# '1/9', summary & afterthoughts. Nov. 2005

# Asymptotic convergence rates of rational interpolation to exponential functions.

Alphonse Magnus, Institut de Mathématique Pure et Appliquée, Université Catholique de Louvain, Chemin du Cyclotron,2, B-1348 Louvain-la-Neuve (Belgium) magnus@inma.ucl.ac.be, http://www.math.ucl.ac.be/membres/magnus/

#### Contents

| 1. Measures and potentials.                                                   | 2              |
|-------------------------------------------------------------------------------|----------------|
| 1.1. Algebra of rational interpolation, orthogonality                         | 2              |
| 1.2. Distributions of interpolation points, poles, and their potentials       | 2              |
| 1.3. Orthogonal polynomials behaviour                                         | 3              |
| 1.3.1. $L^2$ -orthogonal polynomials.                                         | 3              |
| 1.3.2. Experiment with several poles supports                                 | 5              |
| 2. '1/9', again and again, ad nauseam.                                        | 5              |
| 2.1. The complex potential                                                    | 5              |
| 2.1.1. Conditions.                                                            | 5              |
| 2.1.2. First integral formula.                                                | 5              |
| 2.1.3. Transformation of (8)                                                  | 6              |
| 2.1.4. Some constants.                                                        | $\overline{7}$ |
| 2.1.5. A littlebit AGM                                                        | 8              |
| 2.1.6. Playing with Legendre expansions                                       | 8              |
| 2.2. Distributions of interpolation points and poles                          | 10             |
| 2.2.1. Interpolation points.                                                  | 10             |
| 2.2.2. The potential function of the distribution of the interpolation points | 11             |
| 2.2.3. The distributions of poles.                                            | 12             |
| 3. A family of '1/9' rational interpolants.                                   | 13             |
| 3.1. Trefethen's problem                                                      | 13             |
| 3.1.1. Problem                                                                | 13             |
| 3.1.2. Strategy                                                               | 13             |
| 3.2. Retrieving the denominator                                               | 13             |
| 3.2.1. Scalar product                                                         | 13             |
| 3.2.2. The shape of things to come                                            | 14             |
| 3.2.3. <i>B</i> -spline towards Gaussian                                      | 15             |
| 3.2.4. Moments and recurrence relations                                       | 15             |
| 3.3. Error function behaviour                                                 | 17             |
| References                                                                    | 17             |

### 1. Measures and potentials.

#### 1.1. Algebra of rational interpolation, orthogonality.

Rational interpolant p/q of degrees m/n of f at m+n+1 points  $z_0, \ldots, z_{m+n} \in E$ : if f analytic in a domain containing E,

$$q(z)f(z) - p(z) = \frac{1}{2\pi i} \int_{C_n} \frac{(z - z_0) \cdots (z - z_{m+n})}{(t - z_0) \cdots (t - z_{m+n})} \frac{q(t)f(t)}{t - z} dt \qquad \text{(Hermite, Walsh)}, \quad (1)$$

where  $C_n$  is a contour containing  $z_0, \ldots, z_{m+n}$ , and z in its interior. This leaves a numerator

$$p(z) = \frac{1}{2\pi i} \int_{C_n} \frac{(t-z_0)\cdots(t-z_{m+n}) - (z-z_0)\cdots(z-z_{m+n})}{t-z} \frac{f(t)}{(t-z_0)\cdots(t-z_{m+n})} q(t) dt$$

which is of degree m + n unless q is 'orthogonal' with respect to the 'weight'

 $w_n(t) := f(t)/[(t-z_0)\cdots(t-z_{m+n})]: \int_{C_n} q(t)t^k w_n(t) dt = 0$ , for  $k = 0, \cdots, n-1$ . Indeed, the big polynomial in z and t above contains terms  $t^a z^b$ , with  $a + b \leq m + n$ . If only the  $t^a$  with  $a \geq n$  have to be considered, then only  $z^b$  with  $b \leq m$  are left.

Using orthogonality, (1) is left unchanged when one subtracts from  $(t-z)^{-1}$  its interpolant at the zeros of q, so that  $\frac{q(t)}{(t-z)q(z)}$  is left, and

$$f(z) - \frac{p(z)}{q(z)} = \frac{1}{2\pi i} \int_{C_n} \frac{(z - z_0) \cdots (z - z_{m+n})q^2(t)}{(t - z_0) \cdots (t - z_{m+n})q^2(z)} \frac{f(t)}{t - z} dt.$$
 (2)

Remark also that the 'scalar' product of two functions u and v is

$$\langle u, v \rangle = \frac{1}{2\pi i} \int_{C_n} \frac{u(t)v(t)}{(t-z_0)\cdots(t-z_{m+n})} f(t) dt$$
 (3)

is the *divided difference* of uvf at  $z_0, \ldots, z_{m+n}$ .

#### 1.2. Distributions of interpolation points, poles, and their potentials.

Let  $\mu_{n,i}$  and  $\mu_{n,p}$  the distributions of interpolations points on E, and poles on  $C_n$ , with unit total weight, i.e., such that

$$\int_{E} F(t) \, d\mu_{n,i}(t) = \frac{1}{m+n+1} \sum_{k=0}^{m+n} F(z_k), \qquad \int_{C_n} F(t) \, d\mu_{n,p}(t) = \frac{1}{n} \sum_{k=1}^n F(p_k).$$

These distributions can be seen as staircase functions, but they will receive smoother approximations.

