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1. Complex approximation theory and potential theory.
1.1. Taylor expansions.
The Taylor series expansion of a function with finite convergence domain, say
1 > >/ 1\1 3\
=Y — 1-7/R= ) U S R
=R 2R 2/ Z( 2)2 ( 2) KIRK
shows “typically” almost circular level lines of equal approximation: , explained by a con-
venient representation of the error
n
f(2) - gckzk =Ka(2)(2/R)", (1)

where K, is “typically” slowly variable in n. What is meant by “typical” must be estimated on particular
classes of functions. The only general truth here is that K, is bounded by a slowly variable* function of n

when |z| < R:
R\" 1 "1
Kn(2)=|—-) =— f(t)———dt
(@) (z) 2T[i/|t|:r ()t”(t—z) ’

with |z| < r < R, and r arbitrarily close to R. For some functions f, an infinite subset {Ky, }i may be much
smaller than expected, that’s why some special classes of functions f will be described (sometimes a single
function...) when accurate asymptotic estimates of (1) will be needed. For the examples above,

<z/R )L AL /R 4 diy) (/R

1 _n K —
1-7/R Z(Z/R) R V/1-2/R Z k(z/R)" \/—72/+ZoCkZ/R :

with suitable dr(1+)1' etc. A special asymptotic analysis is needed to show that d( )1 =2Chy1~ —1/vm
The circle |z = R is the boundary of the convergence region. It is often convenlently approached by the
zeros of the truncated expansion, here with n = 10:

% d
B [
] ®
» L]
2 %
e : zeros of approximation e :zerosof a pprOX|mat|0n
= zeros of error = zeros of erro

lslowly variable = less than exponentially variable.
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For f(z) = 1/(1—1z/R), the truncated Taylor expansion is pn(z) = (1 — (z/R)"1) /(1 —z/R), therefore
vanishes at the n nontrivial (n+1)" roots of unity. For f(z) = /1 —z/R, the picture is not so simple, but
the zeros of py, appear to have the circle as limit set as well. It is not essential to take zeros, similar results
hold for z: pa(z) =&, for any &: as a “typical” function f is expected to be almost univalent, or not very
many-valent, in the convergence disk, most of the roots of p,(z) = & will be outside the disk interior.

Darboux

1.2. Interpolatory (Jacobi) expansions.

..., tout entier a une idée
qui lui était venue sur les potentiels.

Alphonse Allais (from Madrigal manqué

1.3. General polynomial interpolation.

1.4. Padé approximation.

Padé approximation is closely linked to continued fractions, also to orthogonal polynomials. The latter
aspect appears especially with expansion about co.

Just as the simplest explicit arithmetic continued fractions are the periodic ones giving square roots, we
have square roots of polynomials:

11 1/2

2 1=72———- — —ii=7— —
z 27 T 88 z . 1/4
1

Z— /4

Z— -

and the [n+ 1/n] Padé approximant is the ratio of Chebyshev polynomials

Toy1(2) m(z+ V21" (222 -t

Un(z) (2422 = 1)1 — (2 — /72 - 1)+l
Square roots of polynomials of degree > 2 will usually not yield periodic continued fractions, but a
kind of quasi-periodicity which will be described further on. It will also be seen that the arrangement

f_x—\ﬁ
-z

is almost pure periodic [49]. So,

?—az-BV1-02—/(22-1)(z—a—-B)(z—a+B) _Y+ay_(1_82)/2_|_...
z—0Q oz 72
Y

2-ap(-vi-a?) -

withy= (14B%)/2 - Bv1—-0a2,and Y = ... turns into an (apparent) mess. Special periodic cases are
e Two-periodic a = 0:

2 p-VZ-DZ-F) _ _ (B-1%/2

z ,__(B+1)%/4
(B—1)%/4

Z—--



MAPA3xxxA 2000-2001-2002 — Complex rational approx. 1 — Complex & potential. — 4

Approximants g,/p, = [n—1/n]:

—p2\?
prie = @~ (148920~ (155 ) prca

Z(B_l)z p2n_p—2n (1_82)n
G2n 2 JZ-p@@Z-py\ 4
P2n (Ap?1 4+ Bp=21) (1 - [32)

4

_ 1-p2\"
(Cp2n+1+ Dp 2n— 1)
Jonid _ ((g-1)2/2) ( )

P2n+1 z(p2”—|—p 2n ( 2)
+

with p = \/22— 1+60/24 /D@ )

, and A,B =

(1-p?)/2
1 2+B
p:F (2j:2\/22 —BZ))'

The approximants converge (check that the limitis f) outside the singular locus S={z:|p(z)| =
1}. All the zeros and poles but one are on, or tend when n — oo towards, S. There is a supplemen-
tary zero at O for the even approximants, a supplementary pole at 0 for the odd approximants.
The numerator and the denominator have the forms C,p" + Dnp~", and Ap" + Bnrp™", with A,
etc., Dy two-periodic in n.
e Period three: a = (1—p?)/2.

1-B? | o1-2B—P° 1-2p—p2 1+2B— B
S PR _wzz_l)(z_f)(z_f)

1
RPN

Z_1—2[3—[32 B
2
(L-B)(1+PB)%/2
(1-p)*/4
Z+B(1+B)/2~ 5
B (1-B)(1+P)/4
Z2+B(1+B)/2 . (1-B)(1+p)2/4

2+ BL+B)/2—
Approximants [n—1/n] = qn/pn:

4 232\ 2
pn+s:(z3+[3222+& BZ) Pn— (%) Pn_3.

4
B‘|‘1 p3n_p—3n (Bz_l)z n
G _ (1-B)(L+B)? (Z‘ 2 ) N ( g )
VAN
Pan 2 (Apsn_I_Bp—sn) ((B ;1) )
n _an_1, [((BF—=1)? !
Gones _ (1-pa+p? P PP (557)

n
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(C/p3n+2 + Dlp—3n—2) ((BZ - 1)2) "

Qans2 _ (1-P)(1+B)° 8
Pz 2 (L+W+es—1)p%ﬂ—p4mﬁ(u¥—1f)”
2 2VY 8
withY = (22—1) (z— LS_BZ) (z— %B_BZ)
o B4 p22— wz_gz_k (Z—I- 1-;32) wY
P= (L-P2)2/4 |
_ 1 22+ (B-124BL-2-P) 1(1 222+<B—1>2z—2ﬁ) o Clo?. Blo-1 —
AB=Z+ P .C.D=p¥( 5+ ™o  Alp=C'p2,B'p~l=
DIp=2 = 24+ B(L+P)/2 | 4% +2(2p°+B-1)2°+ (B* +B° - 3p* —B—2)2— (2B°+6B° + 2B —2)
= 5 ek .
e General quadratic case [49]
We consider f(z) := fo(z) = Bo(2 = Xo(2) = Y(Z), where Xo,Y, and Z are
B Z0(2)
GO(Z) Gl(Z)—-"

given polynomials, and where the continued fraction arrangement (Jacobi, or Stieltjes, or C—fraction,
etc.) keeps o and 3, to be polynomials of small degrees.

Then, fn(2) := Bn(ér)1+1(z) B Xn(Z)Z:(z)Y(Z), or
an(z) — (D)
Bn
" = forr’ 2)

with polynomial X, and Z, of ultimate degrees related to the degree of Y. For Jacobi continued
fractions (Padé at «), the degrees are g+ 1 and g if the degree of Y is 2g+ 2.

Xﬁ =Y = BnZnZny1, Xng1= —Xn — 0nZnt1. (3)

Also, the X;’s and Z,’s have a quasi-periodic behaviour with respect to n.
For the two and three periodic examples above,

Xen(?) =2~ B Xens2(2) = 24 Bi  Za(2) =12

1-p? 1-2B-p? 1-p?
Xan(2) = Xans2(d) =22~ P24 B0 P gy =2 TP
1-2B-p? 14+
Zon() =2~ 0P 240 1(2) = Zango@) =2 TH P
The recurrence pni1 = 0npPn — BnpPn-1 Of pn and gy, of the approximants g,/ pn = 1/0,Bo/do,

Boa1/ (00t — B1),..., has also the solution fofs...fy (from (2), anfo...fn— fo... fafays =
Bnfo...fn_1), and we have

fo...fa=10an— fpn. 4)

Considering the two possible choices of the square root of Y in f and the f;’s,

. 1:O,c:onj. Tt 1:n,conj. - 1:0 Tt 1:n On = 1:l,c:onj. T 1:n.,c:onj. - fl Tt 1:n (5)
feonj. — f 7 n 1/ feonj. — 1/f

Pn =
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(XO—\/?)z"‘(Xn—\/V)zzn-H
Zo ZolZy -+ Znlnya
(X§=Y)/Bo  (XZ=Y)/Bn
— Bo...p Zny1 Xo—VY Xn — VY
" Z0 X+ Xa+ VY
Definition. The average complex rate of growth = exponential of the complex Green function is

1/(2
(Xo+ﬂ Xﬁﬂ) &

(fo...fn)2 =

p==eY = lim

n—oo0

XO - \/? Xn - \/7
with the square root of Y such that |p| > 1 (= the real Green function G := Re G > 0) everywhere.
1.5. Strong asymptotics of Padé terms for functions with branch points.

b
Two branch points. Szeg6: denominator p, is orthogonal to w, if f(z) = wdt. Then, pn(z) ~

a Z—t
a(z)p"(2),

1.6. General rational interpolation. Condenser capacity.

2. Asymptotic featuresof rational interpolation.
2.1. According to Goncar-Stahl (a sloppy rendering).

n
Interpolation to fn(z) = W dt at zp,...,Zmen DY pm/dn yields
Ct -

fo2) M@ _ 9*”(2)—21)/& RO %)

On(2) a3(z 0 "(t-zj) ozt
n
where q, is (formally) orthogonal with respect to %ﬁf(?_ on Cs.

Well, we expect that most of the poles of g, will tend to a set of arcs S, with a limit distribution p,, that
C+ may be modified within the closure of the domain where ¢o and ¢ are analytic, so that S C C¢. On the

0"/2(t)

0" (t-2))

support of p, g, is almost a Szeg6 orthogonal polynomial! which means that +qx (t) has

slowly varying phase and absolute value there.

Sloppy asymptotic explanation with (complex) potentials 7}(z) := f log(z—t) dup(t) and
SUpp Up

Yi(z) := /Supp . log(z —t) dy;(t) (interpolation points), so that qn(z) ~ exp(n¥}(z)) when z ¢ supp(Hp),

0"(2-2) ~ exp(2n(z)), and Gn(2) ~ ©XP(NVp.4(2)) + eXP(nT}.- (2)) on supp(Hy). Then,
n/
%  [exp(np.+ (1)) + exp(n - (1)] exp(nlogd(t)/2 - ()
0 —Zj

~ exp (n [% - U(t) + Vot (V) ; {Vp’_(t)]) cosn ({Vp’J’(t) T {Vp’_(t))

On(t)
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onS, or:
log§(t)/2 — () + [V +(t) + Va— (1)]/2= constant, (6)
the same real constant on all the arcs of S, has a real part smaller than this constant on Cs \ S.
For derivatives:

(Iogq)(z))’/Z—‘Vi’(z)+]£dZL_(:):00nzES. %

Remark that the (complex conjugate of) the derivative (log(z))'/2 — 1} (z) + V},(2) on the two sides of

S gives the gradient of the real potential Re[log$(z) /2 — ¥i(z) + ¥(z)], and has opposite values i’ (z)
on the two sides of S, from (7) and the Sokhotskyi-Plemelj formulas (see § 2.5) for ‘VFQ: symmetry property
[4,25,74,75, etc.].

2.2. According to Nuttall (in construction).

2.3. The Riemann-Hilbert way (not even started).

2.4. Conditions on a single arc.

B dup(t)
z

= Suppose that we know

- £ -0, ©

z—t
with g analytic in some domain (the arc [a, 3] is not yet known). The trick is to multiply ‘VFQ by a function

[(z—a)(z — B)]Y/? taking opposite values on the two sides of [a,3]. We consider only y=1and y= —1.
Also, [(z— a)(z — B)]¥/? is defined to be continuous outside the arc, and behaves like zV for large z. As
Vp(2)[(z—a)(z— B)]¥/?— &, has a Laurent expansion with only negative powers at oo,

‘V' _ y/2
Vyl(z— ) z— B2 3y, = o f DB 200

on a big counterclockwise contour having the arc [a, (] inside and z outside. Making the contour shrink
BA{V(D)[(t—a)(t—B)]/? -
(RO B8] e

z—t
means the difference F_ — F, between the limit values of F on the “lower” side of the arc (from which

the arc is seen at left), and the “upper” side. The difference is here 2g(t)[(t— o) (t — B)]y/ whence quite
explicit solutions

Let the function (often associated to a distribution of poles) ‘Vg(z) = f
a
that

to a neighbourhood of the arc [a, ], we get ﬁ

B _ y/2
Vyl(z—a)(z—B)]"* =81 mfg tz_t PIZ t,  y=z1. )

It may help to realize that the phase of B- Wz
[(t—a)(t— B
(o, B].

Some questions: the —1 in the left-hand side of (9) when y= 1 is needed from 17(z) = 1/z+ 0(1/z?) for
large z. But the two sides of (9) when y = —1 should be ~ 1/z? for large z, everything works only if

B g(y)dt B tg(t)dt L
f“ Cae-p /a Cae e (10

is exactly the one of +i on the rectilinear segment
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The two forms of (9) then agree, either with y= —1, or y= 1. It will also be useful to check that, as (8) is
a plain integral when z = o and z = 3, one has 7 (a) = g(a), and V;(B) = g(B).

