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Abstract. One of the most important aspects of the minimal energy (or induced equilibrium) prob-
lem in the presence of an external field – sometimes referred to as the Gauss variation problem – is
the determination of the support of its solution (the so-called extremal measure associated with the
field). A simple electrostatic interpretation is presented here, which is apparently new and anyway
suggests a novel, rather systematic approach to the solution. By way of illustration, the classical
results for Jacobi, Laguerre and Freud weights are explicitly recovered by this alternative method.
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1. Introduction

Mathematicians (and physicists!) generally ‘know’ Dirichlet’s principle. They are
likely less familiar with the related W. Thomson (Lord Kelvin) principle (in elec-
trostatics) and its special case called the Gauss variation problem (or forced equi-
librium problem), which is the problem of minimizing – in the presence of a given
external field – the ‘energy’ associated with any sourceless (or solenoidal) vector
field in the outer region bounded by a given closed set (the so-called ‘conductor’,
supposed once for all to be ‘perfect’) over which a positive (electric) charge of
prescribed amount is to be distributed so as to reach equilibrium (see, e.g., [5], pp.
43–44, 55–57, or [2], pp. 46, 51).

As a matter of fact, the underlying potential theory needed in the following is
the theory of logarithmic potentials with external fields, whose interaction with
approximation-theoretical techniques and problems in the complex plane or on the
real line proved extremely fruitful in recent years. As is well known, a point charge
in the plane is ‘equivalent’ to a uniformly distributed charge on a straight line
– perpendicular to the plane – in R3, such (positive or negative) point charges
repelling or attracting each other according to an inverse distance law (well known
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consequence of Coulomb’s law). Gauss’s variation problem then becomes that of
minimizing the (weighted) energy integral

IQ(µ) :=
∫
�

∫
�

log
1

|z − t| dµ(z) dµ(t) + 2
∫
�

Q dµ, (1)

where the minimum is taken over all positive unit charge distributions (i.e., positive
unit Borel measures) µ carried by the conductor � (i.e., supp(µ) ⊆ �) while Q

(defined on � and real-valued) is the so-called external field (strictly speaking, such
a scalar ‘field’ Q is a potential). It is known – see, e.g., [6], pp. 26–33, for the basic
theorem and its detailed mathematical proof – that, under rather weak conditions
of ‘admissibility’ on Q, there exists a unique solution µQ (called equilibrium or
extremal measure associated with Q) of this optimization problem, which is such
that the relation

Uµ(z) :=
∫
�

log
1

|z − t| dµ(t) = −Q(z) + FQ, z ∈ SQ, (2)

holds quasi-everywhere (i.e., possibly up to a set of zero logarithmic capacity),
where SQ := supp(µQ) is compact of positive capacity and FQ is the so-called
modified Robin constant for Q. It should be stressed that a most glaring difference
with the classical equilibrium problem (for which Q = 0) is that SQ need not
coincide with the outer boundary of � and, in fact, can be an arbitrary subset of �,
possibly with positive area.

Determining SQ is therefore one of the most important aspects of the energy
problem (or minimization of (1)). To find the extremal measure, it then remains to
solve Dirichlet problems (for the Laplace equation and the essential boundary con-
ditions (2)) and to launch the classical recovery machinery (e.g., the Sokhotskyi–
Plemelj formula for arcs and its integrated version known as the Stieltjes–Perron
inversion formula of Cauchy transforms). As discovered by Mhaskar–Saff in the
eighties, determining SQ amounts to minimizing over the set of possible supports
the (quasi-everywhere) constant value FQ of the extremal potential. It is surpris-
ing that such an obviously hard problem can be solved explicitly under suitable
convexity assumptions (satisfied by the important weights w := e−Q of Jacobi,
Laguerre, and Freud), SQ being then an interval whose endpoints can be obtained
by solving a (simple) integral equation.