(Complex) logarithmic potentials:  $\mathcal{V}(z) = \int \log(z-t) d\mu(t)$ . Then,

$$f(z) - \frac{p(z)}{q(z)} = \frac{1}{2\pi i} \exp((m+n+1)\mathcal{V}_{n,i}(z) - 2n\mathcal{V}_{n,p}(z)) \int_{C_n} \exp(2n\mathcal{V}_{n,p}(t)) - (m+n+1)\mathcal{V}_{n,i}(t)) \frac{f(t)}{t-z} dt.$$
(4)

When  $m \sim n$ , everything depends on  $\mathcal{V}_n(z) := \mathcal{V}_{n,i}(z) - \mathcal{V}_{n,p}(z)$ .

Let  $c_n$  be the largest absolute value of  $f(t) \exp(-2n\mathcal{V}_n(t))$  on  $C_n$ , then the error bound of (??) is dominated by

$$\begin{cases} c_n \exp(2n \operatorname{Re}\mathcal{V}_n(z)) \text{ if } z \text{ is inside } C_n, \\ \max\left[c_n \exp(2n \operatorname{Re}\mathcal{V}_n(z)), |f(z)|\right] \text{ if } z \text{ is outside } C_n, \end{cases}$$
(5)

as one must take into account the residue at t = z in the latter case.

 $\mu_{n,i}$  and  $\mathcal{V}_{n,i}$  are known if one interpolates on a given set of points.  $\mathcal{V}_{n,p}$  has to be determined from a theory of orthogonal polynomials.

Simple example: interpolation concentrated on a single point (Padé), say 0, and f analytic outside the real interval [a, b],  $0 \notin [a, b]$ . Then  $C_n$  may be deformed up to [a, b] used twice, first with limit values from above  $f_+(t)$  of f, and next with  $-f_-(t)$ . If  $f_+ - f_-$  has a constant phase and basically an integrable logarithm, then  $\mathcal{V}_{n,p}(z)$  outside [a, b] is close to  $\log[d(z - c) + (1 - d)\sqrt{(z - a)(z - b)}]$ , where  $c = 2/(a^{-1} + b^{-1})$  and  $d = 1/(1 + |c|/\sqrt{ab})$  (Szegő<sup>1</sup>). Then,  $\mathcal{V}_n(z)$  is close to  $-\log[d(1 - c/z) + (1 - d)\sqrt{(1 - a/z)(1 - b/z)}]$ , whose real part is the constant  $\log[(b + a)/(d(b - a))]$  on [a, b], and is less than this constant everywhere else the square root must be taken accordingly). Also,  $c_n \sim [d(b - a)/(b + a)]^{2n}$ . For small z, the error behaves like  $\left[\frac{d(b-a)}{b+a}\frac{z}{2dc}\right]^{2n} = \left[\frac{(b-a)z}{4ab}\right]^{2n} ((b-a)/(4ab)$  is the logarithmic capacity of  $[b^{-1}, a^{-1}]$ ).

#### 1.3. Orthogonal polynomials behaviour.



Artist's (?) view of a typical  $w_n q^2$  along its support.



What we'd like to see.

Remark that, as  $c_n$  is the maximum of  $|f \exp(-2n\mathcal{V}_n)|$  on a contour  $C_n$  which may be deformed, we can as well look for the contour yielding the smallest maximum: the smallest extimate will be the most realistic. The point where the maximum occurs (actually, it will be a whole subarc) is a saddle-point of  $|f \exp(-2n\mathcal{V}_n = w_nq^2|$ . This is exactly what happens with true orthogonal polynomials with respect to positive measures, for the  $L^2$  norm on  $C_n$ , and we have a theory giving  $\mathcal{V}_{n,p}$  in that case (Szegő, Widom). So, for a given  $C_n$ , the true (monic) orthogonal polynomial has the smallest possible  $L^2$  norm on  $C_n$ ,  $w_nq^2$  has often an almost constant absolute value ("envelope") on a subarc  $\Delta_n$ , but probably a fast varying phase there. As a consequence, the integrals we need, involving  $w_nq^2$ , without the absolute value, will be much smaller than  $L^2$  norms, and we will not get valuable estimates.

Suppose that, among all the possible  $C_n$ 's, a miraculous one is such that  $w_n q^2$  happens to have only a slowly varying phase on the subarc where the absolute value is close to its maximum  $c_n$ . Then,  $q\sqrt{w_n}$  is almost real, we do not need complex conjugation in the scalar products any more, and the kind of orthogonal polynomials needed in rational interpolation look like righteous  $L^2$ -orthogonal polynomials.

1.3.1.  $L^2$ -orthogonal polynomials. Szegő-Widom theory:  $w_n q^2$ behaves essentially outside  $\Delta_n \bigcup E$  as  $c_n \Phi^{2n}$ , where  $\Phi$  maps the exterior of  $\Delta_n$  on  $|\Phi| > 1$  and behaves near E as dictated by  $c_n \Phi^{2n} = f \exp(-2n\mathcal{V}_{n,i} + 2n\mathcal{V}_{n,p}).$ 

For instance, if all the interpolation points are concentrated on  $z_0$ ,  $c_n^{1/(2n)}\Phi$  must have a pole with unit residue at  $z_0$ . The unit residue allows to compute  $c_n$ . So, in the example above,  $\Phi(z) = \frac{[2ab/z - a - b + 2\sqrt{ab(1 - a/z)(1 - b/z)}]}{(b - a)}$  maps

<sup>&</sup>lt;sup>1</sup>Actually,  $t^n q(1/t)$  is orthogonal with respect to a fixed weight on  $[b^{-1}, a^{-1}]$ , so that  $z^{-n}q(z)$  involves mainly the logarithm of  $z^{-1} - (a^{-1} + b^{-1})/2 + \sqrt{(z^{-1} - a^{-1})(z^{-1} - b^{-1})}$ , which is the "usual" potential related to an interval.

indeed<sup>2</sup> the exterior of [a, b] on  $|\Phi| > 1$ , and has a pole at z = 0 with residue 4ab/(b-a), whence  $c_n = [(b-a)/(4ab)]^{2n}$  as already found.