2.4.1. Alittle bit of Chebyshev polynomials calculus. N.B. Ullman
Let us consider the Chebyshev polynomials expansion of a generic function F on [a, 3]:

“2pen (e

B F(t)dt _ _.Co
fa 7 =TI
[(t—o)(t—PB)]-
Therefore, from (9) withy= —1, 1j[(z—a)(z - [3)]‘1/2 is the constant term of the Chebyshev expansion

ofg(t)/(z1).
Let go/2+ 57 gnTn be the expansion of g. Remark that (10) becomes

Then, we have the integral

9o =0, 01= (11)

We need the expansion of 1/(z—t) = Xo/24 55 XnTn, Which we multiply by Zéz _o:) = 2Zf3_ O(O(_ B_ 2tg O(; B.

2 2z—a—3 > —a-— B Tho1+ Thtr
o 2( poa (@B ) ZX”( “a " 2 ))

22— a—3
B-

whence the recurrence X1 — 2 Xn+Xn—1=0forn=1,2,... solved by X, = Xop", where p is

a root of
p+pt 2z2—a-PB
2 B-a ’
normally with |p| < 1, but this will have to be discussed later. The value of X, comes fromn=10: 4/( —
a) =Xo((p+p71)/2) — X1 = Xo(p* — ) /2, 50

(12)

8
(B-o)(p~t=p)
Remark that [(z— o) (z — B)]*/2 = (B— a)2(1— p?)?/(16p?), so that

Xo=

= onp". (13)
n=1

The two determinations of 77 on the two sides of the cut [a, 3] are obtained with the two roots p and 1/p
of (12). One checks that the arithmetic mean is indeed

(Vs )+ Y- (2)/2= 3 6n(@"+07")/2= 3 0Ta = 9(2)

As for the discontinuity along the cut,

AT (2) = 1~ () + V1. (2) = ?gnm‘” —P=g f L[(z-a)(z-B))? ? gnUn-1(2),  (14)

it appears as a kind of harmonic conjugate to g.
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2.5. Conditions on several arcs.

Let (7) be
]£ _dz“ﬁ) —9(2), z€8, (15)
with g(Z) _ q/il(z) . (Iog(l)(Z))'/z: whereas (VF;(Z) — ]£ dzup( )

[31], chap. 14, etc.).
If the (unknown) endpoints are ay,...,0om, and P(z) = (z—aq) --- (2 — dam),

%0 _ o)

NN

imup( ) (Sokhotskyi-Plemelj formulas

+ the same function on the two sides of S, so,

RS
(Sokhotskyi-Plemelj again).

As Vy(z) =zt +--- for large z, m+ 1 equations follow

9(t) / g ,
t 22 _dt=0, k=0,....m—1; [t" = i,
/s V/P(t)
and the m — 1 further equalities, from (6)
log ¢ (aox) /2 — Vi(02k) Vo (aok = log d(0iok11) /2 — W (Ooky1) Vp(Ooker k=1,...,m—1.

2.5.1. Differential equation for 77, [25] . If there is a polynomial Q such that Qg'/g is a polynomial,
2)/P(2) V(2) = polynomial + % f Q(t)g(t) /P Zd—tt
s _
we derive in z and perform an integration by parts

2)4/P(z) V(2)]' = another polynomial + (PI(ZL_Q(Z) + P(Z)g((zz))gl(z) +P(z)Q'(z)) %/S 90 £7

v\’ i
orovp (22 = polynomlall
g g
2.5.2. An example from [16, p. 404] (J. Meinguet). We have g(x) = —28x3 on [—1,1] with > 0 and we
suspect S to be [-1, —a]U[-B, B]U[a, 1].

The formula for ‘VFQ is surprisingly elementary:

Vp(2) = =282 +3(22° + o 4+ B* 1) \/(22 : O(;)_(le —F?)

we have indeed (7 , (X) + 75 _(x))/2 = —258x3 on S = the set of points where the square root is pure
imaginary. Let us look at the argument of this square root just above and just below the real axis:
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The coefficient of 21 in the expansion of 4/;(z) about e is 1 if 4 = 3[3 — 2(a® + B?) — (a® — %)% —
(a2 + B2 —1)2]. Finally, Re 7} (x) + 8x*/2 must be the same constant on the intervals of S, which holds

(- ) (2~ )

a
- 2, 42,02 _
|f/B (2t°+0° 4B 1)\/ 71

and the former equation gives the corresponding o:

p? a? >

0 0.5402057601 | 3.319654336
0.0001 | 0.5398986321 | 3.318351926
0.01 0.5221272482 | 3.237132862
0.02 0.5073410955 | 3.172076626
0.03 0.4936208059 | 3.115410709
0.04 0.4805403767 | 3.064945359
0.05 0.4679087488 | 3.019526908
0.06 0.4556185329 | 2.978410767
0.07 0.4436016321 | 2.941064425
0.08 0.4318114417 | 2.907083036
0.09 0.4202143377 | 2.876146324
0.10 0.4087851073 | 2.847993877
0.11 0.3975042842 | 2.822409762
0.12 0.3863564943 | 2.799212342
0.13 0.3753293774 | 2.778247201
0.14 0.3644128565 | 2.759382044
0.15 0.3535986256 | 2.742502906
0.16 0.3428797816 | 2.727511262
0.17 0.3322505543 | 2.714321783
0.18 0.3217061032 | 2.702860566
0.19 0.3112423637 | 2.693063714
0.20 0.3008559284 | 2.684876183
0.21 0.2905439552 | 2.678250852
0.22 0.2803040951 | 2.673147746
0.23 0.2701344357 | 2.669533405
0.24 0.2600334576 | 2.667380353
0.25 0.2500000000 | 2.666666667

Inequalities:

dt = 0. This latter equation gives, say, a as a function of 3,

We want p'(x) > 0 on the whole of S, OK if 3a%+ B2 —1 > 0 and a? 4+ 3p2 — 1 < 0. The real part of

Vp(x) + x*/2 must be smaller on (B,a) than its constant value on S, OK, as

Th0) +5¢ /2 1)(B) ~8°/2=5 | QEEERLENC 1>\/

-

is the integral of a function which is negative on a first part of (3,a), positive on another part, but the
integral remains negative, as it must vanish when x = a (the square root is positive in the whole interval

(B, ).

The set S is reduced to two intervals when 6 > 3.319..., and to a single interval when & < 8/3. It is
conjectured in [16] that S has at most 3 parts for any g(x) = —&x%4~1,
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3. Theexponential function e*Z.

3.1. Taylor.
3.2. Padé.
for €7,
m z m(m — 1) 72 mm—1)---2.1 m
1+ -t TS z
[m/n] = m+nll (m4n)(m4+n-1) 2! (m4+n)(m+n—-1)---(n+1) m! 5)
= n z n(n—1) Z (1) n(n—1)---2.1 2
2! (m+n)(m+n—1)---(m+1) n!

1— =
m+n 1!+ (m+n)(m+n-1)

e’ den. —num. = (Mm+1)---(m+n) &0 !
(=" z 0 z -
B _ - t mgn
~ (m+n)! [ o _w_/o el-on dt]

[66]
Exponential behaviour of numerator and denominator has been much worked, especially the distribution

of zeros and poles. Saff & Varga remark [67, I1] that, when m ~ n, these distributions had already been

examined by Olver [64] in a study of Bessel functions.
Integrals of the form (17) behave for large n as value at saddlepoint. With m ~ n, saddlepoint is a root

of

n n z 72
LT _ £ Y
1—|—t z+t 0, whence t 5 n—|—\/ +n?,

/ 2
with some choice for the square root (see later), and (z—t)t = 2n? ( 1+ % - 1) :

Denominator behaves like nt" power of

2
zZ
1+4y1+ = 2

2 2n

where the value of the square root is 1 at z= 0. When z increases, the value of (18) becomes very small
and must be replaced by the same formula with the other choice of the square root as soon as the new
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formula has an absolute value which is larger than the former one. This happens near z/n = 1.3255. In the
2i

z/n—plane: 1.325he formula (18) holds with a continuous square root outside

—2i
the shown arc, which is the locus where the two formulas have the same absolute value, also the limit

of the poles of the approximant. The equation of the arc is |w(z)| = 1, where

VitZ -1

72

1+ 2 +1

( 22) (z/2n) exp (/T + 22/ (4n2)
exp =

1+— -
1+4y/1+ 45

4n2
This w looks like the p of before, but is not a plain quadratic algebraic function.
Remark the square root behaves like —z/(2n) for large z in (18).
2i

72

1+ \/1 +-— 2

. 4n? Z Z 1.325

Numerator: —————exp | 1+ ——4/1+— T, Here the square
2 P ( + 2n + 4n2> a

—2i

root behaves like z/(2n) for large z. The formula holds with a continuous square root outside another arc
(the limit set of the zeros of the approximant) which is another part of the locus |w(z)| = 1.
And the remainder (or residual) e? den. — num. behaves like the n" power of

2
1-4/1+ % z 72
— ¥ an® exp| 1+ — 1+ a2 to the right of the latter arc, together with the part of the imag-

2 2n

2i

inary axis outside [—2ni, 2ni] (which is also a part of the locus |w(z)| = 1)_1'325 I

—2i

Finally, for the error e?— approximant, the powers are
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ez/n

1.325

-1.325
1+ \/1+ 22/(4n2) p2/N—2+/1+7%/(4n?)
1— /14 22/(4n?) _w2et/n

The example just seen shows the interest of a technique much used by J. Nuttall, for instance in [62,
8 3.2], consisting in building asymptotic approximations X1, X2, and X3 to the remainder, denominator, and
numerator®. These X functions, which are here these n" powers of exponentials and algebraic functions,
are expected to be piecewise analytic,

3.3. Padé approximation to exp(nByz+ nB,z?) and a bit of Painlevé functions.

Laguerre wrote quite a number of papers dealing with continued fraction expansion of solutions of
linear differential equations of first order with polynomial coefficients. His theory culminates in [41], but
he considered separately in [40] exponentials of polynomials exp(F(z)). Laguerre starts immediately with
the Padé property (here, about 0):

oF@ _ gn(é; — (2™ = g™l M2y L
n

if the degrees of ¢, and p, are m and n (m —n a small fixed integer). Divide by e and derivate:

_% (pqu) = e PO [(m+n+1)enz™" + (M+n+2) Ny — EaF'(0))2™ M4 -]
n

The left-hand side must be a polynomial divided by p2eF. The left-hand side numerator is —qnpn(Q,/0n —
PL/Pn—F') = dnpnF’ — pna;, + phan of degree m+ n+ g if the degree of F is g+ 1 (yes, g will be the
genus of something...) And has the right-hand side has order m + n at 0, we have

d n(2) ™" On(2)
& (rotw) = mass ()

with ©, of degree g. Remark that ©,(0) = m+n+1 if we choose p,(0) = 1. As the right-hand side is the
!/ "

m+n @n(z) _ p:](z) _FI(Z):O

©n(z)  Ph(2)

derivative of a meromorphic function, it must have vanishing residues:
at the zeros of p;,, whence
204 (2) pr(2) + [zF'(2)On(2) — 204,(2) — (M+1)On(2)] P4 (2) +Mn(2) Pa(z) =0, (20)

where M, is a new polynomial of degree 2g.
We need to know a little more on ©, and M, for large n, in order to extract the asymptotic behaviour of

Pn-

2In [62, 8 3.2], X1, X2, and x3 are called R, X1, and X2.
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. .. (m+n  0O(2) ) (p’ (z) vy pn(z) Yy
Any other solutiony of (20) satisfies [ —— + ———~ — F'(z nY_ ) =" 2 or
Y Y of (20) ( z / ©n(z) < pn(z Y pn(z Yy
! r_ m+n,—F y _ ™o, .
PnY — Py = const. 2" "e™" Oy, whence p_ — const. W' showing that
n n

Apn(2) +Ban(z)e~F®

is the general solution of (20).

Such differential equations with apparent singular points (as all solutions are entire functions) have
been much worked by W. Hahn [26, 27,28, 29]. The coefficients must be Painlevé-like functions (see [47],
containing references to R. Fuchs, D. & G. Chudnovsky, etc.).

We USe gnPn_1 — PnOn_1 = En—12™""~1 to write (19) as

d ( an(2) ) _ Z€n[QnPn—1 — PnOn-1]Gn(2)

- dz \ pn(z)eF®@ €n_1p3(2)eF@ ’
or

! ! ! Sn

Gn[Pn +F'Pn] = dnPn = 2— 1[ann—1 ~ Pn0n-1]@n,
n_

! €n ! ! €n
On |:pn —Z On pn—l] = Pn |:Qn -Fgn—z Onfn-1
Sn_l Sn—l

must be a polynomial of the form pn,gnQn, with Q, of degree g. Whence the differential system of first

order

€n €n

OnPn-1,0, = (FI +Qn)gn+2 Onfn—1.

Sn_l Sn—l
Conditionsat n = 0: pg = 1, p_1 = 0, o = Taylor-Maclaurin expansion of e truncated to degree m — n.
OnPn_1— PnOn-1 = €n—12"""1 = q_; = —e_12™"-1, Also, Qg = 0.