The main goal of this paper is to present (in Section 2) a novel, rather systematic
approach to the determination of SQ. This mathematical method can be regarded as
a modern example of ‘physical mathematics’ in the sense of Sommerfeld; it is in-
deed motivated by an apparently new electrostatic interpretation. By applying this
alternative method, we will rediscover rather automatically the ‘classical results’
mentioned above (see Sections 3, 4 and 5).
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2. A Physically Oriented Approach

By way of constructive illustration, we will consider here the simple, two-dimen-
sional physical picture: a (perfect) conductor in vacuum, say the finite segment
� := [−1, 1] in the extended complex z-plane C, is subjected to the electrostatic
field of potential

Q(z) := λ log
1

|z − a| , z = x + iy, (3)

due to an electric charge λ > 0 located at an exterior point, say a > 1.
• Suppose first that the conductor � is grounded (i.e., connected to earth), which

means that it may acquire whatever charges are necessary to enable it to remain at
the same potential (zero, by convention). The resulting potential thus created (that
is, (3) in the presence of the grounded �) is classically – up to the proportionality
factor λ – the Green function of the complement of � (the so-called cut plane) with
pole at a, viz.,

g(z, a) = log

∣∣∣∣1 − φ(a)φ(z)

φ(z) − φ(a)

∣∣∣∣, φ(z) := z +
√
z2 − 1 (4)

(see, e.g., [6], p. 110). It should be noted once for all that any expression like√
z2 − 1 is to be understood as the branch that behaves like z near infinity, so

that w = φ(z) is simply the inverse of the well-known Joukowski conformal map
z = (1/2)(w + 1/w) of the exterior of the unit disk (in the φ-plane) onto the
complement of �. It follows in particular that the circle (in the φ-plane):

φ(z) = φ(a)eiθ , −π � θ � π,

corresponds to the ellipse (in the z-plane):

z = a cos θ + i
√
a2 − 1 sin θ,

with foci at z = ±1, and semiaxes a,
√
a2 − 1, whose polar representation can be

written in the form

ρ = a2 − 1

a + cos �
= a − cos θ, (5)

where ρ denotes the distance to the pole (of polar coordinates) z = 1, � is the ‘true
anomaly’ and θ is the ‘eccentric anomaly’ (these terms are borrowed from celestial
mechanics).

The distribution µ of the charge that is induced (by electrostatic influence) on
the grounded conductor � by the point charge λ > 0 at a > 1 or, equivalently,
−λ times the so-called balayage measure of the Dirac point mass at a onto � (see,
e.g., [6], pp. 81–82), is given by

dµ(x) := − λ

π

∂

∂n
g(x, a) dx

= − λ

π

∣∣∣∣
√
a2 − 1

(a − x)
√

1 − x2

∣∣∣∣ dx, x ∈ [−1, 1], (6a)
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where dx is the arc length on �, and ∂/∂n denotes differentiation in the direction
of the inner normal with respect to the complement of � (as a matter of fact,
for obvious symmetry reasons, n may denote here either the upper or the lower
normal). The concrete expression on the right in (6a) is most important for the
following; it is found by taking the limit of the real part of (−iλ/π) times the
derivative of the analytic function

log
1 − φ(a)φ(z)

φ(z) − φ(a)

as z tends to x ∈ (−1, 1) from the upper half-plane, while keeping in mind that (for
continuation reasons)

√
1 − x2 is positive for y = 0+ (resp. negative for y = 0−)

and that
√
a2 − 1 is positive for a > 1 (but negative for a < −1, see Section 3).

With the change of variable x = cos θ , (6a) takes the simpler form

dµ(cos θ) = − λ

2π

∣∣∣∣
√
a2 − 1

a − cos θ

∣∣∣∣ dθ, θ ∈ [−π, π ], (6b)

where dθ denotes – throughout the whole paper – arc measure on the unit circle;
in view of (5), the corresponding density (or Radon–Nikodym derivative)
dµ(cos θ)/dθ of the induced charge has a nice geometric interpretation. As is
classically expected (see, e.g., [4], p. 230), for any grounded conductor occupying a
bounded region in the presence of a point charge, the density of the induced charge
will never change sign; more precisely, the total mass of the distribution µ is −λ