Remark also that  $\log \Phi$  is the complex Green function of  $\Delta_n$  with a singularity at a given point. "Essentially" means that only  $n^{\text{th}}$  powers are considered for the moment.

If the interpolation points are spread on an arc E with a known distribution,  $\log \Phi$  is a sum of Green fuctions

$$\log \Phi(z) = \frac{1}{2n} \sum_{k=0}^{2n} \log \Phi(z; z_i) \to \int_E \log \Phi(z; t) \, d\mu_{n,i}(t).$$
(6)

$$\frac{1}{2n}\log c_n \to -\int_E \log(\operatorname{res.} \Phi(z;t)) \, d\mu_{n,i}(t). \tag{7}$$

In the example above,

 $\Phi(z;t) = \frac{(2t-a-b)(z-t) + 2(t-a)(t-b) + 2\sqrt{(t-a)(t-b)(z-a)(z-b)}}{(b-a)(z-t)},$  with the square root such that  $|\Phi| > 1$  outside [a,b] (there can be no doubt: the other possibility is  $1/\Phi$ ). The residue

such that  $|\Phi| > 1$  outside [a, b] (there can be no doubt: the other possibility is  $1/\Phi$ ). The residue at the pole z = t is 4(t-a)(t-b)/(b-a).

The z-derivative is 
$$\frac{d\Phi(z;t)/dz}{\Phi(z;t)} = -\frac{1}{z-t}\sqrt{\frac{(t-a)(t-b)}{(z-a)(z-b)}}$$

Let *E* be another interval [c, d] with a uniform distribution  $d\mu_{n,i}(t) = dt/(d-c)$  (here is where point distributions are replaced by easier smooth distributions). So we have  $\log \Phi(z) = \int_c^d \log \Phi(z;t) dt/(d-c)$ , with the eerie  $\Phi(z;t)$  just above. But use

$$\begin{aligned} \Phi(z;t) &+ \frac{1}{\Phi(z;t)} = 2\frac{(2t-a-b)(z-t)+2(t-a)(t-b)}{(b-a)(z-t)} = 2\frac{a+b-2z}{b-a} + 4\frac{(z-a)(z-b)}{(b-a)(z-t)}, \text{ so} \\ t &= t(\Phi) = z - \frac{4(z-a)(z-b)}{(b-a)(\Phi+\Phi^{-1})-2(a+b)+4z}, \text{ with poles } \Phi = \Phi^{\pm 1}(z,\infty) \text{ and residues} \\ \pm \Phi^{\pm 1}\sqrt{(z-a)(z-b)}, \text{ and} \end{aligned}$$

$$\log \Phi(z) = \frac{1}{d-c} \int_{c}^{d} \log \Phi(z;t) \, dt = \frac{1}{d-c} \int_{\Phi(z;c)}^{\Phi(z;d)} \log \Phi \, dt(\Phi)$$
$$= \frac{d \log \Phi(z;d) - c \log \Phi(z;c)}{d-c} - \frac{1}{d-c} \int_{\Phi(z;c)}^{\Phi(z;d)} \frac{t(\Phi)}{\Phi} \, d\Phi$$

 $\begin{aligned} \text{turning as} & \frac{(d-z)\log\Phi(z;d) - (c-z)\log\Phi(z;c)}{d-c} \\ & -\frac{\sqrt{(z-a)(z-b)}}{d-c}\log\frac{(\Phi(z;d) - \Phi(z;\infty))(\Phi(z;c) - 1/\Phi(z;\infty))}{(\Phi(z;d) - 1/\Phi(z;\infty))(\Phi(z;c) - \Phi(z;\infty))} \text{ Awful. From the derivative above:} \\ & \frac{\Phi'(z)}{\Phi(z)} = -\frac{1}{d-c}\int_{c}^{d}\frac{1}{z-t}\sqrt{\frac{(t-a)(t-b)}{(z-a)(z-b)}} dt \end{aligned}$ 

A more interesting interpolation points distribution is the Chebyshev distribution on [c, d]:  $d\mu_{n,i}(t) = \pi^{-1}[(t-c)(d-t)]^{-1/2} dt$ . Then,  $\log \Phi(z)$  is the constant term of the Chebyshev expansion of  $\log \Phi(z; t)$ . The z-derivative is

$$\frac{\Phi'(z)}{\Phi(z)} = -\frac{1}{\pi\sqrt{(z-a)(z-b)}} \int_c^d \frac{1}{z-t} \sqrt{\frac{(t-a)(t-b)}{(t-c)(d-t)}} \, dt,$$

a typical complete elliptic integral of the third kind. "Simple examples" do not seem much easier than the "big" example. But suppose that [c, d] is far from [a, b]. Then, for z near [c, d],  $\Phi'/\Phi$  is

<sup>2</sup>See that  $\Phi + 1/\Phi = 2(2ab/z - a - b)$ .

not far from  $-\pi^{-1} \int_{c}^{d} (z-t)^{-1} [(t-c)(d-t)]^{-1/2} dt = -[(z-c)(z-d)]^{-1/2}$ , which is pure imaginary on [c,d], so the rational interpolant is close to the best rational approximation. And the error norm, from (7), is about  $c_n \approx \left[\frac{b-a}{(c+d-2a)(c+d-2b)}\right]^{2n}$ .