The same equations for p,_1 and gn_1 involve p and q,_», which we eliminate through the three-terms

, €n—
recurrence relation pn(z) = (1 —anz) — S” :

Pr = Qnpn+2

7?pn_2(z), and we arrive at

€n

-F Q z €]
Yo' =AYn,Yn= |: P e —F:| y Ap = " €n—1 " . (21)
Pn-1 On-1€ -z Qnoit (Z_l — 0)On_1
Remark that Y o being upper triangular, so is Ag = (Y4) Yo = ©_; = 0.
From trace A, = (logdetY)’,

1-an2)®n_1(2) +2zF'(z) —m—-n+1
Q0(2) + Qpoa(z) = - E- D1 2D . (22)

When we reconstruct the scalar second order differential equation for p, using now

€n
Qn z [ON

A= €n—1 , we recover the two first terms of (20), and conclude
—z7'eh; z7Ym+n-1)-F' -Q,
that My = 2(Qn0}, — Q,0n) + (M +N)QO, — 20,[Q2 + F'Qp — (€n/€n_1)OnOn_1]. This complicated
formula makes not even clear if M, has indeed degree 2g (the degree seems to be 3g+1). We still

need more relations by looking at the first order differential equation for pn;1(z) = (1 — 0ny12) pn(z) —
(&n/€n_1)2?pn_1(2) to find

(1 —0n412) (Qn— Qni1) + (€n/€n-1)ZOn—1— Ony1 = Z(Ent1/€n) On1,

or,atn—1,
€n— €
(1-0n2)(Qn—Qn_1) = S” ! n

ZOn_2 —ap — 20, (23)

n—2 €n-1
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leading to, by multiplying (22) by (23), and by summation in n:

n-1

O —mn
F'—m-—n nF’

€ z
L G)n@n—l + Qn

Q2 — -
Sn_l Z Z

It is then possible to advance the recurrence for the ©’s and the Q’s: if ©,_1, Qn_1, and €,_1/€n_ are
known, we find
_ 20,-1(0) +64(0) +F'(0)
N m+n
from the difference of (22) and (23) at z = 0; then (22) yields Q,, and (23) gives ©, and €,/€,_1, knowing
that ©,(0) =m+n+1.

an (25)

nA B (m—n)A
mrn T mrmmin—2)’

With F (z) = Az, one finds the explicit solution®, =m+n+1, Q, = —

mnA2

A
(01 = m—n—|—2)’ n/En-1= “(m+n—-1)(m+n)2(m+n+1)’
See later for a much more difficult example of degree 2 for F.

The recurrence equations (22) and (24) have a structure somewhat similar to the equations (3)! This is
an important remark already made by Gammel and Nuttall in [20] also about the Laguerre theory.
We are very close to (3) by taking Xn = Q,+F'/2— (m+n)/(2z) and ©, = Zp;1. But whatis Y ?

Ah, Painlevé. Let us introduce a parameter t in F. Then, the coefficients of pn, qn, etc. will be functions
of t. The Painlevé-like equations are differential equations in t for the coefficients of the polynomials ©,
and Qp, for each n.

LetH, ;=YY From (21),

H. — -1 _ Pnln-1 —_ann—l-}—'iann—l _ —anannpn—li_ann ]
" gn1z™-1 [ Pn_10n-1—Gn-1Pn-1+Fdn-1Pn-1  —Pn-10n+0dn-1Pn — FGn-1pPn
is a matrix of rational functions in z. Remark that trace H,, = z”_l —F. Is there such a big pole at the
n-1

origin? No: from gn(z)e=F@ — py(z) = —gnz™™M1 4 ...
. . : . 0 _
Pn—rOn+s—1 = On—rPnt+s—1+ FOn_rPnys—1 = ef {pn—re FQn+s—1 A [e FQn—r] pn+s—1}
a . _
=ef {pn+s—1a [pn—r - e_FQn—r] + Pn_r(e FQn+s—1 - pn+s—1)}

showing that the orders in H, are ((1) (2)) (r,s=0,1), so, polynomials of degrees not higher than g + 1, much
less if only coefficients of low degree in F actually depend on t: if the degree of oF /ot is o, then the

degrees of the elements of H,, are (66_’?‘“51). More precisely, the coefficients of lowest order in H,, are

BL(0)z 72

i €n-1
_&-1 En-1
€n-1  &n-1
When & =1 (and when F(0) does not depend on t), we have
. €
pr(0)2 7
. n-1
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And the differential equation in t for A, comes from
0dY, OH,\Y, OH,
oz ot oz oz

_00Yn O0AY, OA,

Yn+HAY,

ot ot ot oA
whence A oH
0—'[n = Ozn +HnA, —AH, (26)

We apply to the Padé approximations [n — 1/n to exp(ax 4 Bx?). It is not bad to look at low degrees,
with the GP-PARI program [7]:

{
/* padee2l.gp: launch gp and type \r padee2l

Pade [n-1 / n] de exp(axtb x2)

*/
default(seriesprecision,10);

Yn=matrix(2,2); An=matrix(2,2) ; Hn=matrix(2,2) ;
F=a*x+b*x~2; Fp=deriv(F,x); eF=exp(F);

/* n=0: */ thnl=0+0*x; omnl1=0+0*x ; epnl=0; thn2=thnl;
ep=1; pn=1; pnl=0 ; qgn=0 ; qnl=0;
for(n=1,3,
print( n=",n);
m=n-1;
aln=(2*polcoeff(omnl,0)+polcoeff(thnl,1)+polcoeff(Fp,0))/(m+n);
print(" alphan=",aln);
omn=-omnl-(1-aln*x)*thnl/x-Fp+(m+n-1)/x;
thn=((1-aln*x)*(omnl-omn)+epnl*x*thn2-aln)/x;
epn=polcoeff(thn,0)/(m+n+1);
pnp=(1-aln*x)*pn-epn*x~2*pnl;
gnp=(1-aln*x)*gn-epn*x~2*gnl;
pnl=pn; pn=pnp; gnl=qgn; gn=gnp;
if(n==1,gn=1);
print(” gn= ",qn);
print(” pn= ",pn);
thn=thn/epn;
ep=ep*epn;
print(" epsilon n=",ep);
print(*" Theta n =",thn);
print(*" Omega n =",omn);
Yn[1,1]=pn;Yn[1,2]=gn/eF;
Yn[2,1]=pnl;Yn[2,2]=gnl/eF;
An=deriv(Yn,x)*Yn"(-1);
Hn=deriv(Yn,a)*Yn"(-1);
print(*'check: ",deriv(An,a)-deriv(Hn,x)-Hn*An+An*Hn);
omnl=omn; epnl=epn; thn2=thnl;thnl=thn;
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);
}

Script V1.1 session started Wed Oct 11 16:07:49 2000
C:\calc\pari>pari2l7

GP/PARI CALCULATOR Version 2.0.17 (beta)
Windows NT ix86 (ix86 kernel) 32-bit version
(readline disabled, extended help not available)

Copyright (C) 1989-1999 hy
C. Batut, K. Belabas, D. Bernardi, H. Cohen and M. Olivier.

? \r padee?
n=1
alphan=a
gn=1
pn= -a*x + 1
epsilon n=-1/2*a"2 + b
Theta n =-4*a*b/(-a"2 + 2*b)*x + 2
Omega n =-2*b*x - a
check: [0(xX"9), 0(x79); 0, 0]
n=2
alphan=(a"3 - 6*a*b)/(-3*a"2 + 6*h)
gn= ((-a"3 + 6*a*b)/(-3*a"2 + 6*b))*x + 1
etc. In a more readable writing:
a1 1 2B —a?
pr 1l-—az
4a3
a2 -2

O,=2+ z , O1=-F =-a-2pBz

e 7
2 _ 3(a?—2p)
P2, 20 af+12p2 ,°
3(02-2B) 6(a?-2B)
a2 —6p a® —6Ba* +36pR%a2 4 7233
Up=—0O 50, &= :
3(a?—2p) 72(a? - 2pB)

(a? —6B) (o +12p?) 203 4Ba?

N
+

a2 —6p

0, = 4—|—8(XB

(02— 28) (o® — 6Ba’ + 36B202 1 728%) - 2T "302_2p) 3
2a8

1
5 (a% —12B0® +60R?)z+ = (a® — 16Ba® + 120B%a* 4 720p%) 22

20
ab —6Ba4 4 36B%202 4 7233

1+

(az—2p)2 “

3a

20 60

— 3
< (a® —2Ba* 4 20B%02 + 120B3%)z + ~— (08 + 40B%a* — 240B%)2% — g(0(8 + 723%0% — 21603423

1
+ ab —6Ba4 4 36B202 4 7233

a  of—24Bab+144p%a% + 2160p*

93~ ~ 15 (02— 2B) (a® — 60’ 1 36p202 + 72°)

3
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12 _ 12B010 4 180B%a8 — 480(330® — 3600B%a — 432008502 + 432003
7200(0® — 6Ba* + 36B202 4 72[32)
12aB(a® — 16Ba® + 120B%a* + 720B%) (a8 4 72p%a* — 216034
(08 — 6Ba* + 36B202 + 7232) (al? — 12Ba10 4 180B2%08 — 480B%a® — 3600B3%a* — 4320003°012 4 43200036) Z
30 08— 2Ba* +20B%a%4-120B° 6B (0% +12B%)(a® — 16Ba’® + 120B%a% 4 720B3%)

Qy= —— _r
3 5 of_6Pa4t36P2a2+72p3 5 (a® — 6Bo? + 363202 + 72[3)2

Hmm. .. these functions contain more and more complicated terms. For each n, there are basically four
non obvious terms to consider: €, Q,(0), and the coefficients of z of ©, and Q, i.e., ©; and Q;. It

happens that, if one looks for differential equations (in t = a) for these four terms through (26), what
comes out is a real mess (I tried).

€3 =—

O3=6+

One finds more tractable expressions by considering the even function exp(F (2)), with F (Z) = F (2?) =
aZ? 4 BZ*. Nothing is lost, as the [2n — 1/2n] Padé approximants to exp(F (Z?)) is related to the [n — 1/n]
Padé approximant to exp(F): with z = Z?,

F(z) _ On(2) e o2n Fz) Gon(z) = —dn
e — =&+ =€ — =&nZ"+---,

pa(z) " Pond)
S0, Pn(2) = Pan(Z) = Pan(v/Z), Un(2) = G2n(Z) = G2n(1/Z), E2n = €n. Remark that Gz, is an even polynomial
of true degree 2n — 2.

The Laguerre theory above (p. 13) builds the ©’s and the Q’s for this exp(az? 4 BZ*#) function, which
one writes Oy and Qy (and which may be interesting on their own right):

Gn(Z) ~ ~ .
N ﬁN (Z) On (Z) Qn (Z) EN
0
0 1 0 0 1
1 1 2 (1+ 2E22) —20Z — 4BZ° a
1 a
1 2ap 4B a?-2p
2 1—az2 4(1+ -2B ) a’ 2
a?-2B_,
s T f 6( +2s<a4—432>22) <a4+432>z_4323 ot 12p2
1 O(2+2BZZ a(at412p2) a (02— 2B) 12a
2a

Now, Oy is an even polynomial of degree 2, whose constant coefficient is 2N; Qy is an odd polynomial
of degree 3, whose coefficient of Z2 is given by a simple rule, easily deduced from (22) and Q= 0, Q=
—F' = —2aZ — 4BZ3: this coefficient of 3 is 2B((—1)N — 1).

SC,’J we now have three unknown terms for each N: €y, and, say &y and Xy in N (Z) = 2N(1+&\Z?)
and Qn(Z) = 2B((-1)N - 1)Z8 — xnZ.
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We know apply the differential relations (26) with t = a, remarking first that the matrix Hy is made
of even polynomials, therefore of degrees (53), (as & = degree of 9F /0a = 2), and orders (53), (as seen
before): we have monomials, excepting the second diagonal element,

N

B ZNZZ ZZ

Hu@)=| : : En-1 ,
N-1 EN-1 = 2

—= Z)—(nZ
En-1 En-1 F(2) =t
as we don’t yet know what the first diagonal could be, but we know the trace.
(26) yields

E’Z ~

0N _yp 7475 e LOn

da SN—l EN-1

for the two diagonal elements of Ay, leading to the coefficient of Z2 of On

EnEn- LOn+2(N - 1)

~ £ .
ZNEN:@N,2:4B~_N7 xn=1-(-1)N-2N
€n & 4 SN—l

knowing that the coefficient of Z3 in Qy does not depend on a, and using Oy (Z) = 2N (1 + &yZ2); the
off-diagonal yield, after cleaning a little bit,

~1

Oy = %[m —On - Z(F' +2Qn)] + (1+22)Z26y |

ot 3 ~ ~
@N—l_s:_i[@N_(ZN 2)+Z(F'+200)] - (1+224)Z%On_1,

whence Iy = ((—1)N — 1)/2, as the coefficient of Z3 of F' 4 2Qy is 4(—1)NB, and as the coefficient of Z2
of G)N is 4[38,\, /&n, as seen above;

2NEN = é—N[ 2NEN — 200+ 2xn] + 2N ()N |
N

2(N— 1)éN—1 = ;N_

L[2(N - 1)&_1 +2a — 2xn] - 2(N - 1) (-1)V

N-1
amounting to the differential system
En/EN—1 (En/En-1)(2NEN —2(N — 1)&n-1)
4Bi XN | _ |4BIL—(=1)N]—4N(N — 1) (En/En—1) (En — En-1) 27)
| En[—2NEy — 20 + 2Xn] +4B(— )N
EN-1 En-1[2(N —1)&y_1 + 20 — 2Xn] +4B(-1)N-L

a system of 4 equations, but the coefficients of Z* and Z2 of (24) yield 2 first integrals

[(-)N -1,

(—=1)NBxn+N(N - 1)

3
XA —4AN(N 1)

(&N +&n—1) — 20xn = 2B[(2N - 1) (-1)N +1].