(this can be verified by explicit integration), while

min
θ

dµ(cos θ)

dθ
= − λ

2π

√
a + 1

a − 1
, (7)

this minimal value being attained for θ = 0.
• Suppose now that the conductor � is insulated (i.e., imbedded in vacuum). If

a positive unit charge is placed on it in the absence of any external field, then its
equilibrium distribution µ0 (i.e., the unique positive unit Borel measure minimizing
the energy integral (1) where Q = 0) is known to be the arcsine distribution

dµ0(x) = 1

π
√

1 − x2
dx, x ∈ [−1, 1], (8a)

or, equivalently,

dµ0(cos θ) = 1

2π
dθ, θ ∈ [−π, π ], (8b)

that is, the normalized arc measure. The constant value F0 assumed by its (loga-
rithmic) potential on � (the so-called Robin constant) is clearly

F0 := log
1

cap(�)
= log 2, (9)
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the logarithmic capacity cap(�) of a finite segment being notoriously equal to
one-fourth its length.

• Suppose finally that the conductor � is insulated in the field of potential (3).
In view of (7), it is clear that

dµQ := dµ + λ

√
a + 1

a − 1
dµ0 = λ

2π

(
−

√
a2 − 1

a − cos θ
+

√
a + 1

a − 1

)
dθ (10)

is the unique (nonnegative and absolutely continuous with respect to θ) equilibrium
distribution of charges over � that minimizes its potential; indeed, the definition
(10) amounts simply to adding to the signed measure dµ (whose logarithmic po-
tential plus the external field has the constant value 0 on �) the smallest multiple
C dµ0 of the positive measure dµ0 (whose logarithmic potential on � has the con-
stant value F0) that makes the resulting measure dµQ nonnegative, its logarithmic
potential on �, namely, the constant CF0 with C := λ

√
(a + 1)/(a − 1), being

therefore as small as possible. Provided that

λ

(
− 1 +

√
a + 1

a − 1

)
= 1, (11)

which simply means that the total mass of (10) over its support � is 1 (or equiv-
alently, that the charge placed on � is λ + 1), the distribution µQ is nothing but
the extremal measure minimizing (1) for Q defined by (3) (after all, the potential
in electricity and magnetism is identical with potential energy per unit charge,
see, e.g., [4], p. 53). The (logarithmic) potential FQ of � corresponding to the
distribution (10) ‘normalized’ by (11) – that is, the modified Robin constant for Q
(see [6], p. 27) – is thus clearly

FQ = (λ + 1) log 2. (12)

As is easily verified (by an elementary computation detailed in [6], p. 46), the
potentials (9) and (12) satisfy the important relation

FQ = F0 +
∫
�

Q dµ0 (13)

according to which −FQ is the so-called ‘F -functional’ of Mhaskar–Saff (see [6],
Chap. IV) whose maximization (over the set of possible supports) is achieved by
the support SQ of the extremal measure µQ; an alternative proof of (13) follows
from the successive relations implied by

Q(x) + Uµ(x) = 0, x ∈ [−1, 1],
∫
�

dµ = −λ,

where Uµ denotes the logarithmic potential of the induced measure (6a), viz.:∫
�

Q dµ0 = −
∫
�

Uµ dµ0 = −
∫
�

Uµ0 dµ = −F0

∫
�

dµ

= λF0 = (1 + λ)F0 − F0 = FQ − F0
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(the only nontrivial equality sign is the second one, which is justified by the Fubini–
Tonelli Theorem).

• It is just a simple exercise to rewrite our results about the extremal measure
in a more familiar form (see, e.g., [7], p. 773). As a matter of fact, we have only to
change the interval [−1, a] into [−1, 1] via the affine transformation

ξ = 2x + (1 − a)

1 + a
(14)

without modifying the ratio of the fixed charge of amount λ > 0 at the point
x = a > 1 (resp. ϑ ∈ (0, 1) at ξ = 1) to the continuous charge of amount 1
(resp. 1 −ϑ) to be distributed on [−1, 1] (resp. on its image by (14)) so as to reach
equilibrium. The latter condition, viz.,