1.3.2. Experiment with several poles supports. So far, with real intervals [a, b], [c, d], we discussed actual orthogonal polynomials as true denominators of rational interpolants. But let us keep [c, d] real, and try several arcs joining two fixed nonreal points, say ia and -ia.

to be continued

# 2. '1/9', again and again, ad nauseam.

OK, back to '1/9'. Now, according to Trefethen *et al.* [8, 10] recent work, I stick to rational approximation to  $e^z$  on  $(-\infty, 0]$ .

There are still things to find! Did anybody see that the denominators in Carpenter *et al.* [2] look like  $\exp(-0.712z)$  (after  $z \leftrightarrow -z)^3$ , and, of course, the numerators look like  $\exp(0.288z)$ . What can these numbers be??

We try to go further in investigating the distributions of poles and interpolation points.

#### 2.1. The complex potential.



2.1.1. Conditions. As we suspect the poles to be distributed on an single arc  $\Delta_n$  joining  $a_n$  and  $b_n$ (still unknown),  $\mathcal{V}_n$  is a function with branch-points such that

1. its derivative  $\mathcal{V}'_n$  takes opposite pure imaginary values on the two sides of the negative real axis = E,

2.  $\mathcal{V}'_n - f'/(2nf) = \mathcal{V}'_n - 1/(2n)$  takes opposite values on the two sides of  $\Delta_n$ , and vanishes at the endpoints  $a_n$  and  $b_n$ .

3. for  $\mathcal{V}_n$  itself,  $\mathcal{V}_n(-\infty + 0i) - \mathcal{V}_n(-\infty - 0i) = 2\pi i$ .

2.1.2. First integral formula. The second condition means that  $[\mathcal{V}'_n(z)-1/(2n)]/\sqrt{(z-a_n)(z-b_n)}$  has no more branchpoints at  $a_n$  and  $b_n$ , and can be recovered at any  $z \notin E$  through a Cauchy integral on a contour allowed to stretch up to the two sides of E. Same experiment with a further multiplication by  $\sqrt{z}$ :

$$\sqrt{\frac{z}{(z-a_n)(z-b_n)}} \left( \mathcal{V}'_n(z) - \frac{1}{2n} \right) = \frac{1}{2\pi n} \int_{-\infty}^0 \sqrt{\frac{-t}{(t-a_n)(t-b_n)}} \frac{dt}{z-t}$$
(8)

Explanation: there should be a numerator  $\mathcal{V}'_n(t) - 1/(2n)$  in the integral, but  $\sqrt{t}\mathcal{V}'_n(t)$  has no branchpoint at 0, and its contributions from the two sides of E cancel, only -1/(2n) remains, whose equal contributions on the two sides are added.

Signs of the square roots: if the square root in z at the left is positive for positive z, square root inside integral is positive.  $\sqrt{z}\mathcal{V}'_n(z)$  must be positive if z is a small positive number.

<sup>&</sup>lt;sup>3</sup>Coefficient of z in denominators of [2] behave like 0.712 + 0.18/n.

2.1.3. Transformation of (8). : the derivative of the left-hand side of (8) is

$$\frac{a_n b_n - z^2}{2\sqrt{z(z-a_n)^3(z-b_n)^3}} \left(\mathcal{V}'_n(z) - \frac{1}{2n}\right) + \sqrt{\frac{z}{(z-a_n)(z-b_n)}} \mathcal{V}''_n(z),$$

and we integrate by parts (in t) the z-derivative of the right-hand side to get

$$\frac{1}{2\pi n} \int_{-\infty}^{0} \frac{(t^2 - a_n b_n)dt}{2(z - t)\sqrt{-t(t - a_n)^3(t - b_n)^3}} = \frac{1}{2\pi n} \int_{-\infty}^{0} \sqrt{\frac{-t}{(t - a_n)(t - b_n)}} \frac{a_n b_n - t^2}{2(z - t)z(t - a_n)(t - b_n)} dt$$

(must decrease faster than  $|z|^{-1}$  for large z, remark also that  $t^2 - a_n b_n$ 

over the big  $\sqrt{\phantom{a}}$  is the derivative of a function vanishing at 0 and  $\infty$ 

so, replace 
$$1/(z-t)$$
 by  $1/(z-t) - 1/z = t/[z(z-t)])$   

$$= \frac{1}{2\pi n} \int_{-\infty}^{0} \sqrt{\frac{-t}{(t-a_n)(t-b_n)}} \frac{a_n b_n - z^2}{2(z-t)z(z-a_n)(z-b_n)} dt$$

$$+ \frac{1}{2\pi n} \int_{-\infty}^{0} \sqrt{\frac{-t}{(t-a_n)(t-b_n)}} \frac{[2a_n b_n - (a_n+b_n)t]z + 2a_n b_n t - a_n b_n (a_n+b_n)}{2z(z-a_n)(z-b_n)(t-a_n)(t-b_n)} dt$$