There must remain a system of two first order differential equations, or scalar second order differential
equations.
Well, let us try with &y first:
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from the third row of (27), Xn = o +N&y + 2B[En — (— 1) 1/&n; use the first integrals:

_ _1NEy —
N(N—l)éi’\ilaN—lz—g_E_(_l) BNEN+2B[ENEN (- ) ]/EN CEX_B—NB( ) _232%,
BN B & _(2N—1)(~)N41  p? En 1 (%_ )2
§N_1_4(N—1)EN+N 1& P 2N(N - 1)&n +N(N 1) & (EN) AN(N —1)&n \ &N .

gives €y /€n_1 as a function of &y and its first derivative EN = 0&n /0a. We enter all that in the first equation
of (27), and get a second order differential equation for &y

. . 2
En &)  1+(DNY o® 3 a N
5 +— Yt st 5 — =0 28
3 (EN) B TepT B o %)
which relates &y to a solution of the Painlevé-1V equation by
\/—4
&N = P , (29)
a
PBivn (\/——4[3)
Piv.n (X) being a solution of the Painlevé IV equation
12 3p+2x 2X 2N?2
p,,:g_p+ (3p+ ;(p+ ) f4(-1 1Mp- 2 (30)

of parameters [1+ (—1)N]/2 and —2N? (see [36, chap. 3] for the Painlevé-1V equation, also Ince [34,
§ 14.4] of course).
Remark that, as &y is rational in 3, (29) shows that By is an odd function. From the instances of ©,

and ©y seen above, we have some samples

N 1 2 3 4

241 | 2x(4x443) | (2x24+1)(8x8 4 12x* +18x2 - 9)
X 4x4 -1 X(2x? 4+ 3) (4x4 + 3)

"BN,N (X) —2X

For the other functions of interest,

X —\/——4[3[x+ Ny 1V’N+(_1)N]
N Bivn 22BN 2PN’

_ —B[—X‘wa,N—N(—l)N—(_l)z = mgNr

€
N(N-1)z N

EN 2N2  2NPBiy v 1N ‘mv,N ‘/I3|VN
8N(N—1)§——V 43 [ﬂ3|v,N+ Pron +[(2N-1)(-1) ‘|‘1]‘IBIV,N+2£BIV’N (P +2x)?

but what may be the use of all this?
To be continued. ..

3.4. Rational interpolation.
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3.4.1. Equidistant points. [35]
As far as we only need e at z = 29,20+ h, ..., 2o+ (M+n)h,

Az — (l —|—A)(Z_Zo)/heAZo

Y (e

m—+n k
_ i (eAhh_l) %(z—zo)(z—zo—h)---(z—zo—(k—l)h),

n
which we multiply by the denominator Q(z) = Z)qj(z—zo) ~-(z=2p—(j—1)h), using
=

(z—20)(z—20—h)---(z—20— (j—Dh)eM =

m+n k=]
eA(zo+jh>§0(eAhh—1) (k_lj)!(z_zo)(z_zo_h)---(z—zo—(k—1)h),

m-+n k
Q(Z)EAZ: eAzo ki) (eAhh—l) %(Z—Zo)(z—zo_h)'”(z_zo_ (k_]_)h)7

n ) Ah _ -
where C(k) = Z)qjeAJh (e H 1) (k—lj)l is a polynomial of degree n in k, which must vanish at
= :

k=m+1,m+2,....,m+n,

P(z) = eAméo(eAhh_l)k (T)(m—|—n—k)!(z—zo)(z—zo—h)---(z—zo—(k—l)h),

n

Q(z) = kzo(e_A;_l)k (E) (M+N—K)'(2=20)(z—20—h) - (2= 20— (k= 1)h),

and, formally:

(z—20)(z—20—Nh)---(z—20— (k—1)h),
(31)

e 1\ (kem-1)(k-m—2)--- (k—m—n)
(&) q

We look at the performance of some examples of the region of good approximation in the complex
plane, coloured in light gray:
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exp(5(0 2502)) exp(5(1 OOz)) exp(5(2 002)) exp(5(3 002))

411

colouring is made with respect of the average of log|exp(Az) — P(z)/Q(z)| in the square [—2,2] X
[—2,2]. The degrees of P and Q are here 5 and 4. When A is small, the region is an oval around the locus
of the interpolation points (here, the interval [—1, 1] shown by a thin horizontal black line).

The interpolation points should appear as bright white dots, but they are hardly visible in somewhat big
pixels, if colouring is made according to an arbitrary point of the pixel. This chosen point happens to be
an actual interpolation point only for the endpoints, whence the rightmost interpolation point looking like
a beacon in a dark environment.

The graph of the error function in the interpolation interval also looks like its envelope:

exp(5(0.250z2)), -1 1

2.6e-010 -2.3e-009

T 2510710
-1 /\ 1 ¢

T+ -25107°?

This suggests that we shall have valuable asymptotic estimates containing something like a nonvanish-
ing power p", even up to the interpolation locus.

Somewhat similarly poles may even enter the locus of interpolation points. Here, the poles of P/Q
(degrees 20/19) interpolating exp(20az), witha=1and a = 2:
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n=20 A=1B1=1 B2=0. n=20 A=1B1=2*| B2=0.
+
+
+
+
* +
+
+ i
+ N
T T,
+ F
+ F
+ ¥
+ +F
+
+
+
+
+

So, the locus of poles of P/Q of degrees m ~ n and n approximating exp(naz) enters the locus [—1, 1]

of interpolation points when a becomes larger than a number slightly smaller than 2. Such features will be
explained.

Integral form.
The sums and series (31) are special hypergeometric expansions formally related to Jacobi polynomials

with large symbols, say P"®*P™*9 (x). Detailed asymptotics of these polynomials are achieved in [13]

and [23]. These authors used either generating functions or integral forms. We adapt the integral form
here:

the polynomials of (31) have the same form

szkixk('\:)(P—k)!Y(Y—1)---(Y—k+1), (32)

where P is an integer larger than M(in (31), X =e*"—1ore™—-1, M=morn, P=m+n, Y =
(z—20)/M).

As a hypergeometric function, S = const. 2F (—M, =Y ; —P; X), which is the Jacobi polynomial
P,EA_P_l’_Y_M+P)(1+ 2X) with parameters —P — 1 and —Y — M + P which are never both positive, so that
we cannot just quote [13, 23], but follow their methods.

We try to write (P —Kk)!Y (Y —1)---(Y —k+1) as an integral involving a k™ power, in order to achieve
a closed form of (32) through the binomial theorem.

The special Beta integral /up‘k(l— u)k‘Y‘ldu, where C is an arc starting from the origin, turning
c

around u = 1, and returning to the origin 0 é 1 iswhat we need:
P—k k—Y—1 (=1)P (P —K)! / P-Y-1
u 1-u du=-..-= 1—-u du, or
/c (1-u) Voo —k=1) v —p+1) LY

fC uP—k(l _ U)k_Y_ldU
Jo(1—=u)P=Y=1du

Pk (Y 1) (Y —k+1) = (=1)P*Y (Y =1) .- (Y =P +1)
comes

, then (32) be-

/CUP‘M(l— )~ (14 X) = X]Mdu

/(1 —u)P~"1du
c

S=(-)PY(Y-1)---(Y-P+1)
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(Check: ifX=-1,S=(P-M)}(Y =P)(Y =P+1)--- (Y =P+ M -1)).

The formula is not intended to be of any use if Y =P —1,P—2,... where it yields 0/0. The integral
of the denominator is (1 —e~2™) /(P —Y) if the phase of 1 — u is 0 in the first part of the integral. Then,
another form of the formula is
p F(Y+D(P—Y 4 1)e™

21

S— (-1 /CUP‘M(l—u)‘Y‘l[u(1+X)—X]Mdu

—20— (m+n)h/2 :Y—(m—|—n)/2

. z .
Rough asymptotics. Let E := exp(Ah) and { := - - . Then, with
m ~ n, we intend to follow things at constant E and ¢, i.e., a fixed exponential and z expanding linearly
with n, or A increasing linearly with n, and 2n interpolating points filling a fixed segment [zg,zo + 2nh].
Remark that this segment of interpolation pointsis -1 < { < 1.
Remark also that e*Z = eAEY 5o

mn—1gAZo FY+1)r(m+n-Y + 1)eﬂi(m+n)
2t

e¥Q(z) -P()=(-1)

JAUEY (-0 P E T - B 2 0L )Y UE ~ E + 2o

Saddlepoint & Stirling:

S~ e PPP {%(1+z)1+<(1— O u(1—u)~Hua+x) —X]}n,

where
1 (+1 1
i -0
TR X ’
1+ X
or
X X
D4 (2- 2~ Ju-—==0
(¢ )u+( 1+ X ! 1+ X
S0,

o LEX-TX/24 V1I+X+2X2/4
(1-0@1+X) '
One of these saddlepoints, or both, enter an asymptotic expression of the denominator and the numerator.
It is easy to get lost in intractable, although elementary, formulas.
Strangely enough, a cruder method ends up with almost readable expressions:
At least when each term has the same phase, the sum is roughly given by the term reached when the
preceding ratio has unit value:

(33)

XK({+K)
1-k2
where K := 1 —k/n. Remark that the ratio — 0 when Kk — 0, and — o when kK — 1. The roots are

o —OX/24 TEX XY/

1+X

=1, (34)

clearly related to the saddlepoints of (33) by
K=(1-Qu-1.
The dominant term (there will sometimes be two dominant terms), is, still roughly,
X=M™nl(n+nk)!T(n{+n)
(n—nK)!(nK)IT (N +nK)
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where K is one of the roots of (34). Tedious application of Stirling’s formula yields, keeping only the

wildest factors,

-1 _
using Z — K(Xﬂ’

_Xl—K(1+ K)1+K(1+Z)1+Z

| (1= K)IRKR(Q k) CH

r

(1-x)
L 1

X1+ )1+ ]
(1-K)(C+K)® ]

( e )KX(1+K)(1+Z)1+Z
XK({{+K) T+ k)

K

from (34).

1+ (1+X)K)1+Z(1+K)1—Z] "

(35)

Remark that, if K is one of the roots of (34), for the numerator (X = E — 1), the other root is —1/(EK),
and that the values of K for the denominator expansion are the inverses of the ones for the numerator:

E_lK(Zien‘}' (E_l —1){Kgen —1=0=E 4+ (E — 1){Kgen — K(Zjen =0.

Finally, the last expansion of (31) yields the same equation (34) as for the numerator (i.e., with X = E — 1),
and we have the following possible exponential behaviours:

num P(z) (1‘|‘EK)1+Z(1+K)1_Z]n [_EZ (K_l)lH(EK—l)l_Z]n
' e—2np2n K ”
den. S [E‘l—z (1+ER™ 1+ K)H] | [— (K=1)**(Ek— 1)1_1 |
€ n K EK
. P(2) n ) (k= 1) Ex— 1)
ratio @ [ElH} gn(¢+1) [_EZ (1+K)1—Z(1+EK)1+Z]
Q(z)e™—P(z) (L+ER)M(14 K)H] n [—EZ (k= 1) (Ek- 1)“] '
e—2np2n K ”
: P n . _ D (EK — 1112 #n
e | ¢ % [EM} e [_EZ E:Jr Kil-zgliEK;m]

Of course, the integral formula above gives more weight to these asymptotic constructions, with Kk =

(1-Qu-—1.
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We expect the numerator, denominator, ratio — the approximation, and the error to behave as one of
the given n" powers, or a combination of both. At the present level of formal manipulation, we don’t yet
know which power(s) to use.

At least for large z, we know that we should have (E*! — 1)"n!(z/h)" ~ (E*! — 1)"e~"n?"Z" for the
numerator and the denominator. Indeed, with the root Kk = (E‘l — 1){+ --- one finds, with the second

PR T (X1 e one (14 L) meE - 1)z, The fis beh
power, [(e—znnZn] ~ —EK (K_ 1/E) ~ (E-1)C ( + Z) ~ e(E — 1)¢. The first power behaves
for large z as [e(1 — E)ZE**¢]", such a behaviour is impossible with a polynomial. Similarly, one has for

. L Q@ 1"
the denominator, with the first power, (-2 ~e(ET"-1)¢.

The region where the asymptotic behaviours of P and Q are such that (P/Q)l/” ~ EMC s simply the
region of good approximation! Indeed, EN(1+0) = gAMN(1+0) — gA(z=20)

When E is close to 1, we almost have the Padé situation of the figure of p. 13

Various interesting situations occur, the wildest situation being E = —1: we then interpolate merely
the sequence 1,—-1,1,—1,... at zp,21,...,Zm+n Dy q/p of degrees m and n, without any reference to an
exponential function anymore!

Moreover, the solution of the Cauchy problem (in the sense of [52]) is then immediate: g+ p must
vanish at z3,23,..., and q — p vanishes at zg, 2, .. .:

q(z) c(z—z1)(z—23)---+C'(z—20)(z2—122)---

p(z) c(z—z21)(z—23) -~ (z2—20)(z—2) "

where one of the two numbers ¢ or ¢’ may very well vanish if it is the only way to achieve degrees < m
and n!

The integral of the numerator is f F(u)e”‘b(”)du estimated, through deformation of the contour, by

steepest descent contributions of the neighbourhoods of saddle points (there will be at most two of them)

us such that @' (us) = 0:

(u—us)?
2

21
CDH(US) ’

D(u) = d(us) +
Here, when m ~ n,

F(u) =e*(1—u)"u(14+E) —E]™", &(u) = log{u(1l —u)=¢~u(1+E) — E]} (numerator P),
F(u) =u™"(1—u)~%, @(u) =log{u(1—u)~¢[u(1+E~Y) —E~1]} (denominator Q).