λ = ϑ

1 − ϑ
, (15)

combined with the normalization relation (11), yields

a = 1 + ϑ2

1 − ϑ2
,

so that the actual support of the continuous charge 1 − ϑ on the ξ -axis (i.e., the
image of [−1, 1] by (14)) is

SQ = [−1, ξ0], ξ0 := 3 − a

1 + a
= 1 − 2ϑ2. (16)

As to the distribution of this charge on SQ, it readily follows from (10) – always
normalized by (11) – by the affine transformation (14), owing to formulas (15),
(16). It turns out that the associated Jacobian has a remarkable form, viz.,

dξ

dθ
= 1

2

√
(ξ + 1)(ξ0 − ξ), −1 � ξ � ξ0,

where the factor 1/2 is due to the fact that we must integrate twice along cuts if we
integrate once over the unit circle. Hence, the final result

dµQ(ξ) = 1

π(1 − ϑ)

√
(ξ + 1)(ξ0 − ξ)

1 − ξ 2
dξ, −1 � ξ � ξ0, (17)

which concludes our alternative treatment of the simplest example of explicit de-
termination of an extremal measure that is considered in [6] (see pp. 205–206,
243), that is, the application entitled ‘Incomplete Polynomials of Lorentz’ (note,
however, that our ξ is to be identified with −t in the last formula of Example 5.3
on p. 243 in [6]).
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3. The Extremal Measure for Jacobi Weights

This quite natural generalization of the physical picture considered in Section 2
corresponds to the replacement of (3) by the electrostatic field of potential

Q(z) := λ1 log
1

|z − a1| + λ2 log
1

|z − a2|, (18)

the electric charge λ1 > 0 (resp. λ2 > 0) being located at a point outside the
conductor � := [−1, 1], say a1 > 1 (resp. a2 < −1).

• Since the complement of � possesses an explicitly known Green function,
namely (4), the potential of the total field created by the charges in (18) and the
countercharges induced by influence on the conductor � supposed to be grounded
is classically given by the associated Green potential, viz.,

V (z) := λ1g(z, a1) + λ2g(z, a2) (19)

(see, e.g., [6], p. 124). In view of (6a), (6b) and (19), the distribution µ of the charge
that is induced by (18) on the grounded conductor � is given by

dµ(cos θ) = − 1

2π

(
λ1

√
a2

1 − 1

a1 − cos θ
+ λ2

∣∣√a2
2 − 1

∣∣
|a2| + cos θ

)
dθ,

θ ∈ [−π, π ]. (20)

The total mass of this distribution is clearly −λ1 − λ2, while

C := −2π min
θ

dµ(cos θ)

dθ
= −2π min

(
dµ

dθ
(−1),

dµ

dθ
(1)

)
(21)

immediately follows from the convexity with respect to the variable cos θ of the
parenthesized expression in (20) (its second derivative is indeed positive over
[−1, 1]).

• Suppose now that the conductor � is insulated in the field of potential (18). It
is clear that

dµQ := dµ + C dµ0, with definitions (8b), (20) and (21), (22a)

is the unique (nonnegative and absolutely continuous with respect to θ) equilibrium
distribution of charges over � that minimizes its potential. However, to have a
chance to solve eventually the underlying Gauss variation problem or, equivalently,
to minimize the potential FQ of � corresponding to the extremal measure µQ (of
total mass 1!) in the presence of the external field of potential (18), the points
a1 > 1 and a2 < −1 must be such that the minimal value (21) is as great as
possible. This requires of the two expressions on the right in (21) to be equal (they
vary indeed in opposite directions as either a1 > 1 or a2 < −1 varies), their
common value being necessarily

C = 1 + λ1 + λ2 (22b)
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(since the total mass of (22a) over � must be 1, while the total mass of (20) is
−λ1 − λ2). In other words, the following equations must be satisfied:

ϑ1

√
a1 − 1

a1 + 1
+ ϑ2

√
|a2| + 1

|a2| − 1
= 1, (23a)