which is

$$\frac{a_n b_n - z^2}{2\sqrt{z(z - a_n)^3 (z - b_n)^3}} \left( \mathcal{V}'_n(z) - \frac{1}{2n} \right) + \frac{\text{a polynomial of degree } \leqslant 1 \text{ in } z}{z(z - a_n)(z - b_n)}$$

and what remains is

$$\mathcal{V}_n''(z) = rac{\text{this polynomial}}{\sqrt{z^3(z-a_n)(z-b_n)}}$$

but, as  $\mathcal{V}_n$  is the potential of the sum of two opposite charges,  $\mathcal{V}''_n(z)$  must decrease faster than  $|z|^{-2}$  for large z, this implies a first condition on  $a_n$  and  $b_n$ 

$$2a_n b_n \int_{-\infty}^0 \sqrt{\frac{-t}{(t-a_n)^3 (t-b_n)^3}} \, dt = (a_n+b_n) \int_{-\infty}^0 \sqrt{\frac{-t}{(t-a_n)^3 (t-b_n)^3}} \, t \, dt, \tag{9}$$

leading to (in?)famous elliptic integrals (to do: look at Carlson's forms). Elementary change of variable  $t = -u\sqrt{a_nb_n}$  and  $\frac{a_n + b_n}{2\sqrt{a_nb_n}} = -\cos\theta$  leads to

$$0 = \int_0^\infty \sqrt{\frac{u}{(1 - 2u\cos\theta + u^2)^3}} \left(1 - u\cos\theta\right) du = -\int_0^1 \frac{\cos\theta(1 + u^2) - 2u}{\sqrt{u(1 - 2u\cos\theta + u^2)^3}} du \tag{10}$$

(put  $u \leftrightarrow 1/u$  in the integral from 1 to  $\infty$ ). Apply a crude integration formula:

Root is  $\cos \theta = 0.6522295...$  (computed through elliptic integrals [5]).



We have now

$$\mathcal{V}_{n}''(z) = \frac{A_{n}}{\sqrt{z^{3}(z-a_{n})(z-b_{n})}},$$
(11)

with some (still unknown<sup>4</sup>) constant  $A_n$ , as already stated by Gonchar and Rakhmanov [4]. When one crosses the line of poles,  $\mathcal{V}''_n$  is replaced by its opposite. The picture at left shows  $\mathcal{V}''_n(z)$  for positive z, and its imaginary part on the upper side of  $(-\infty, 0)$ .

$$\mathcal{V}'_{n}(z) = \int_{\infty}^{z} \frac{A_{n} dt}{\sqrt{t^{3}(t - a_{n})(t - b_{n})}}$$
(12)

to be sure that  $\mathcal{V}'(\infty) = 0$ . The path of integration in (12) joins  $\infty$  to z by avoiding the cuts<sup>5</sup>  $(-\infty, 0)$  and  $(a_n, b_n)$ . The continuation from small positive z to large z would exhibit -1/n as limit. However one switches to  $1/n - \mathcal{V}'_n$  by crossing the line

of poles. We also have  $\mathcal{V}'_n(a_n) = \mathcal{V}'_n(b_n) = 1/(2n)$ , allowing a first connection between  $A_n$ ,  $a_n$ , and  $b_n$ :

$$\frac{-1}{2n} = A_n \int_{\infty}^{a_n} \frac{dt}{\sqrt{t^3(t-a_n)(t-b_n)}} = A_n (a_n b_n)^{-3/4} i \int_{\exp(i\theta)}^{\infty} \frac{du}{\sqrt{u^3(u^2 - 2u\cos\theta + 1)}},$$

or  $A_n = -X(a_n b_n)^{3/4}/n$ , where X = 0.369... is a computable<sup>6</sup> constant, as  $\theta$  is known.

$$\mathcal{V}_n(z) = A_n \int_{\infty}^z \frac{(z-t)\,dt}{\sqrt{t^3(t-a_n)(t-b_n)}} = z\mathcal{V}'_n(z) - A_n \int_{\infty}^z \frac{dt}{\sqrt{t(t-a_n)(t-b_n)}},\tag{13}$$

where the imaginary part depends on the integration contour, as the periods around  $(-\infty, 0)$ and  $(a_n, b_n)$  are  $2\pi i$  and  $-2\pi i$  ( $\mathcal{V}_n$  looks like log around the first cut (negative unit charge), and  $-\log$  around the second cut (positive unit charge)). These periods values allow at last the full determination of  $a_n$  and  $b_n$ :

$$\pi i = -A_n \int_{-\infty}^0 \frac{dt}{\sqrt{t(t-a_n)(t-b_n)}} = -A_n (a_n b_n)^{-1/4} i \int_0^\infty \frac{du}{\sqrt{u(u^2 - 2u\cos\theta + 1)}},$$
(14)

or  $A_n = -(a_n b_n)^{1/4} Y$ , with another computable constant Y = 0.677... Then,  $\sqrt{a_n b_n} = nY/X$  remains, as well as  $A_n = -\sqrt{XY a_n b_n/n}$ . Funny thing is that the product XY is exactly 1/4, I have a proof<sup>7</sup> hidden in [5], but not a fast one.