D" (Uug) + -+, /CF(u)e”‘D(”)du ~ F (ug)e"®s)

3.4.2. Check with § 2.4.

From (35),

. logQ(z
V(2) = lim 99 _ (142 10g(1 +E7%) + (1~ 0 og(1-+ €) ~ log ()
where C is basically our z (managed so that the interpolation points are in [—1,1]). Then, the derivative in
¢ simplifies into
-1
d(z) ~ log 1+E K7
dd 14k
-1_p-1

E__liElK, from (34). This matches (12) provided

where K is related to ¢ through { =

2i

_iE-Ll2 oy —
p=IE /K7G——B—m7
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and
d % (z 1-ig~1/2 > iNEY2-EN2
p()zog -12p:_z ( )pn
d¢ 1-iEY?p & n

Remark that g; = —i(E~Y?2—EY/2) =4/(B - a) as it should.

4. Rational interpolation to exp(nByz+ nB,Z?).

This very interesting rational interpolation appears in special nonlinear Schrodinger problems ( [54] and
remarks by J. Nuttall) . The Padé approximation (8§ 3.3) already told that there may be several arcs in the
discussion.

4.1. The single arc case.

Let the interpolation points be equidistant on [l I2]. Then,

z—1
log—— !

9(2) = flllz (= h)dt _Z'i)t_ldt - % _Byz= Tz_‘ll'? _ % B (B;a 22[:(0(_ P G;B) (36)
The logarithms have the expansions
log(z—Ix) = 22 kam
where py is now a root of
p"+2p':l _ 2k s P k=12, (37)

where |px| < 1 should be the orthodox choice, but which will not be kept in the final formula. Precisely,
the closed form is now

2 1-pip B—a
Zgnp —, 1091 o 227 P (38)
with the conditions (11) on gg and g
log(p2/p1) Bi B, O T B_ 0 (39)
I — 11 2 2
,P2—P1 B—a 4
g1= |2—|1 —B2—; ol (40)
If p; and p, are known, a and 3 are got by (37):
_ P1(1+p2)*l—p2(14p1)°la b= p1(1—p2)2l1 — p2(1—p1)?l2 41)

(P2 —P1)(P1P2—1) (P2—p1)(P1p2—1)
(As for p1 and py, they are simply found to be, if B, =0, p1 = iexp(—B1(l2—11)/4) and p2 = iexp(B1(l2 —
I1)/4). Remark that p1p2, = —1: no chance to have the comfortable |py| < 1...)
Also,
B—a _ 2mpo(lo—l) a+B_ i+l (p1+p2)(Pip2+1)(l2—11)
2 (p2-p)(pp2—-1)" 2 2 2(p2—p1)(p2p2—1)
and (39) and (40) become

log(pz/p1) Bi B, li+12 | Ba (P2+p1)(P1p2+1)

lo—1q 2 2 2 (p2—p1)(P2p2—1)

(P2—p)*(PiP5 - 1)

(lo—11) = 0,By(l,—11)? = 20262

3
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or this form emphasizing p1p2 and p2/p1:
1
2B, (1, — | 2:(@—2+&)( ——), 42
2(l2—11) o 5 P1P2 5107 (42)
P2\ 1 (pz pl) ( 1 ) B: 1212
log| =)+ ——-—= 4+24+—)=—=(l—11)+B . 43
| (pl) 4\p1 P2 P12 P1P2 2 (l2=h)+B, 2 (43)

For a given B, and various ratios p,/p1, we find valid values for By, etc. For instance, 13 = —Ai, I, = Al,
B, negative imaginary and p,/p;1 negative real, which is of interest in [54]:

Script V1.1 session started Mon Jan 17 14:32:31 2000

C:\calc\pari>gp

? \r exprlr2

GP/PARI CALCULATOR Version 2.0.12 (alpha)

Copyright (C) 1989-1998 by
C. Batut, K. Belabas, D. Bernardi, H. Cohen and M. Olivier.

A=1,B; = - 2ix,x = 0.5,B; = — 2iA,

At —p2/p1
0.10 2.758
0.10 0.439
0.20 2.888
0.20 0.429
0.30 3.138
0.30 0.411
0.40 3.553
0.40 0.384
0.50 4.176
0.50 0.351
0.60 5.006
0.60 0.311
0.70 6.007
0.70 0.270
0.80 7.139
0.80 0.232
0.90 8.372
0.90 0.198

1.0 9.692

1.0 0.171

11 11.08

11 0.149

1.2 12.55

1.2 0.130

? quit
Good bye!

C:\calc\pari>exit

Q
0.02455

3.971
0.09570
3.883
0.2038
3.737
0.3275
3.533
0.4363
3.277
0.5082
2.988
0.5430
2.692
0.5518
2414
0.5452
2.166
0.5303
1.953
0.5113
1.770
0.4906
1.613

pP1
0.6002 4 0.04717i
0.1284 4 1.502i
0.5812+ 0.09100i
0.2604 + 1.504i
0.5499+ 0.1274i
0.3997 4 1.507i
0.5082+0.1518i
0.5507 4+ 1.514i
0.4618+40.1616i
0.7171 4 1.527i
0.4175+ 0.1593i
0.9009 + 1.548i
0.3792 4 0.1503i
1.099+ 1.578i
0.3474+0.1390i
1.307+1.612i
0.3211+40.1275i
1.517 + 1.650i
0.2991+0.1169i
1.727 + 1.687i
0.2804 4 0.1073i
1.933+1.723i
0.2643 + 0.09885i
2.136+1.757i

Script completed Mon Jan 17 14:34:12 2000

P2
—1.655—0.1301i

—0.05646 — 0.6606i

—1.679 — 0.2629i
—0.1117 — 0.6454i
—1.725—0.3998i
—0.1643 - 0.6197i
—1.806 — 0.5394i
—0.2119 — 0.5830i
—1.928 — 0.6749i
—0.2517 - 0.5363i
—2.090 — 0.7976i
—0.2805 — 0.4824i
—2.278 —0.9031i
—0.2972 — 0.42664i
—2.480 — 0.9924i
—0.3033 —0.3742i
—2.689— 1.068i
—0.3019 — 0.3282i
—2.899—1.133i
—0.2962 — 0.2893i
—3.109— 1.190i
—0.2882 — 0.2568i
—3.318—1.240i
—0.2791 — 0.2296i

a=p
0.03677 + 0.8865i
—4.554410.81i
0.07604 + 0.8847i
—2.30745.374i
0.1197 + 0.8788i
—1.57443.545i
0.1674 + 0.8641i
—1.221+42.622i
0.2147 + 0.8365i
—1.023+42.064i
0.2544 4+ 0.7974i
—0.9027 4+ 1.692i
0.2832 + 0.7524i
—0.8243+ 1.431i
0.3017+0.7071i
—0.7690+ 1.241i
0.3124 + 0.6643i
—0.7263+ 1.099i
0.3178 + 0.6252i
—0.6908 + 0.9883i
0.3195+ 0.5899i
—0.6599 4 0.9000i
0.3187 + 0.5582i
—0.6323+0.8278i

We integrate (38) along the lines suggested by the exercises of section 3.4.2, p. 26:

Vp(2)

-1y

[(z—11)log(1 —p1p) — (z—I2) log(1 — p2p) +X ()],
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which yields indeed, using from (12) and (37) z— Iy = [3:10( (1 - %) (p— i) ;

Az 2 {Iogl—p1p+[ -l z-1p +olX(p)] dp}

dz -1 1-p2p |p—pit p-py? dp | dz
_ 2 {Iogl—plp_l_[ﬁ—apz—pl dX(p)] 4 }
-1 1-p2p 4 p dp | (B-a)(1-p7?)
dX  B-ap-p  (B-0)? oo
One must have dp__ 2 5 -B; 1 (l—11) p—p , finally:
X _ b-lippa+1 1
dp 2 pp2—1" p’
p1p2+1p?

(2) - —logp. (44)

p1p2—1 2
The two determinations of 7/}, on the two sides of the cut are found with the two roots p and 1/p of (12).

In particular, the arithmetic mean of the two values of the derivative must give (8) again, with g given by
(36). Indeed, one finds

= 5, (2= 10)10g(1=p1p) — (2~ o) log(L — p2p)] -

1 oo
|2_|1{|Og[(1—plp)(1—pl/p)]—|Og[(1—p2p)(1_p2/p)]}_BZB2 p 2p |
which is
1 Z—|1 P1 G+B
l— 11 [Ing—IZHOQE]_BZZ‘FBz 5
The difference of the two determinations of ) must be +2ruy"
i 1-pp 1-pop B—a 9

e = [IO o ]—B -p™), 45
=, 91 /p 91 pyp) ~%2 2 PP (45)

(Nuttall’s AW,)
and the cut itself is the locus {z : Y'(z) dz real }, which is integrated as {z : ¥} 1(z) — ¥}p,—(z) pure
imaginary },

2 1-pip
z—1ly)lo
-1 (2-1) gl—pl/p

—2logp pure imaginary.
(46)

_ 2 _ A2
_(Z_IZ)Iogl pzp]_p1p2+1p P

1-p2/p] p1p2—-1 2
Writing (46) as a function of p (using (12) and (37)), we have

_ 2 B N 1  pip2+1pP—p7?
F 0 = o, o 1/(pip2) [(p 1) (l ppl) L= (P=p2) (l ppz) LZ] ppz—1 2

1-pip

with Ly = log 0 pp and where, for given By, B>, I1, I, one must determine p; and
—P1 — P2
p2 from (42) and (43).
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4.2. First caustic.

The present setting of the limit set of poles as a single arc joiningz=atoz=pB(orp=-1top=1)
holds as long as p,(z)dz remains positive on the cut. A critical situation occurs when i, happens to vanish
right on the cut, i.e., if dF /dz vanishes at a point where the real part of F vanishes too.

x=0.10, At=0.25000 x=0.10, At=0.50000 x=0.10, At=0.59650

The locus of (x,At) with B; = 11— 2ix, B = —2iAt, where this happens is called the (first) caustic
in [54]. We then have p; = R=1/2® p, = —R1/2e% \ith real R and 6. For a trial value of At, we look
for R and @ such that (R+1/R)/2 = 2At/sin28 — 1 (from (42)) and 2x = logR + (1/R — R) sin?@ (from
(43)). Knowing p; and p,, one looks for the zero of the analytic function dF /dz, or dF /dp. This yields
the equation pj, = 0 in (45) as

1 p—p_l
Li—Lo=(14 — — . 47
1—Lo ( + plpz) (p2—p1) > (47)

One then manages to have the real part of F = 0 as well.
Some values:
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X At sin6 P2 R=—p2/p1 p

0.001 0.500973 0.6990 -0.749-0.733 1.098  -1.27846-0.24352 i
0.010 0.509711 0.6781 -0.854-0.788i 1.350  -1.52506-0.51989 i
0.050 0.548383 0.6288 -1.095-0.885 i 1.982  -1.84975-0.94099 i
0.100 0.596697 0.5838 -1.324-0.952i 2.660  -2.06555-1.23283 i
0.250 0.744301 0.4821 -1.928-1.061i 4842  -2.48476-1.76294 i
0.500 1.009193 0.3636 -2.919-1.139i 9.817  -2.98988 -2.26747 i
0.750 1.312145 0.2794 -4.017-1.169i 17.504 -3.41534 -2.56407 i
1.000 1672677 0.2167 -5.311-1.179i 29.600  -3.78112-2.72755 i
1.250 2.117750 0.1686 -6.897-1.180 i 48.954  -4.06939-2.79596 i
1500 2.682341 0.1314 -8.888-1.178i 80.381  -4.27061-2.81082 i

1.750 3.408138 0.1024 -11.423-1.176i 131.867  -4.39913-2.80582 i
2.000 4.344519 0.0798 -14.669-1.174i 216.553  -4.47798-2.79719 i
2500 7.107960 0.0484 -24.179-1.172i 585.997  -4.55461-2.78484 i
3.000 11.684073 0.0294 -39.858-1.171i 1590.003 -4.58262-2.77939 i

F
6.282 i
6.261 i
6.123 i
5.922i
53011
43711
3.587i
2.923i
2.359i
1.884i
1.493i
1.175i
0.721i
0.439i

We see that 8 — 11/4 when x — 0, and that @ — 0 when x — oo, but many features are still unexplained. . .
Here is a tentative explanation of the behaviour for large x: as it seems that |p;| << |p| << |p2|, the
logarithms are approximated by Ly ~ p1(p~* —p) — logp, Lo =~ (p— p~1)/p2+ logp, the equation (47)

logp
1

imaginary, making a second equation for € and p, whence fixed solutions. And

firv 6R/4 __é 2
e~ VRexp(—82R/2) 2 P28

becomes

Script V1.1 session started Thu Feb 17 11:24:23 2000
C:\calc\pari>gp

GP/PARI CALCULATOR Version 2.0.12 (alpha)
Copyright (C) 1989-1998 hy

C. Batut, K. Belabas, D. Bernardi, H. Cohen and M. Olivier.

? \r expcaus?
rho=-4.59885439353246016460 - 2.77599828040642492631*1

F/theta= -1.14496588753536343500 E-40 + 14.9829543045360004158* 1
? xi
0.585318492448534646977
? (Xi/2)*exp(2*xi*xi)
0.580682668039111487078
? quit
Good bye!

C:\calc\pari>exit

Script completed Thu Feb 17 11:29:16 2000

Numerator and interpolation.

~ i€, with & =8v/R /2. Also, F/0~ (p—p~H[i(p+p~Y)/2— &1 - 2&] must be pure
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Remind that 7/},(z) is the limit when n — o of n=11ogQn(z) = n=! 3 log(z— poles). It must behave like
log(z) + O(1/z) for large z, compatible with (44) if one adds a constant:

2 2 41
V(2) = [z~ 11) log(1 — p1p) — (2~ I2) log(1 — pzp)] — 2 P22 _1ogp 1.,
l2—11 2 p1pp—1
which behaves for large z as logz — log B :1 4 (B _2((]') (pzl—) P) +Cp, from p~ (B—a)/(4z). Therefore,
2— 1
_eaB—a  (B-a)(p2—p1)
Co=log™7 20— 1)

The numerator of the interpolant to exp(n(B1z+ B,z?)) is the denominator of the interpolant to exp(n(—Bz —
B»z?)), so that the calculations made before apply with (By,B,) — (B, —B5). The equations (39) and
(40) are now satisfied by (p1,p2) — (1/p1,1/p2). And the values for a and {3 are the same as before.