ϑ1

√
a1 + 1

a1 − 1
+ ϑ2

√
|a2| − 1

|a2| + 1
= 1, (23b)

where

ϑ1 := λ1

1 + λ1 + λ2
, ϑ2 := λ2

1 + λ1 + λ2
. (23c)

This is equivalent to the apparently simpler nonlinear system for a1, a2:

ϑ1 =
√
a2

1 − 1

a1 − a2
, ϑ2 =

∣∣√a2
2 − 1

∣∣
a1 − a2

, a1 > 1, a2 < −1, (24a)

whose (unique) solution is

a1 = 1 + ϑ2
1 − ϑ2

2√
#

, a2 = −1 + ϑ2
2 − ϑ2

1√
#

, (24b)

where

# := [1 − (ϑ1 + ϑ2)
2][1 − (ϑ1 − ϑ2)

2], (24c)

as it can be shown by somewhat lengthy (though elementary) computations.
• To rewrite the extremal measure in a more familiar form (see, e.g., [7], pp. 772–

774), it remains only to change the interval [a2, a1] into [−1, 1] via the affine
transformation

ξ = 2x − (a1 + a2)

a1 − a2
(25)

without modifying the ratios of the fixed charge of amount λ1 > 0 at x = a1 > 1
(resp. ϑ1 ∈ (0, 1) at ξ = 1) and of the fixed charge of amount λ2 > 0 at x =
a2 < −1 (resp. ϑ2 ∈ (0, 1) at ξ = −1) to the continuous charge of amount 1 (resp.
1 −ϑ1 −ϑ2) to be distributed on [−1, 1] (resp. on its image by (25)) so as to reach
equilibrium; in fact, the conditions

λ1 = ϑ1

1 − ϑ1 − ϑ2
, λ2 = ϑ2

1 − ϑ1 − ϑ2
and

1 + λ1 + λ2 = 1

1 − ϑ1 − ϑ2
(26)
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are trivially equivalent to (23c). It follows that the actual support of the continuous
charge 1 − ϑ1 − ϑ2 on the ξ -axis (i.e., the image of [−1, 1] by (25)) is

SQ = [ξ2, ξ1], (27a)

where

ξ1 = ϑ2
2 − ϑ2

1 + √
#, ξ2 = ϑ2

2 − ϑ2
1 − √

#, with definition (24c). (27b)

As to the distribution of this continuous charge on SQ, it follows from (22) by
the affine transformation (25) – owing to formulas (23c), (24), (26), (27) – the final
result being

dµQ(ξ) = 1

π(1 − ϑ1 − ϑ2)

√
(ξ − ξ2)(ξ1 − ξ)

1 − ξ 2
dξ, ξ2 � ξ � ξ1, (28)

in accordance with, e.g., [6] (see pp. 207 and 241).

4. The Extremal Measure for Laguerre Weights

A crucial step in the approach presented in this paper is the determination of the
electrostatic potential outside the grounded conductor � (i.e., any given compact
set of C, of positive capacity) in the presence of the given external field. In the
applications considered so far, this fundamental influence problem could be solved
readily owing to the explicit knowledge of the Green function (of the outer domain
relative to �). On the other hand, in the remaining applications, where the external
field is defined directly (at least in part) rather than via given external charges,
this crucial step actually requires solving explicitly a Dirichlet boundary value
problem.

In the Laguerre case, the external field has for potential

Q(z) := λz + s log
1

|z − a| , λ > 0, s � 0, a < −1. (29)

Unlike the second term, which is of the type considered before (i.e., potential of a
charge s � 0 located at a given point a < −1), the first term is not created by a
charge but rather by a dipole at infinity (of axis 0x and of moment λ); though this
‘physical’ interpretation may prove interesting (see, e.g., [1], p. 35), we will not
exploit it here, essentially because it does not hold for non-uniform fields such as
the one considered in Section 5.