2.1.4. Some constants.  $a_n/n$  and  $b_n/n = -1.19489931555068 \mp 1.38871265581533 i$ ,  $\sqrt{a_n b_n}/n = 1.83202271130168$ ,  $\theta = \arg(-a_n) = 0.86027434674909$ ,  $\sin \theta = 0.75802152847146$ ,  $\cos \theta = 0.65222953196998$ ,  $\cos \theta/2 = k = 0.90890855754855$ ,  $\mathsf{K}(k) = 2.32104973253061$ ,  $c_n^{1/n} = (1/9' = 0.10765391922651 = \exp(-\pi\mathsf{K}(\sqrt{1-k^2})/\mathsf{K}(k) = -2.22883364871411)$ .

const. 
$$\int_{\theta-\pi}^{\pi-\theta} \frac{\cos\varphi \, d\varphi}{\sqrt{\cos\varphi + \cos\theta}}.$$

<sup>6</sup>Of course related to elliptic integrals, see later on <sup>7</sup>That  $X = K(\cos \theta/2)/(2\pi)$  and  $Y = \pi/(2K(\cos \theta/2))$ .

<sup>&</sup>lt;sup>4</sup>actually, related to  $a_n$  and  $b_n$  by an integral formula, but a simpler one will be considered further.

<sup>&</sup>lt;sup>5</sup>However, the path may accumulate any number of tours around the cuts: the periods about  $(-\infty, 0)$  (there is a nasty pole on this one) and  $(a_n, b_n)$  do vanish. From this latter cut, an interesting variant of the condition on  $\cos \theta$  follows: choose the circular arc  $t = \sqrt{a_n b_n} \exp i\varphi$ ,  $\theta - \pi \leq \varphi \leq \pi - \theta$ . Then,  $0 = \int_{a_n}^{b_n} \frac{dt}{\sqrt{t^3(t-a_n)(t-b_n)}} =$ 

#### 2.1.5. A littlebit AGM.

Let us consider transformations of the two integrals

$$F(z;a,b) = \int_{\infty}^{z} \frac{dt}{\sqrt{t(t-a)(t-b)}}, \qquad G(z;a,b) = \int_{\infty}^{z} \frac{dt}{\sqrt{t^{3}(t-a)(t-b)}},$$
  
where we put  $u = \frac{t-2\sqrt{ab} + \frac{ab}{t}}{4}$ . Remark that  $(t-a)(t-b) = 4t(u-a')$ , with  $a' = (a+b)/4 - \sqrt{ab}/2$ .  $t = 2u + \sqrt{ab} + \sqrt{4u^{2} + 4u\sqrt{ab}}, dt/t = du/\sqrt{u(u-b')}$ , with  $b' = -\sqrt{ab}$ .  
 $F(z;a,b) = F(z';a',b')$ ,

with  $z' = \frac{z - 2\sqrt{ab} + \frac{ab}{z}}{4}$ . This transformation is convenient when a + b < 0 and ab > 0. Starting with the a and b above, fast convergence to a common limit occurs: from a, b = $-1.19489931555068 \pm 1.38871265581533i$ ,

-1.66704049330862-1.66704049330863

$$\begin{split} G(z;a,b) &= \int_{\infty}^{z'} \frac{2u + \sqrt{ab} - \sqrt{4u^2 + 4u\sqrt{ab}}}{ab\sqrt{u(u-b')}} \frac{du}{\sqrt{4(u-a')}} \\ &= \int_{\infty}^{z'} \left\{ \frac{2}{ab} \frac{d}{du} \left[ \sqrt{\frac{(u-a')(u-b')}{u}} - \sqrt{u-a'} \right] + \frac{1/(2\sqrt{ab}) + (a'b')/(abu)}{\sqrt{u(u-a')(u-b')}} \right\} du \\ &= \frac{2}{ab} \left[ \sqrt{\frac{(z'-a')(z'-b')}{z'}} - \sqrt{z'-a'} \right] + \frac{F(z';a',b')}{2\sqrt{ab}} + \frac{a'b'}{ab} G(z';a',b') \\ \text{using } \frac{d}{du} \sqrt{\frac{(u-a')(u-b')}{u}} = \frac{d}{du} \sqrt{u-a'-b'+a'b'/u} = \frac{u-a'b'/u}{2\sqrt{u(u-a')(u-b')}} \end{split}$$

2.1.6. Playing with Legendre expansions. : Whenever  $|t = -u\sqrt{a_n b_n}| \leq \text{or} \geq \sqrt{a_n b_n}$ ,

$$\frac{1}{\sqrt{(1-t/a_n)(1-t/b_n)}} = \frac{1}{\sqrt{1-2u\cos\theta + u^2}} = \sum_{0}^{\infty} P_m(\cos\theta) u^m = \sum_{0}^{\infty} P_m(\cos\theta) u^{-m-1}$$
$$\sqrt{n}\mathcal{V}'_n(z) = \text{const.} + \sum_{0}^{\infty} \frac{P_m(\cos\theta)z^{m-1/2}}{(1-2m)(-\sqrt{a_nb_n})^m} = \sum_{0}^{\infty} \frac{P_m(\cos\theta)(-\sqrt{a_nb_n})^{m+1}z^{-m-3/2}}{3+2m}$$
(15)

