ βn)pn(x) − (x− y2n−1)(x− y2n)pn−1(x),

qn+1(x) = (αnx+ βn)qn(x) − (x− y2n−1)(x− y2n)qn−1(x),

with q0 = α′

0, p0 = 1, q1(x) = α′

0(α0x+ β0) + x− y0, p1(x) =

α0x+ β0. We could as well start with q−1(x) = −1/(x− y−1)

and p−1 = 0.

Consider now rational functionsRn(x) =
pn(x)

(x− y2)(x− y4) · · · (x− y2n)
:

(x−y2n+2)Rn+1(x) = (αnx+βn)Rn(x)−(x−y2n−1)Rn−1(x),
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(x− y2n+1)Tn+1(x) = (αnx+ βn)Tn(x) − (x− y2n)Tn−1(x),

which is of the same structure that the recurrence of the Rn’s,

but with the odd x’s interchanged with the even x’s. Actually,

Tn(x) is a constant times the same pn(x) as before, divided by

(x− y1)(x− y3) . . . (x− y2n−1).

Let qn/pn interpolate a formal Stieltjes transform-like

function

f(x) =

∫

S

dµ(t)

x− t
,
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then qn interpolates pnf at the 2n + 1 points y0, y1, . . . , y2n.

Also, for k < n, q̃(x) = qn(x)pk(x)(x − y2k+3)(x −

y2k+5) · · · (x − y2n−1), still of degree < 2n, interpolates

pn(x)pk(x))(x − y2k+3)(x − y2k+5) · · · (x − y2n−1)f(x), still

has a vanishing divided difference at these 2n+ 1 points:

[y0, . . . , y2n] of pn(x)pk(x))(x−y2k+3)(x−y2k+5) · · · (x−y2n−1)f(x)

=

∫

S

pn(t)pk(t))(t− y2k+3)(t− y2k+5) · · · (t− y2n−1) dµ(t)

(t− y0)(t− y1) · · · (t− y2n)
= 0,

as the divided difference of a rational function A(x)/(x− t)
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is A(t)/{(t− y0)(t− y1) · · · (t− y2n)} (Milne-Thomson § 1.7).

So, Rn is orthogonal to Tk with respect to the formal scalar

product

〈g1, g2〉 =

∫

S

g1(t)g2(t) dµ(t).
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Where are the orthogonal polynomials

on elliptic lattices?

Interpolation = Padé if z0 = x∞ is the limit

of the xn’s.

A generic elliptic lattice has no convergence

point.

(However. . . )
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Elliptic Riccati equations.

Definition

An elliptic Riccati equation is

a(x)
f(ψ(x)) − f(ϕ(x))

ψ(x) − ϕ(x)
= b(x)f(ϕ(x))f(ψ(x))+

c(x)(f(ϕ(x)) + f(ψ(x))) + d(x).

(12)

If x = xm, some point of our x−lattice, then ϕ(x) = ym and

ψ(x) = ym+1.
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A first-order difference equation of the kind (13) relates f(y0)

to f(y1) when x = x0; f(y1) to f(y2) when x = x1, etc. The

direct relation is

f(ψ) =

[

a

ψ − ϕ
+ c

]

f(ϕ) + d

a

ψ − ϕ
− c− bf(ϕ)

.

It is sometimes easier to write (13) as

e(x)f(ϕ(x))f(ψ(x))+g(x)f(ϕ(x))+h(x)f(ψ(x))+k(x) = 0,

where e = −b, g = −
a

ψ − ϕ
− c, h =

a

ψ − ϕ
− c, and k = −d.
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However, if a, b, c, and d are rational functions, g and h

are conjugate algebraic functions: h+ g and hg are symmetric

functions of ϕ and ψ, hence rational functions. This also

happens with 2a = (h− g)(ψ − ϕ).
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Now, if fn satisfies the Riccati equation

an(x)
fn(ψ(x)) − fn(ϕ(x))

ψ(x) − ϕ(x)
= bn(x)f(ϕ(x))fn(ψ(x))

+ cn(x)(f(ϕ(x)) + f(ψ(x))) + dn(x),

(13)

Theorem.
If fn satisfies the Riccati equation (14) with rational

coefficients an, bn, cn, and dn, and if fn(x) =
x− y2n

αnx+ βn − (x− y2n+1)fn+1(x)
, then fn+1 satisfies an

equation with coefficients an+1 etc. of same complexity (degree

of the rational functions).
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an+1 =
2X0 + (y2n + y2n+1)X1 + 2y2ny2n+1X2

2F (x, y2n)
an

+(X2
1−4X0X2)

[(y2n+1 − y2n)cn + 2(αny2n+1 + βn)dn]/X2

2F (x, y2n)
.