• Now suppose that the conductor � := [−1, 1] is grounded and subjected to
the field of potential (29). The potential of the total field thus created outside � is
clearly the sum of three terms: the Green potential of the charge s located at the
point a (i.e., s times the Green function (4), where φ(a) := a − |√a2 − 1| since
a < −1), the external field of potential λx, and the solution h(z) of the exterior
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Dirichlet problem:

#h(z) = 0, z �∈ [−1, 1],
h(z) bounded as |z| → ∞ (i.e., regularity at infinity),

h(x) = −λx, x ∈ [−1, 1].
It turns out that the conformal transplant of h under the Joukowski mapping, viz.,

H(w) := h

(
1

2

(
w + 1

w

))
, w = |w|eiθ with |w| � 1, θ ∈ [−π, π ] (30)

can be obtained readily by separating the variables in the transplanted exterior
Dirichlet problem:

#H(w) = 0, |w| � 1, (31a)

H(w) bounded as |w| → ∞, (31b)

H(eiθ ) = −λ cos θ, θ ∈ [−π, π ]. (31c)

Indeed, if we transform #H to polar coordinates |w|, θ , we get for the solution
H(w) of (31a) the general form

A0 + B0 log |w| +
∑
k �=0

Ak cos kθ + Bk sin kθ

|w|k ;

now the condition (31b) of regularity at infinity (see, e.g., [4], p. 248) implies
B0 = 0 and Ak = Bk = 0 for all negative integers k; the Dirichlet condition (31c)
thus reduces to

∞∑
k=0

(Ak cos kθ + Bk sin kθ) = −λ cos θ, θ ∈ [−π, π ],

which finally yields

A1 = −λ, B1 = 0, Ak = Bk = 0 for k �= 1.

In view of (30), the required potential of the total field created outside the grounded
conductor � by the external field of potential (29) is given by

V (z) = s log

∣∣∣∣1 − φ(a)φ(z)

φ(z) − φ(a)

∣∣∣∣ + λz − λ 1

φ(z)
. (32)

According to the classical definition

dµ(x) := − 1

π

∂

∂n
V (x) dx, x ∈ [−1, 1],

we get from (32) the explicit expression

dµ(cos θ) = − 1

2π

(
s|√a2 − 1|
|a| + cos θ

+ λ cos θ

)
dθ, θ ∈ [−π, π ], (33)
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for the distribution µ of the charge induced by (29) on the grounded conductor �.
The remarkable relation (21) holds again (the parenthesized function of cos θ in
(33) is indeed convex over [−1, 1]), so that we get explicitly

C = max

(
s

√
|a| + 1

|a| − 1
− λ, s

√
|a| − 1

|a| + 1
+ λ

)
. (34)

• Suppose now that the conductor � is insulated in the field of potential (29). It
is clear that

dµQ := dµ + C dµ0, with definitions (8b), (33) and (34), (35)

is the unique (nonnegative and absolutely continuous with respect to θ) equilibrium
distribution of charges over � that minimizes its potential, for any given values of
the parameters λ > 0, s � 0, a < −1. It turns out that a further minimization
of this potential is automatically achieved if the point a < −1 is such that the two
expressions on the right in (34) are equal (they vary indeed in opposite directions as
a varies); owing to this condition, which amounts to s = λ|√a2 − 1|, (34) reduces
to C = λ|a| = √

λ2 + s2. But the total mass of (35) over � must be 1, while the
total mass of (33) is −s, so that necessarily C = s + 1; all these relations finally
imply

a = − s + 1√
2s + 1

, (36)

λ = √
2s + 1. (37)

• To rewrite the extremal measure in a more familiar form (see, e.g., [6], pp.
208 and 243), it remains only to change the interval [a, 1] into [0, ξ1] (where ξ1 is
any finite positive number) via the affine transformation

ξ = ξ1
x − a

1 − a
(38)

without modifying the ratio of the fixed charge of amount s > 0 at the point x = a

defined by (36) (resp. ϑ ∈ (0, 1) at ξ = 0) to the continuous charge of amount 1
(resp. 1−ϑ) to be distributed on [−1, 1] (resp. its image SQ by (38)) so as to reach
equilibrium. It follows that the actual support of the continuous charge