Let Vhum(2) be the (presumed to exist) limit when n — o of n=*logPy(z), where P, is the numerator. We
expect a formula similar to (44), but with another constant:

2
+1

[(2— 1) log(1 - p/p1) — (2 o) log(1 — p/po)] + - 212

2 pip2—1

The remaining constant Cnym is determined by Thum(z) — Vp(z) = B1z+ B,z? in a neighbourhood of the

set of the interpolation points. Everything works if one determination, say with p, is used for 7}, while

the determination with 1/p is used for “hym:

—logp+ Chym.

%um(z) = I

1-1/(pp1) 1- 1/(9/92)] p1p2+1p2+p°
Voum(2) — Vio(2) = z— ) log————"—=— _(z—1y)lo + +2logp+Chum—C
num (2) — Vp(2) |2_|1( 1)log 1- pps (z—12)log 1= pps o102—1 2 9P +Cnum
p1p2+1 (22—0(—5)2
= z— ) log(—po) — (z—11) log(— + 2 —1| +Chum —Cp,
|2_|1[( 2) log(—p2) — ( 1) log(—p1)] p1p2 — 1 B_a num p
I1log(—p1) — I> log(— B 1
o —1I1 4 P1p2—1
whence
I>log(—p2) — 11 log(— B +1
Coum—Cp = 212 9(=p2) —l1log(—p1) 2 (1 )24 PrP2FL (48)
-1y 4 p1p2—1

5. Best rational approximation to e~ (A"*B)Z on areal interval

5.1. Best rational approximation to exp(—z) on a given real interval, say [0, c] has a strict equioscillating
error function, as seen here with e — py(z) /gn(z) on [0, 1], for n= 6’&5158
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For varying degrees, we have a now familiar scaling effect best seen through the

poles:

Sets of poles expand and tend to follow the Padé poles; errors decrease factori-

ally fast with n( here, the error is about

e~Y/2n!(n—1)! .
i )ien D O accurate

asymptotic picture, see Braess’ proof of Meinardus’ conjecture [9]).

1

We find a stable picture if we look at the poles of the best approximants
of degree n to exp(—nz). Moreover, the norms E, of the errors tend to
decrease in an exponential way with n:

n=1 2 3 4 ) 6

158E-3 3.197E-5 5921E-7 1.068E-8 1.91E-10 3.383E-12

The ratio of two successive errors seems to tend towards a limit of
about 1/60. The exact value, as it will be shown later (in (72), p. 45), is
p=1/57.0699681---. Could we have E, ~ Cp", and what is the value
of C? | can’t wait: here are the products E,p~":

n=1 2 3 4 5 6
0.090 0.104 0.110 0.113 0.116 0.117

Hmmm, what could it be? The numbers follow the approximate for-
mula 0.125 - 0.05/(n+1/2). The limit 0.125 is reasonably close to an
estimate which will be given in § 5.3.

Ah, an obscure insight (hindsight?) coming from long and painful
experiments with the '1/9’ problem [45, 46] tells me to try exp(—(n+
1/2)z) instead of exp(—nz), and to multiply the errors by p~"+1/2;

n=0 1 2 3 4 )
0.197 4.161E-3 7.610E-5 1.356E-6 2.406E-8 4.244E-10
1.488 1.794 1.872 1.904 1.928 1.941

Aha! Now, the limit seems to be 2. This phenomenon will also be
explained in § 5.3.

Ah, the numerical experiments with best real rational approximation on a bounded interval have been
performed with the truly remarkable MATLAB CF program of Trefethen [79]. Here is how it is adapted
to the present problem of approximation to exp(—(An+ B)z) on [0,c]. Of course, one must enter ¢, n, A,

6
7.470E-12
1.950
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and B, also nfft — preferably a power of 2, say, 512, or 1024, and K = order of an auxiliary Hankel matrix,
say, between 20 and 30.

%cfneuf3.m :
% Quasi best rational approximation of degree n to exp(- nf 2)
% on 0<= z <= c.

% enter: ¢ n nfft (a power of 2, say 1024) K ( order of Hankel
% matrix in CF construction, say 20 or more)

% Output: plot of error function, restart with higher nfft and/or K
% if not nice;

% two estimates of error norm. They should of course be
% very close.
% zeros & poles.

% cfneuf.m adaptation de

% cftref.m

% Approximation Theory V

% RCF -- REAL RATIONAL CF APPROXIMATION ON THE UNIT INTERVAL

% Loyd N. Trefethen, Dept. of Math., M_I.T., March 1986

% Reference: L.N.T. and M.H. Gutknecht,

% SIAM J. Numer. Anal. 20 (1983), pp. 420-436

% L.N."Trefethen, MATLAB programs for CF approximation, pp-599-602
% {\it in} {\sl Approximation Theory V\ },

% ( C.K.Chui, L.L.Schumaker, J.D.Ward, eds.),

% Academic Press, Orlando 1986.

%

%

% Fx(x) - function to be approximated by R(x)=P(x)/Q(x)

% m,n - degree of P,Q

% nfft - number of points in FFT (power of 2)

% K - degree at which Chebyshev series is truncated

% F,P,Q,R - functions evaluated on FFT mesh (Chebyshev points)
% Pc,Qc - Chebyshev coefficients of P and Q

% If Fx is even, take (m,n)=( odd, even).
% If Fx is odd , take (m,n)=(even,even ).

diary cfneuf3.txt

% CONTROL PARAMETERS
format long;
c=input(’c in interval 0..c ? 7);
m=input(’degree n? ”) ; n=m; np=n+l;
aa=input(” A in exp(-(An+B)z) ? ”);bb=input(” B in exp(-(An+B)z) ? ’);
nf=aa*n+bb;
nfft=input(’nfft? ) ;nfft2=nfft/2;
K=input(’K? ”); dim=K+n-m;

% CHEBYSHEV COEFFICIENTS OF Fx
z = exp(2*pi*sqrt(-1)*(0:nfft-1)/nfft);
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%
%
%

=

0

=

0

%
%
%
%

x = real(2); F = exp(nf*c*(x-1)/2); Fc = real (fft(F))/nfft2;
disp(Fc(dim:dim+2));

SVD OF HANKEL MATRIX H
H = toeplitz(Fc(l+rem((dim:-1:1)+nfft+m-n,nfft)));
H = triu(H); H=H(:,(dim:-1:1));
[u,s,v] = svd(H);
s = s(np,np); u = u((dim:-1:1),np)”;v = v(z,np)’;

DENOMINATOR POLYNOMIAL Q
zr = roots(v); qout = []; for i=1:dim-1;
if abs(zr(i))>1 gout = [qout, zr(i)];end; end;
gc = real(poly(qout)); qc = qc/qc(np); q = polyval(qc,z);
Q = g-*conj(q); Qc = real (fft(Q))/nfft2;
Qc(1)= Qc(1)/2; Q=Q/Qc(1); Q¢ = Qc(1:np)/Qc(l);

NUMERATOR POLYNOMIAL P
b = fft([u zeros(1,nfft-dim)])./fft([v zeros(l,nfft-dim)]);
Rt = F-real(s*z.”K.*b); Rtc = real (fft(Rt))/nfft2;
gam = real (fft((1)./Q))/nfft2; gam = toeplitz(gam(1:2*m+1));
if m==0 Pc = 2*Rtc(1)/gam;
else Pc = 2*[Rtc(m+1:-1:2) Rtc(1:m+1)]/gam; end;
Pc = Pc(m+1:2*m+1); Pc(l) = Pc(1)/2;
P = real(polyval (Pc(m+1:-1:1),2)); R = P./Q;

RESULTS
plot(x,F-R,”-",x,[s;0;-s]*ones(1,nfft),”:”); pause;
s, err = norm(F-R,”inf”), Pc, Qc
err = norm(F-R,”inf”);
serr=[s,err],
disp(’ zeros’);
qth=zeros(1,2*n+1);qth(1:n)=Pc(np:-1:2);
qth(n+2:2*n+1)=Pc(2:np);
qth(n+1)=2*Pc(1);
polth=roots(qth);
polx=[1;
ki=0;for kz=1:2*n;
polxx=( polth(kz)+1/polth(kz) )/2;
if kz==1, polx=[polx,polxx]; ki=1;kip=0;end;
if kz>1 , kip=1;
for kz2=1:ki; if abs(polxx-polx(kz2))<0.0000001 , kip=0;end;
end;
end;
if kip==1 , ki=ki+1; polx=[polx,polxx] ; end;
end;
polz= c*(1-polx)/2;
real(polz”), imag(polz”)
Pcc=real (poly(polz));
polz’
disp(’ poles’);
qth=zeros(1,2*n+1);qth(1:n)=Qc(np:-1:2);
qth(n+2:2*n+1)=Qc(2:np);
qth(n+1)=2;
polth=roots(qth);



MAPA3xxxA 2000-2001-2002 — Complex rational approx. 5 — Exponential function. — 36

polx=zeros(1,n+l);
ki=0;for kz=1:2*n;if abs(polth(kz))>1 , ki=ki+l;
polx(ki)=( polth(kz)+1/polth(kz) )/2;
end;
end;
polx=polx(1:ki);
polz= c*(1-polx)/2;
% real(polz”), imag(polz”)
polz’
Qcc=real (poly(polz));
Pcc=Pcc*R(1)*Qcc(np)/Pcc(np), Qcc
tx=0:(c/100):c;er2=polyval (Pcc, tx) ./polyval (Qcc, tx)-exp(-nf*tx);
plot(tx,er2,”-",tx,[s;0;-s]*ones(1,101),”:”); pause;

5.2. Root asymptotics.

We expect the poles to tend to be ultimately distributed on a fixed arc F with a limit distribution dp,
and the interpolation points on E = [0, c] with a limit distribution du., so that the complex potential

/ log—— dip(t) f log = du(t) (49)
satisfies
V:=Re? = aconstant =ponkE, (50)
V(z)+ A_F;e Z_ aconstant = oon F, (51)
ARe z N .
V(z)+ has equal normal derivatives on the two sides of F, (52)
/Edui(t) :deup(t)zl (53)

(charges on E and F), equivalent to %’ bounded at o, actually, 4”(z) ~ constant z=2 for large z, and
ov(t)

c on
by tton [0, c].
Conditions (51) and (52) amount to the realization that V + ARez/2 has opposite gradients along the
normal on the two sides of F:

N

|dt| = —21on any contour containing F but not E, or also, that the imaginary part of 4’ increases

As the derivative of an analytic function has real and
imaginary parts building the gradient of its real part (Cauchy-
Riemann: grad ReF = F’), it follows that 7" +A/2 takes
opposite values on the two sides of F.

Now, limit valyes of such functions are given by Sokhotskyi-PIemte formulas [31], chap. 14, etc.
(2) EUFZ_t EUFZ_t W (z) (54)

when z tends to a point of E or F, and where ][ is the Cauchy principal value. We therefore have

du(t) _ f dpp(t) di(t) A
][EUF Z—t_]{: z—t _/E 7t —E,ZEF, (55)

which is an integral equation for the distribution L, to be considered with (50) as another equation for i,
and ;. ..
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Now, there are various ways to go further, and to conclude with more or less neat expressions. There
may be wrong turns, which may however yield a useful piece of information.
We get rid of the condition (50) by using complex Green functions ° of E: first, let

een functons
=2 (2) =

with the square root such that |¢(z)| > 1 for z ¢ E: ¢ maps C\ E on the exterior of the unit disk, with

¢ (o) = 0. Remark that ¢(z) + ﬁ = 4_02 -
We now build ¢(z,t), with ¢(t,t) =
_@eM) -1
¢(Z7t)_ (I)(Z)—(I) t) i t¢E7 (57)
and reconsider a formula for 7/
= /F logd(z,t) du(t), (58)
which automatically satisfies (50), with p =0, as Relog¢(z,t) = log|¢(z,t)| =0whenz € E.
As d log(z,t) = ¢I(Z)_ ¥ ,
dz 0(z)—1/0(t) () —¢(t)
d?¥(z) du
40 (2) / 1/¢ - 5w -em 52 (59)

corresponding to charges and their images spread on ¢(F) and 1/¢( ) in the ¢—plane.

?? As an argument of validity of the form (58), let us
~ show how to recover, at least partially, the derivative of
(58):

\ V'(z) = / iy | is analytic in a neighbourhood
EUF Z—t

| of oo, and can be written for large z as 7"(z) = az ™1 +
/ Bz=24 --- (actually, a = 0), with the contour integrals

y o= (2ni)—1/ () dt, B = (2ni)—1ftq/'(t) dt,. .50,

g V') )
R Q)
(2)= 2m
ing the smgular loci E and F, for z outside C. We may as
well consider the Laurent series in powers of ¢(z)

dt on a large contour C contain-

9

!
Vi(2) =V ¢+1/¢+2 ] Y'(( c/4 (u+1/u+2) du
4 ~2m —u
and we make the contour D shrink about the singular loci ¢(F) and 1/¢(F)
The contributions about ¢(F) and 1/¢(F) sum as

V'((c/4)(®+1/0+2)) / U gy
~ 2m —u ¢-1/u
It seems simpler to return now to the original varlable Z, but we learned at least that 7' has the same
singularitiesthan ¢’ at 0 and c, i.e.,

-1/2

V'(z) ~ constantz"¥27—0;  9"(z) ~ constant (z—c) Y2 z—c.