The constant vanishes, as  $\mathcal{V}'_n$  has opposite (imaginary) values on the two sides of  $(-\infty, 0)$ . Check that  $\mathcal{V}'_n(a_n) = \mathcal{V}'_n(b_n) = 1/(2n)$ : the two slowly convergent series at  $z = -\sqrt{a_n b_n} \exp(\pm i\theta)$ :

nineleg.m

ab4=sqrt(1.8320227113);th=0.86027434675;c=cos(th); sqrtz=i\*exp(-i\*th/2); Vp=1/(ab4\*sqrtz);Vp2=-1/(3\*ab4\*sqrtz^3); PO=1;P1=c;sm=-1; for m=1:1000,Vp=Vp+sm\*P1\*sqrtz^(2\*m-1)/(ab4\*(1-2\*m));

```
Vp2=Vp2-sm*P1*sqrtz^(-2*m-3)/(ab4*(3+2*m))
P2=((2*m+1)*c*P1-m*P0)/(m+1);P0=P1;P1=P2;sm=-sm;
if mod(m,100)==0,[m/100,Vp,Vp2],end;
d.
```

end;

$$\frac{m}{\sqrt{n}} \frac{1}{\sqrt{n}} \frac{10}{\sqrt{n}} \frac{100}{\sqrt{n}} \frac{200}{\sqrt{n}} \frac{500}{\sqrt{n}} \frac{1000}{\sqrt{n}} \frac{1000}{\sqrt{n$$

choosing  $\mathcal{V}_n(0) = 0$ .

At  $z = -\sqrt{a_n b_n} \exp(-i\theta)$ ,

...V=2\*ab4\*sqrtz; ... V=V+sm\*2\*P1\*sqrtz^(2\*m+1)\*ab4/(1-4\*m\*m); V2=2\*ab4/(3\*sqrtz); V2=V2+sm\*2\*P1\*sqrtz^(-2\*m-1)\*ab4/((2\*m+1)\*(2\*m+3));

value of  $\mathcal{V}_n(z) - z/(2n)$  is found to be 1.1144... + 1.5708... $i = -(\log c_n)/(2n) + \pi i/2$  with the first series;  $-(\log c_n)/(2n) - \pi i/2$  with the second one.

The poles cut  $\Delta_n$  is the locus where the real part of  $\mathcal{V}_n(z) - z/(2n)$  is the constant  $-(\log c_n)/(2n)$ . Reversion of the first series (16)

:

$$Y := \mathcal{V}_n(z) - \frac{z}{2n} = 2\sqrt{\frac{z}{n}} - \frac{z}{2n} + \frac{2\cos\theta}{3\sqrt{a_1b_1}} \left(\frac{z}{n}\right)^{3/2}$$
$$\sqrt{\frac{z}{n}} = \frac{Y}{2} + \frac{Y^2}{16} + \left(\frac{\cos\theta}{24\sqrt{a_1b_1}} - \frac{1}{64}\right)Y^3 + \cdots$$

%nineleg.m

```
ab2=1.8320227113;ab4=sqrt(ab2);th=0.86027434675;c=cos(th);
sqrtz=i*exp(-i*th/2); Vp=1/(ab4*sqrtz);V=2*ab4*sqrtz;
dirser(1)=2;dirser(2)=-1/2;
                                % direct series for V
PO=1;P1=c;sm=-1;
for m=1:30,Vp=Vp+sm*P1*sqrtz^(2*m-1)/(ab4*(1-2*m));
         dirser(2*m+1)=2*P1*sm/((1-4*m<sup>2</sup>)*ab2<sup>m</sup>);dirser(2*m+2)=0;
             V=V+sm*2*P1*sqrtz^(2*m+1)*ab4/(1-4*m*m);
    P2=((2*m+1)*c*P1-m*P0)/(m+1);P0=P1;P1=P2;sm=-sm;
    if mod(m,10)==0,[m/100,Vp,V+ab4*ab4*exp(-i*th)/2],end;
end;
remser=dirser; dirserp=dirser;
% reverse series
for m=2:25,
    dirserp=conv(dirserp,dirser);
    dirserp=dirserp(1:62);
    invser(m)=-remser(m)/dirserp(1);
    remser(m:62)=remser(m:62)+invser(m)*dirserp(1:63-m);
end;
invser(1)=1;invser=invser/2;
```

```
>> invser'
```

0.500000000000 0.0625000000000 0.00079099694365 -0.00438843941022 -0.00175241217516 -0.00017749173926

0.00017594354142 0.00011197044512 0.00002432567762 -0.0000832085472 -0.0000889811069 -0.0000296374323 0.0000025219279 0.0000074799463 0.0000034599104 0.0000002544551 -0.0000006162914 -0.0000003920805 -0.00000007725420.0000000458961 0.0000000429681 0.0000000133248 -0.000000025095 -0.000000045047 -0.0000000019381

Nice "sine wave" (Henrici), these Taylor coefficients behave like real parts of powers of about  $e^{\pi i/3}/10^{1/3} \approx 0.3 + 0.4i$ . It figures: the direct series of  $Y = \mathcal{V}_1(z) - z/2$  has singularities at  $a_1$  and  $b_1$  with behaviour  $-\log(c_1)/2 \pm \pi i/2 + A_1(z-a_1,b_1)^{3/2} + \cdots = 1.1144... \pm 1.5708...i + \text{ const.}$   $(z-a_1,b_1)^{3/2} + \cdots$  whence for the inverse function  $z = a_1$  or  $b_1 + \text{ const} (Y - (\log c_1 \pm \pi i)/2)^{2/3} + \cdots$  near  $a_1$  or  $b_1$ , and coefficients behaviour as  $n^{-5/3}$  times a combination of  $n^{\text{th}}$  powers of  $2/(\log c_1 \pm \pi i) = 0.300... \mp 0.423...i$  (Darboux).