1 − ϑ := 1

s + 1
(39)

on the ξ -axis is

SQ = [ξ2, ξ1], (40a)

where

ξ2

s + 1 − √
2s + 1

= ξ1

s + 1 + √
2s + 1

=: 1

*
. (40b)
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It should be noticed that, up to an additive (unimportant!) constant, the potential
(29) on the positive ξ -axis has the simple expression *ξ − s log ξ , which depends
on two independent parameters * > 0, s � 0 (remember that λ was eliminated by
(37), for the sake of normalization). As to the distribution of the continuous charge
(39) on SQ, it readily follows from (35) – normalized by (36), (37) – by the affine
transformation (38) and formulas (39), (40), the final result being

dµQ(ξ) = *

π

√
(ξ − ξ2)(ξ1 − ξ)

ξ
dξ, ξ2 � ξ � ξ1, (41)

in accordance with [6] (see p. 243).

5. The Extremal Measure for Freud Weights

The external field – to which the standard conductor � := [−1, 1] is subjected –
has now for potential

Q(z) := c|x|λ, c > 0, λ > 0 (and x := z). (42)

Unlike the ‘physical’ fields considered before, it is thus directly defined by its
mathematical expression rather than via given external electric charges (or dipoles).

• If the conductor � is grounded, the potential of the total field thus created
outside � is naturally obtained by adding to (42) the solution h(z) of the exterior
Dirichlet problem:

#h(z) = 0, z �∈ [−1, 1],
h(z) bounded as |z| → ∞ (i.e., regularity at infinity),

h(x) = −c|x|λ, x ∈ [−1, 1].
Here again, the conformal transplant H of h under the Joukowski mapping, which
is the function defined by (30), can be obtained readily by separating the variables
in the transplanted exterior Dirichlet problem:

#H(w) = 0, |w| � 1, (43a)

H(w) bounded as |w| → ∞, (43b)

H(eiθ ) = −c| cos θ |λ, θ ∈ [−π, π ]. (43c)

Indeed, if we transform #H to polar coordinates |w|, θ , we get for any solution of
(43a, b) the Fourier series representation

H(w) = −c

∞∑′

k=0

A2k
cos 2kθ

|w|2k ,

the Dirichlet boundary condition (43c) reducing to
∞∑′

k=0

A2k cos 2kθ = | cos θ |λ, θ ∈ [−π, π ] (44a)
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(where the prime affecting the summation symbol means that the first term is to be
taken with half weight), or equivalently, to

A2k := 4

π

∫ π
2

0
(cos θ)λ cos 2kθ dθ

= 1

2λ−1

,(λ+1)

,(λ/2+k+1),(λ/2−k+1)
(44b)

(see, e.g., [8], p. 263, Example 40). Owing to the reflection formula of Euler for
the gamma function, this expression of A2k can be rewritten in the form

A2k = ,(λ+1) sin (πλ/2)

2λ−1π
(−1)k+1,(k−λ/2)

,(k+λ/2)

1

k+λ/2
, (44c)

which yields (via Stirling’s formula) the asymptotic formula

A2k ∼ ,(λ+1) sin(πλ/2)

2λ−1π
(−1)k+1 1

kλ+1
as k → ∞; (44d)

Weierstrass’s test is thus applicable, so that the Fourier series (44a) of | cos θ |λ
converges uniformly and absolutely to its generating function.

Since the potential V (z) of the total field created outside the grounded conduc-
tor � by the external field of potential (42) has for conformal transplant (under the
Joukowski mapping)

V(w) = −c

∞∑′

k=0

A2k
cos 2kθ

|w|2k + c

2λ

(
|w|+ 1

|w|
)λ

| cos θ |λ, |w| � 1,

the distribution µ of the charge induced on � is apparently given by

dµ(cos θ) = − 1

2π
lim

|w|→1+
∂V(w)

∂|w| dθ = − c

π

∞∑
k=1

kA2k cos 2kθ dθ. (45)

The total mass of µ is evidently 0 (since the lines of force of the field of potential
(42) are parallel to the x-axis), while

C := −2π min
θ

dµ(cos θ)

dθ
= 2c

∞∑
k=1

kA2k, (46)

this minimal value being attained for θ = 0 mod π – were it simply for ‘physical’
reasons (logical interpretation of the underlying problem of electrostatic influence)
– whereas

max
θ

dµ(cos θ)

dθ
= − c

π

∞∑
k=1

(−1)kkA2k > 0



336 JEAN MEINGUET

is attained for θ = π/2 mod π and is finite or not according as λ > 1 or not (this
follows from the properties of A2k mentioned above).