Sused by Gonchar in several works. ..
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We turn to a classical way to deal with the Sokhotskyi-Plemelj formulas (54)-(55) in the z—plane, by
considering 1/z(z—c)(z—a)(z—b) 7'(z) which is meromorphic outside F, even holomorphic, as the
product remains bounded near 0 and c. The product has therefore a Laurent expansion about oo, say

V=0 Z-a)(z—b) V(1) = 8o+ 812" 4+

with & = —/tk Lt - a)(t—b) 7/(t) dt, on a contour C around F, or

V22— 0Z=a)z=b) V'(2) 2mf\/“_°2_t =D 2ty gt

which, considering that 7" (t) = —A/24 i, (t) on the two sides of F, where the square root takes opposite
values, yields

S

Vil B Vi =yt g [ VI

Now, everything is known up to the three numbers a, b, and &! The clumsy move leaving the &y term
comes from 7”'(z) = O(z72) at oo, so that the product of 4" and the big square root has an unknown
nonzero limit there. Multiplying by 1/z=1(z - ¢)(z — a) (z - b) instead of /z(z — ¢)(z — a) (z — b) removes
this problem, but introduces an unwanted residue at the origin! After several trials, | came on the— Bingo!

z2(z—c) t—c dt
(z—a)(z—b) me —b) z-t’ (60)

where one not only got rid of unwanted constants, but, as % (z) is only O(z~2) at «, leaves

f t_C Y -0 (61)

as a bonus!! (61) gives one equation for a and b, knowing ¢ (and another equation will be worked later on,
from the unit charge condition (53)). For instance, when ¢ = 0, we have indeed a vanishing integral of an
odd function if a = —b, but, as we know (or suspect) that a and b are complex conjugates, we see that a
and b must be opposite pure imaginary numbers, as they are indeed in the Padé case. To work (61) a bit
further, we see that it is a complete elliptic integral of the third kind (complete because one integrates on
a arc joining two branchpoints; of the third kind because the incomplete integral behaves like a logarithm
somewhere [near oo, the square rootis 1+ (a+b—c)/(2t)+---]).

A convenient transformation sending the four branchpoints 0, c, a, and b on and from a symmetric set
is

_a+iv
14+iw’
So, v=ia is mapped ont = 0, one must have, for v= —iaq, ﬁ =c,an ffi:/% —a,b. As neither a

. L 2 1 .
nor b is known, we may as well take a and 3, keeping in mind that y = P (for given a, aand b are on
a circle of diametral points o and 1/y).
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b=v(p)
¢ =v(—ia) -B —la B
1y ia
a=Vv(-p)

The z— plane and the v—plane.

B
Now, (61) becomes f (1+1ivv)2 g2+v v 0, o, with — Beos6,
\/1—I— B2/02)cos?6 T 1 \2R?cos?0 — —
/ (14 iyBcos6)? de_]o (1+V2B2cos2e)2\/1+([3 /a?)cos?0 =0.

The best way to study this integral is to look how it may be computed efficiently. Consider first the
Fourier expansion of (14 iyBcos6)~2

L _ 2 ge 1 \°__ -4 : 1+E 2ol gips
AT hBoose? [(E—E‘l)ivB(1—Ee—‘9+1—2e‘9)] S e p:Z_m('p”l—az)Epep’

1 00
v Z ( In| + ‘|‘§ )Ez|n|Tn'

N=—o0

. 2 . . .
where & is the root of £2 + WE +1=0,with [§| < 1. The integral is therefore

where T, = ] 2'”9\/1—|- B/a)2cos26 dB, computed from the recurrence relation

B2 3/2
0= / [2m9( ™ cos e) ]:»(2n+3)rn+1+4n(1+2a2/Bz)Tn+(2n—3)Tn—1=0-

The recurrence must be performed backwards (Miller’s algorithm), as T, tends to zero exponentially fast
when n — oo, see Gautschi [22] for a survey of these matters. The t,’s are particular Legendre functions,
by the way. And their generating function F(Z) = S¢ t,Z" satisfies

dF(z) z7%2-1 To+311Z
Z+Z27"+2+4 F(Z) = ———
(+ ++[32)d2+2 2)="77
2\ Y2 17 154 31,7
ie. F(Z):(Z—|—Z‘l—|—2—|—4%) /0%(Y+Y‘l+2+4a2/ﬁz)‘3/zd& a way to see how

complete elliptic integrals of the thitd kind turn into incomplete elliptic of first and second kind. Indeed,

the integral is G(&2) = 48%F'(&2) + 1+§ [2F (€2) — 1o], and it satisfies
d [1-Z zZ72-11-Z 1-2)?
a7 [1+Z(Z+Z Ly2+440%/B%)G(Z )]Jr 17 ( ):ﬁ[GTl—(ZJerz—l)To],
(Z+2- +2—|—40(2/[32)1/21 ZG(Z)—] (t+t 4+ 2+402/B?)" Wﬂ[er — (t+44+t D1l dt
142 7 Jo (14125t 0

(2 tlogZz tan?0
= —|/

+ioo \/€0s20+ a2 /B2

[3T1 — (1+2c0s%0)1]dB  (t=e%?)



MAPA3xxxA 2000-2001-2002 — Complex rational approx. 5 — Exponential function. — 40

Some points of the locus: 0.5

0.023671 —0.0280i | —0.0390 | 0.0809 | 27.614
0.061784 — 0.0757i | —0.1159 | 0.2206 | 10.628 =11
0.091190 — 0.1152i | —0.1910 | 0.3385 | 7.2343 |
0.114713 —0.1488i | —0.2647 | 0.4412 | 5.7773
0.134055—-0.1781i | —0.3371 | 0.5327 | 4.9659 !
0.150306 — 0.2040i | —0.4084 | 0.6156 | 4.4482
0.204616 — 0.3022i | —0.7512 | 0.9493 | 3.3310
0.241306 — 0.3830i | —1.1399 | 1.2531 | 2.8772 For each c, the locus of a is a curve with vertical
0.358549 — 0.8401i | —6.3630 | 3.7085 | 2.1571 | asymptote of abscissa c¢/2, and of tangent at the
0.406333 — 1.3084i | —20.529 | 7.8098 | 2.0487 | origin matching the ¢ = o locus, given by arg a =
0.425044 — 1.6475i | —39.115 | 11.848 | 2.0255 | —0.860274... (see [48, end of § 3.2]).

0.439587 — 2.0532i | —73.476 | 17.878 | 2.0136
0.445607 — 2.2839i | —100.04 | 21.890 | 2.0099

1
|
a/c=Db/c a/c B/c ye | |
I
|
|
I
I

Constants already encountered appear as simi-
lar integrals, as

, t—c
W=t =7 [ ey
2

.z . . . . .
using i Z+t+ O(z‘l in (60). More integrals appear in a sequence of transformations needed in order

to get a convenient incomplete elliptic integral form for 9. We first multiply (60) by z(z—c)(z—a)(z—b):
VBZ— 0 (z-a)z-b) V(2) =
dt

A b
Yoz2 4 [y1— (a+b+c)yo)z+Y2— (a+b+c)yr + (ab+ac+be)yo+ ﬁf \/t3(t —c)3(t—a)(t—h) —
a _

sing 2=01E= =)

t(t—c)(t—a)(t—b)

z—t

=(z-c¢)(z—a)(z—b)+t?+ (t—c—a—h)tz+t> — (a+b+c)t? + (ab+ac+bec)t+

A b t(t—c)
W= g5 ), e ©2

Now, we take the derivative in z, and perform an integration by parts in the integral:

, and where

" P'(Z) B A b pr(t) dt
P(z) V (Z)‘FW =2yoz+Yy1—(@+b+C)yo— 5= 2\/—2_,[
where P(z) = 23(z—c¢)3(z—a)(z—b). Now, PV t(t —©) (well, who’s there!) times [4t3 —

2\/— a)(t—b)
(7a+7b+5c)t?/2+ (3ab+2ac+2bc)t — 3abe/2]/(z—t) = —422+ ((7Ta+7b+5¢) /2 —4t)z— 4% 4 (Ta+
7b+5¢)t/2 —3ab — 2ac — 2bc + [42° — (7a—|—7b—|—50)22/2—|-(3ab+2ac+2bc)z—3abc/2]/( —1), so that

the integral is —4ypz — 4y1 + (7a+ 7b+ 5¢)yp/2+ what turns out to be just P2 V'(2),s

2,/P(2)
VP@) V"(2) = =2y0z -1,

where y; = 3y; — (5a+ 5b+ 3c)yo/2.
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As remarked by J. Nuttall (22 Oct. 1999), we could have adapted Gonchar and Rakhmanov [25], and

use the form
constant - constant z

(VII 7) =
W= ot ae b
but without knowledge of the two constants. ..
. atb-c ! Yo ! VO
Check: from (60), [ 1+ oy T V'(z) = 2—|—yz + V()= S +2n+(c—a- b)yo2z> +--

a+b+3c -2 2 c—a-b
/P(Z)(V/I(Z): (24_%23_1_...)( Z3y0_3 yl‘l’( o )VO +) :—2V02—V'1-

/ y1+ 2V0t)dt
VB({t-c)3(t—a)(t—b)’

(z—1t)( y‘l + 2ypt)dt
V(z) = constant — / N O D)

are elliptic integrals of first and second kind (there is no more Iogarlthmic behaviour).
The standard forms of the elliptic integrals of 1t and 2" kinds are [55]

(63)

arcsinx X
Fk) = [T (L-Kesin®0)H2de = f (1) (1K) M2du,
0

arcsinx
E(X,kz):/ (1-K2sin?@)Y/2dg = / 2)-1/2(1 _2y2) Y2 qy,
0

Elementary change of variable will not easily lead to these forms, but what is closest to our needs
appears to be [55, 17.4.51]

X dv
E(v k) = (a2 + B2 1/2]
1 dv
E(v.K2) = a2(02 + B2 1/2/
(y, k) = a“(a“+p°) 0 V2 +aZ [(V2+a2) (B2 —v2)]i2
2 _ @2 2y 2 X(0®+P?)
where k? = B?/(a?+B?), y _W One may check that dF /dy and dE /dy are what they should
a?(B?—x%) 2,2 a
be (using 1 —y? = BZ( P 2)andl key® = 0(2—|—x2)
Also, for complete elliptic integrals,
0— / 2)pHL/2(E2 _\2)12] o

dv=0.
(65)

In particular, with p = —1, we find two equivalent formulas for the complete elliptic integral of second
kind:

B 1 dv R e
=+ 0 [ o e = O [ o

—(2p+3)(v2+02)2+2(p+1) (B2 +202) (V2 +a?) — (2p+ 1) 0% (0% + B?)
/( V)P
- Vo) (BT 7)

We need integrals

z dt
/ Vit—c)(t—a)(t—b)’ (©0)
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where R is a rational function with at most simple poles at 0 and/or c. One finds

1+ya V@ _ 7 a+iv dv
1—vya Jiy 1+iw) /(02 +v2) (B2 —v?)
where x = v(z) = if_z
So, the constant and the simple fractions 1/t and 1/(t — c) lead to the (indefinite) integrals

_ .. [ (A4YR7) (1 +ya)
R(t)_l.\/(1_ya)(a2+82)F(y,k2),

:%:\/(1+V252)(1+V0() {VF( X I2) 4= P - (1qy)E(y,k2)/o(},

R(t) (1—yo)(a2+p?) \/m X2—|—0(2+
RO = r\/ ((11+f£?((§2++ygﬁf{w<y ) i ff+§22<1+av>E<y,k2>/a},

For 9(2),R(t) = _\:l(:‘_z::/())t _ ylt/c ) :/ll_/z

. 1 232Y(1
7" (z) = constant + \/((1 ——F\\/Iaf;z((xz—:—\[gog

[ paa—yo) Vi v i)

(67)

B2 — x2

i Vi(1—yo)® =i (1+ya)?] 1 a?