(14)

cn+1 = −(hn+1+gn+1)/2 = −
2X0 + (y2n + y2n+1)X1 + 2y2ny2n+1X2

2F (x, y2n)
cn

+
y2n+1 − y2n

2F (x, y2n)
X2an−

αn(2X0 + y2n+1X1) − βn(X1 + 2y2n+1X2)

2F (x, y2n)
dn
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bn+1 =
(ϕ− y2n+1)(ψ − y2n+1)

(ϕ− y2n)(ψ − y2n)
dn =

F (x, y2n+1)

F (x, y2n

dn,

dn+1 = −
αny2n + βn

F (x, y2n)
X2an + bn

+
[αn(2X0 + y2nX1) − βn(X1 + 2y2nX2)]cn + (α2

nX0 − αnβnX1 + β2
nX2)dn

F (x, y2n)

c2n(x) − bn(x)dn(x)

X2
2(x)

P (x)−a2
n(x) = Cn

x− x2n−1

x− x−1

[

c20(x) − b0(x)d0(x)

X2
2(x)

P (x) − a2
0(x)

]

,

(15)
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where Cn =
Y2(y2n−1)Y2(y2n−3) · · · Y2(y1)

Y2(y2n−2)Y2(y2n−4) · · · Y2(y0)
.

Classical case.

We keep the lowest possible degree, which is 3, considering

that bn and dn must be X2(x) times a polynomial containing

the factor x− x2n−1.

Let dn(x) = ζn(x − x2n−1)X2(x), an of degree 3, and

cn = X2 times a polynomial of degree 1.
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bn+1(x) =
F (x, y2n+1)

F (x, y2n)
ζn(x−x2n−1)X2(x) =

Y2(y2n+1)

Y2(y2n)
ζn(x−x2n+1)X2(x)

From the Riccati equation (14) at x = x2n−1 and fn(y2n) =

0, we have
an(x2n−1)

y2n − y2n−1

= cn(x2n−1),

allowing the divison of the left-hand side of (16), leaving

c2n(x) − bn(x)dn(x)

X2
2(x)

P (x) − a2
n(x) = Cn(x− x2n−1)Q(x),
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where Q is a fixed polynomial of degree 5.

At each of the four zeros z1, . . . , z4 of P ,

an(zj) = ±
√

−Cn(zj − x2n−1)Q(zj),

allowing to recover the third degree polynomial an from four

values. . . should the square roots be determined! Square root-

free relations come from (15) at zj, knowing that ϕ(zj) =

ψ(zj), which we call ϕj:

an+1(zj) =
ϕj − y2n+1

ϕj − y2n

an(zj)
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Remark that, from (16), Q(zj) = −a2
0(zj)/(zj − x−1), so

there is a subtle relation between the product of the (ϕj −

y2n+1)/(ϕj − y2n)’s and a square root of (zj − x2n−1)/(zj −

x−1).
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Linear difference relations and

equations for the numerators and the

denominators of the interpolants.

g0(xm)

en+1(xm)

pn(ym+1)

(ym+1 − y0)(ym+1 − y2) · · · (ym+1 − y2n)

−
h0(xm−1)

en+1(xm−1)

pn(ym−1)

(ym−1 − y0)(ym−1 − y2) · · · (ym−1 − y2n)

=

[

hn+1(xm)

en+1(xm)
−
gn+1(xm−1)

en+1(xm−1)

]

pn(ym)

(ym − y1)(ym − y3) · · · (ym − y2n−1)
,
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Hypergeometric expansions.

Building blocks:

D
(x− y0)(x− y1) · · · (x− yn−1)

(x− y′1)(x− y′2) · · · (x− y′n)

= CnX2(x)
(x− x0)(x− x1) · · · (x− xn−2)

(x− x′0)(x− x′1) · · · (x− x′n)
.

(Zhedanov)
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Recommended reading.

V.P. Spiridonov, Elliptic hypergeometric functions, Abstract:

This is a brief overview of the status of the theory

of elliptic hypergeometric functions to the end of 2006

written as a complement to a Russian edition (to be

published by the Independent University press, Moscow,

2007) of the book by G. E. Andrews, R. Askey, and R.

Roy, Special Functions, Encycl. of Math. Appl. 71,

Cambridge Univ. Press, 1999. Report number: RIMS-

1589 Cite as: http://arxiv.org/abs/0704.3099 :

arXiv:0704.3099v1 [math.CA]
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Spiridonov, V.P.; Zhedanov, A.S., Generalized eigenvalue

problem and a new family of rational functions biorthogonal on

elliptic grids, in Bustoz, Joaquin (ed.) et al., Special functions

2000: current perspective and future directions. Proceedings

of the NATO Advanced Study Institute, Tempe, AZ, USA,

May 29-June 9, 2000, Dordrecht: Kluwer Academic Publishers.

NATO Sci. Ser. II, Math. Phys. Chem. 30, 365-388 (2001).

V. P. Spiridonov and A. S. Zhedanov: Elliptic grids, rational

functions, and the Padé interpolation The Ramanujan Journal

13, Numbers 1-3, June, 2007, p. 285–310.

A.S. Zhedanov, Padé interpolation table and biorthogonal
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rational functions. In: Proceedings of RIMS Workshop on

Elliptic Integrable Systems. Kyoto, November 8-11 (2004) to

be published

http://www.math.kobe-u.ac.jp/publications/rlm18/20.pdf
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