It should be stressed that the trigonometric series in (45) is actually an Abel
sum; however, by virtue of classical tests (substantially due to Abel) exploiting
the properties (44c), (44d) of the A2k’s, this series is convergent (except for θ =
±π/2 mod 2π , whenever λ � 1), necessarily to its Abel sum. It turns out that the
sum of the series in (46) can be found as an Abel sum by an explicit (but lengthy)
computation, the final result being

∞∑
k=1

kA2k = λ

π

∫ π
2

0
(cos θ)λ dθ = ,(λ/2+1/2)

,(λ/2),(1/2)
; (47)

the last expression is simply (44b) for k = 0, rewritten by means of Legendre’s
duplication formula (see, e.g., [8], p. 240). Rather than give complementary details,
we deem it preferable to describe briefly an alternative approach to (47), based on
the modern theory of generalized functions or distributions. Consider the classical
Fourier series expansion

∞∑
k=1

cos kθ

k
= − log |2 sin(θ/2)| (48)

whose generating function goes out of bound at θ = 0 mod 2π , while being in-
tegrable in the Lebesgue sense over the fundamental period interval (−π, π). It
is easily proved (see [3], p. 30) that the Fourier series in (48) converges in the
sense of generalized functions to the function on the right-hand side, so that it may
be differentiated term-by-term (in the distributional sense) any number of times,
which yields in particular the distributional result:

∞∑
k=1

k cos θ = (log |2 sin(θ/2)|)′′; (49a)

by techniques that are standard in the theory of distributions (see, e.g., [3], p. 65,
for similar results), we are led to concrete definitions of the second distributional
derivative – denoted by the symbol ′′ – in (49a), viz.,

〈(log |2 sin(θ/2)|)′′,-(θ)〉
= −

∫ π

0

cos(θ/2)

2 sin(θ/2)

[
d

dθ
-(θ) + d

dθ
-(−θ)

]
dθ

= −
∫ π

0

1

4 sin2(θ/2)
[-(θ) + -(−θ) − 2-(0)] dθ, (49b)

where 〈·, ·〉 is the duality bracket between the dual topological vector spaces of
periodic test functions -(θ) (i.e., infinitely differentiable functions of period 2π )
and periodic distributions (of period 2π ). The result (49b) can be extended by
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continuity to the function | cos(θ/2)|λ, which indeed can be regarded as the limit
of a uniformly convergent sequence of test functions; it is readily verified that
the values taken on this function by the two forms of the accordingly extended
distribution in (49b) are simply π times the first two expressions in (47), which
identity is again rigorously established.

• Suppose now that the conductor � is insulated in the field of potential (42). It
is clear that

dµQ := dµ + C dµ0, with definitions (8b), (45) and (46), (50)

is the unique (nonnegative and absolutely continuous with respect to θ) equilibrium
distribution of charges over � that minimizes its potential, for any given values of
the parameters c > 0, λ > 0. But the total mass of (50) over � must be 1, while
the total mass of (45) is 0, so that necessarily

C = 1, or equivalently, 1/c = 2
∞∑
k=1

kA2k. (51)

• To rewrite these results in a more familiar form (see [6], pp. 204 and 238), it
remains only to change the interval [−1, 1] into

SQ = [−a, a], a > 0, (52a)

via the linear substitution ξ = ax. SQ is the support of the extremal measure µQ

relative to the external potential

γ |ξ |λ, γ > 0, (52b)

if and only if

a = γ −1/λc1/λ, where c :=
√
π ,(λ/2)

2,(λ/2+1/2)
, (52c)

as it follows from (51) in view of (47).
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