N
F A SR

Remark that everything but the constant vanishes in (67) at x = £[3, i.e., at z=a and z = b, so that this

constantis 7'(a) = V'(b) = —A/2.
The function 7" must be single-valued in C\ {E |JF}, i.e., have vanishing periods about the sets E and

(68)

F.
Y[—Va(1—yo) — i (14 yo) | K+ [yi (1 —yo)® +y{ (1+ya)? E/a =0,

What a mess! Wait! The integrals yp and y; entering y; and v/ in (68) are complete elliptic of first and
second kind too: (62) and (61) mean that y_; = 0, which will be useful in the calculation of the subsequent

Vk’s, from the recurrence relation
(K+2)¥ic— [K(@-+b+) +3(a+b)/2+¢/2)yi_1+ [k(@b+ac+be) +ablyi—z — (k—1/2)abe V-3 = 0, (69)

found by
0= /dtk V21— )3/2(t — a)Y2(t — b)1/2 =

/ath % [(k—1/2)(t—a) (t—b)(t—c)+3t(t—a)(t—b)/2+t(t—c) (t—b) /2+t(t—c) (t —a) /2]dt =

When k is negative enough, vk in (62) is immediately an elliptic integral of second kind at most:

A P t(t—c) A [1+vBY(ay-1) [P (a+iv)Ht V24 ol
Y= ﬁfa tk+1\/ f—a)i_p) 0~ 51\/ ay+1 /_B A\ g @
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So,

A [a+@B)@y-1 (P 14w [Pre?
T om ay+1 f_p o+ gz
_ A\/(Hvzﬁz)(av— 1) /B (1+iw) (a —iv)3
- 2m ay+1 5 (v2+0a2)2,/(v2+ a2) (B2 — \2)
_ A [(14+vR%)(ay-1) /B -w* 4 3a(ay-1)v* 4o
- 2m ay+1 5 (V2 +02)2/(v1 + 02) (B2 — V)
B Iy i eV U K. Tl i L
21 ay+1 -B 3(a24B2)(v2 4 a2),/(v2 + a2) (B2 - v2)

(subtract a suitable multiple of (65) with p = —2)

_ A [(1+yP?)(ay—1) [(0®~3p%)y—4a]K + [y(7B* — a?) + 7a — B?/a]E
S 2m ay+1 3(a2+ p2)3/2

(keep only even terms)

A [Q+yRay-1) [P (a—iv)? dv
“oom ay+1 :[BG2+WAVWLHﬂMW—v%

A [(1+y*P?)(ay-1) 4E-2K
AL ay+1 NN

The relation (69) allows to find the next yi’s. . . excepting y_», which is precisely the first elliptic integral
of third kind. However, knowing that y_1 = 0, (69) at k = —1 actually gives

—2(a+b)y_s+3aby_4

V—ZZC a—|—b—C Y

amounting to

_ A [(1+yP)(ay—1)20K-2(a +1/y)E

- 2m ay+1 VaZ+p?
For yp, use (69) atk = 0: yo = —ab(cy_s+2y-2)/4,

_ A [ (ay-1)(0*+P?) E

¥ om mwuﬁﬂ+w&)%wm_a_V]

(5(a+b)+3c)yo
2

(5(a+b)+3c)yo+abey_»
6

Vi =3y1— =abcy_»2/2,Y] =V, +2¢cy0 =

and finally, y; =
—abc(y_2+cy_3)/2:

V’ _ A (0(y— 1)
L7 on\ (ay+1)3
yr/ _ A ((Xy— 1)
17 on\ (ay+1)3
and (67) becomes

o A LA 2 2 i0? 20y 2 B2 —x?
V'(2) = =5 + 7 KE(V,K) —EF(y,k%) R 1Jro(yKJrO(y(l_o(y)E Tra?

o’ +p%) 2[ E]
202 |K—E— —|,
1+y?p?) ay

a’+p%) 1-ay 2[ E]
202 |[K—E+ —]|,
1+y?B3?) 1+ay +Otv

which confirms (68).
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_ _ ]
For 4/, use (63) with the discussion following (66): R(t) = (t i)(i\/'ij:—)Zyot) =2y + zy%[/c _( tc_)Zl/C,

(1—ya)* (e +F?)
{20o(1= YR (1K) + X [2(1 - va) - (2~ WA (L+ v F (3,

V(2) — constant + \/ (1+ VB (1+ya)

(70)
. o
' m 241 = yo)? = (2= )i (14 yor)’] >[<32+7;((2
2
F (- o)+ (- eV (a4 ya)] K )}.

Now we find, at last!, a second equation for a and b, from ¥(b) — V(a) =it atz=aand z = b,
Xx=4p, F = +K, E = +E,

_ iA 2 L
V(a) and V(b) = const. + 21— o2y?) 20 {V[K— E- azyz] (1-ya)K

+2(1 - ya)2a? [K—E—E]Y[K—E+E]
ay] c ay
1-ay Ely E
— — 2 — _ — — _
(z=c)(1+vya) 2a 1T ay [K E—|—O(y] C[K E ay]}

= const. + ?—; { [ay(K— E) - %] K- [ay(K— )% - 5—?{] } ,
so that, V(b) — V(a) = in=

A= w (72)

(%{ - ay) E(K-E)

which, together with (61), gives a, v, K, etc., from Ac (no wonder that everything depends essentially on
the product Ac: remember that we approximate exp(—nAz) on 0 < z < ¢, equivalent up to a scaling to the
approximation of exp(—nAct) on [0, 1].
Check: when ¢ — o, ay= -1+ 2a/c — -1, 1/(ay) —ay ~ —4a/c, and we should check that
. a2 o+ p?
—4aE(K—E) — 2. Yes: |a]*=ab= v
the limit of (71) is |a|K? = 12, confirmed by |&;|K = Ttin [46, § 2] (where &; = \/—a), and by |a| = T/w
of [48, § 3.4, eq. (34)].
For 7/(0) and ¥/(c), it is better to show 7’ to be bounded at 0 and ¢ by adapting (65) to incomplete

elliptic integrals:
2 2 X 2 142
E(y,k) = —— P, 1 / CEV av,
/a2 4+ B2 | ac+x /a2 42 Jo B —v

and the two last lines of (70) become

i(1-vya) , V(2 +x2)(B2—x2)  zyi(1—-ya)2+ (z—c)Yj(1+ya)? /* [a?+4v2

ca (L i L~ Yo) FVi(va) Jarg acy/o2 1 B2 /0 Ve
usingz:a+xandz—c:z— 20 _ (y-1(a-ix

14iyx 1+ya  (14vya)(1+iyx)

— a?, and we know that E — K/2 when ¢ — oo, so that
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V(E)-VY(O0)=m:atz=0andz=c,x=i(a—2z)/(1-yz) = tia, where

L A R ~ 4K,

Ve By T

as a and (3 have been interchanged in K.
+ia 2 2 2 2 2 2
Nm,—:L::/ SV Gv=+ /' +B B+W)d
What a mess again. Well, the important thing now is the rate of decrease of the error with n, which is
p =exp{—2[Re (V(z) +Az/2) on F— Re ¥(z) on E]}. From 7"(a)+A/2 =0, one has V'(z) + A/2 =
z — ! _
Vit 2yt = i+ 2%(t = ¢) dt, V/(z) +Az/2 = const. — f (z—t) \/1—1—2yo( J dt, and what
VBt c)¥(t-a)(t—b) Ve D

is needed is the complete elliptic integral

w=+i(K'—E').

V1+2V0(t—0)
t—c)3(t—a)(t—b)

logp=2Re [V(0) — V(a) —Aa/2] = _2Re/ Vi

which turns as

1 _ay(K—E)(K'—FE') —EF’
100 =T ay_ DE(K_F)

(72)

The Legendre relation EE' — (K — E) (K’ — E') = 11/2 may be useful here, but does not give a much nicer
formula.

Check when ¢ — o ay — —1 and K — 2E — 0, and we recover the p = exp(—1K'/K) of [45, 46, 48]!

In the limit case ¢ — 0, ¥ ~ ¥} pade — Mo, Where ¥} page is the potential of the poles of the Padé
approximant, and where %4,  is the equilibrium potential of [0, c]:

252 2,2
V(z) ~ —log (1+\/1+A42) +\/1+A—Z—%+Iog

where the square roots behave like Az/2 and 2z/c for large z. Then,

2
24 (209) ]

p~exp(2Re (7(0) — V(a) —Aa/2)) ~exp (2— 2log2 —2log %) _ (ef\_;) 2.

Some instances:
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Ac a/c=Db/c a/c B/c yc K E K’ E 1/p

00 0 0 0 00 2.32105 | 1.16052 | 1.64669 | 1.50011 | 9.2890255

=2E =1/'1/9

10 | 0.11626 —0.15112i | —0.27010 | 0.44836 | 5.70233 | 2.12833 | 1.22121 | 1.69467 | 1.46033 | 10.55420

5 10.21759—-0.32920i | —0.86874 | 1.04722 | 3.15109 | 1.94139 | 1.30256 | 1.78286 | 1.39577 | 12.43300

2 | 0.37281—-0.94489i | —8.58507 | 4.47929 | 2.11648 | 1.66674 | 1.48306 | 2.22657 | 1.18782 | 23.22870

1 | 0.43707—1.96963i | —65.1743 | 16.5290 | 2.01534 | 1.59537 | 1.54679 | 2.81732 | 1.07039 | 57.069968
0.5 | 0.46869 — 3.98448i | —514.5877 | 64.57005 | 2.00194 | 1.57694 | 1.56469 | 3.47937 | 1.02313 | 177.934379

The modulus of the elliptic integrals is k = 3/+/02 + 32. The limit value when Ac —  is 0.90890856.
Why don’t we have a “decent” limit for k when Ac — o, such as k — 1? Well, if we extrapolate the locus
of a, b, etc. “above” Ac = oo, we simply get...negative values of Ac which repeat already known results
for positive values, up to simple reflections: if ¢ unchanged and A < —A, approximating exp(—nAz) «
approximating exp(—nAc) times exp(nAz) with z «» ¢ — z, so that a,b «+» ¢ —a,c — b,etc. (yes, but what
about k?).

5.3. Strong asymptotics .

Consider rational approximants to functions f"g, and suppose that the Hermite-Walsh error formula can
already be written as
n _ (@) e L ] n ey At
@0~ i ~ " 5 T De®e 0
where M4, is a “smoothed” approximation of the discrete potential created by the poles and the interpola-
tion points. The function exp(#4) (corresponding to Nuttall’s 1 and/or X2 [50,61,62]) has branch points,
even if f and g are entire. What is this function? The influence of f is overwhelming in the determination
of the branchpoints and other main features when n is large. So, we solve first with f, and find the active
part F C C and the main behaviour (exp(74))Y/™ — exp(2%/) (root asymptotics, also called zero order
asymptotics by Nuttall).

Aptekarev [4] established in some cases a more accurate picture Wh = 2nV + ‘1~/+ 0(1) (strong asymp-
totics, also called first order asymptotics by Nuttall). | give here a probably very sloppy account of
Aptekarev’s wonderful results (to be available soon):
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Also sprache Aptekarev: Vis (multivalued) analytic outside E |J F, with a period 211 about
F, and —2ri about E, corresponding to a positive unit charge on F, and a negative unit charge

on E, with 7, + 7. constanton E, ¥(z)+ + 9V (z)- +2logg(z) = another constant on F, and
finally ‘1~/(z) = const. +0(1) when z — oo (if E and F are bounded).

__Moreover, the error norm is En ~ 2p"p, where 2logp = Re{(‘1~/+(z) + ‘1~/_(z))E - [‘1~/+(z) +
V. (2) +2l0gg(2)]¢ ).

This means also that V' is analytic outside E and F, taking opposite values on the two sides of E, and
with 7"+ g'(z) /g(z) taking opposite values on the two sides of F.

Important special case: if g = /T, the conditions on P are exactly the conditions (50)-(53) which we
already saw for 7 itself! So, 7/ = 7/, and p = /p in this case.

Remark: the real part of ‘1~/—|— logg need not, and will normally not be a constant on F. However, the cut
on which the boundary conditions for 7V are set may be modified (keeping the endpoints as the endpoints
of F), and one may dream to find the locus F where 19+ logg has a constant real part. The use and even
the existence of F seem questionable (Aptekarev). It may be wiser and more useful to look for a locus F,

where the whole complex potential 7, = 2n? + 9+ nlog f + logg has a constant real part, as this locus
may be a fair approximation to the set of poles for a given value of n (Nuttall).

Application to best approximation to exp(—(nA+B)z) on [0,c]:

En ~ 2p"pg, where 2logps = Re{(15+ + (2) + 18- (2))e — [VB +(2) + VB,—(2) + 2BZ]e}, Vg =V’
being analytic outside E |JF, taking opposite values on the two sides of E = [0,c], 14(z) + B taking
opposite values on the two sides of F, or any arc of endpoints a and b, and corresponding to a positive unit
charge on F, and a negative unit charge on E, and finally 7/;(z) = const. z=2 +--- when z — oo,

The problem is solved by 7/, = Vif B=A/2.

. . . . . onstant
And if B=0? Then, 1} is the simple algebraic function 1(z) constan

T Viz—o(z-a)@-Db)
to the potential of a plain (and plane) condenser (E, IE), although we do not need to know what F is. The
capacity is 2K /(1K'), and

(-3%)
po=exp|—= ).

associated

2 K
And for any B,
2B 2B
does the trick, see Meinguet [53] for such relations. So,
ps = p%/Apl 2.

and we just have to get po = exp(—1/C), where C is the plain condenser capacity of (E, IE).

Pn(2)
0n(2)

Now, we look at some error norms E, = |le™"™ — |l on [0, c], and the products p~"E,/2 which

should tend towards po:
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n c= 0.5 c= 1 c= 2 c= 5 c= 00
En p~"En/2 En p~"En/2 En p~"En/2 En p~"En/2 En p~"En/2

1 | 25352E—4 0.02255 | 1.5802E—3 0.04509 | 7.7144E—3 0.08960 | 3.13E—2  0.1946 | 6.6831E—2 0.3104

2 | 1.6454E—6 0.02605 | 3.1969E—5 0.05206 | 3.8218E—4 0.1031 |2.7691E—3 0.2140 | 7.3587E—3  0.3175

3 | 97750E—9 0.02753 | 5.92056E—7 0.05502 | 1.7358E—5 0.1088 | 2.301E—4  0.2211 | 7.9938E—4  0.3204

4 | 5658E—11 0.02836 | 1.0684E—8 0.05667 | 7.6871E—7 0.1119 | 1.8815E—5 0.2248 | 8.6522E—5 0.3221

5 | 3.240E—13 0.02888 | 1.907E—10 0.05771 | 3.3678E—8 0.1139 | 1.5284E—6 0.2270 | 9.3457TE—6  0.3232
lim 0.03123 0.06241 0.1227 0.236 0.328
-5 0.03126 0.06240 0.1226 0.2362 0.328

The last rows are: the limit when n — oo estimated through a simple step of Thiele interpolatory con-
tinued fraction, i.e., A from A+ u/(n+ V) interpolation three values, = first nontrivial step of p—algorithm
[10];
and the formula exp(—1K'/(2K)).

6. Best rational approximation to other exponential functions

Not even started! (things from [45])
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