Locus of poles  $\Delta_n/n$  is the image of  $[1.1144... - \pi i/2, 1.1144... + \pi i/2]$ . With 100 terms:

```
>> yy=1.1144168...+(0:0.05:0.5)*pi*i
yy = 1.1144168 , 1.1144168+0.0157796...i, 1.1144168 + 0.31415926535898i , ... 1.1144168 + 1.57079632679490i
```

```
>> (yy.^100.*polyval(invser,1./yy)).^2
```

0.39243973943344

| 0.38283919896697  | + | 0.11948758440998i |
|-------------------|---|-------------------|
| 0.35378081869954  | + | 0.23932622697562i |
| 0.30445719600034  | + | 0.35990563615929i |
| 0.23338515636343  | + | 0.48170394036478i |
| 0.13814111186681  | + | 0.60536640116891i |
| 0.01482293663859  | + | 0.73185191424500i |
| -0.14313215474693 | + | 0.86275232571528i |
| -0.34802443454987 | + | 1.00114603711627i |
| -0.62904340404614 | + | 1.15483608035005i |
| -1.15073795280994 | + | 1.34847500068745i |

The last item should have been -1.194899...+1.3887...i

#### 2.2. Distributions of interpolation points and poles.

2.2.1. Interpolation points. As the second term of  $\mathcal{V}'_n(z) := \mathcal{V}'_{n,i}(z) - \mathcal{V}'_{n,p}(z) = \int_E \frac{d\mu_{n,i}(t)}{z-t} - \int_{\Delta_n} \frac{d\mu_{n,p}(t)}{z-t}$  is real on the two sides of  $E = (-\infty, 0)$  (the distributions are symmetric with respect to the real axis), we immediately have

$$\mathcal{V}_n'(z\pm 0i) = \mp \pi i \mu_{n,i}'(z), \qquad z < 0$$

(Sokhotskyi-Plemelj formulas). This means that, for any reasonable f,

$$\frac{1}{m+n+1} \sum_{0}^{m+n} f(x_j) \to_{m \sim n \to \infty} \frac{1}{2\pi\sqrt{n}} \int_{-\infty}^{0} f(t) \int_{-\infty}^{t} \frac{du}{\sqrt{-u^3(1-u/a_n)(1-u/b_n)}} dt \\ \sim -\frac{1}{2\pi\sqrt{n}} \int_{-\infty}^{0} \frac{F(t)dt}{\sqrt{-t^3(1-t/a_n)(1-t/b_n)}}$$
(17)

where  $F(t) = \int_0^t f(u) du$ . Check with  $f(t) \equiv 1$ : use (14), knowing  $A_n = -\sqrt{a_n b_n}/2$ . No many other elementary examples: with f(t) = t in order to discuss  $(x_0 + \cdots + x_{m+n})/(m+n+1)$ , the integral is divergent (result is of order  $n^2$ , see below).



For large (negative) 
$$t$$
,  $\mu_{n,i}''(t) = \frac{1/(2\pi\sqrt{n})}{\sqrt{-t^3(1-t/a_n)(1-t/b_n)}}$   
is about  $(\sqrt{a_1b_1n}/(2\pi))(-t)^{-5/2}$ , so  $\mu_{n,i}'(t) \sim (\sqrt{a_1b_1n}/(3\pi))(-t)^{-3/2}$ ,  
and  $\mu_{n,i}(t) \sim -1 + (2\sqrt{a_1b_1n}/(3\pi))(-t)^{-1/2}$ . This means  
that the most negative interpolation points are in the  
 $n^3$  range. Indeed,  $\mu_{n,i}(t) = -1 + k/(2n) \Rightarrow t \sim -(16a_1b_1/9\pi^2)(-n^3/k^2)$ .  
Near the origin,  $\mu_{n,i}''(t) = (1/(2\pi\sqrt{n}))(-t)^{-3/2} + O(t^{-1/2})$ ,  
 $\mu_{n,i}'(t) \sim (1/(\pi\sqrt{n}))(-t)^{-1/2}, \mu_{n,i}(t) \sim -(2/(\pi\sqrt{n}))(-t)^{1/2}$ .  
Corresponding interpolation points are at about  $\mu_{n,i}(x_j) \approx j/(2n) \Rightarrow x_j \approx -j^2\pi^2/(16n)$ . Here are samples of smallest and largest interpolation points for best approximants  
of degrees  $(n-1)/n$ :

| n | $x_0$  | $x_1$  | $x_2$  | $x_{2n-3}$ | $x_{2n-2}$ | $x_{2n-1}$ |
|---|--------|--------|--------|------------|------------|------------|
| 2 | -0.062 | -0.574 | -1.891 | -0.574     | -1.891     | -5.751     |
| 3 | -0.043 | -0.402 | -1.185 | -2.612     | -5.359     | -14.906    |
| 4 | -0.034 | -0.311 | -0.892 | -5.874     | -10.905    | -29.745    |
| 5 | -0.028 | -0.254 | -0.715 | -10.432    | -18.993    | -53.292    |

The smallest points happen to be about 1, 9, 25,... times  $-\pi^2/(64n+32)$ : a better formula is  $x_j \sim -(j+1/2)^2 \pi^2/(16n+8)$ , corresponding to  $\mu_{n,i}(x_j) \sim -(j+1/2)/(2n+1)$ .

 $x_{2n-1}$  is about  $-0.4n^3$ , and  $x_{2n-2}$  and  $x_{2n-3}$  about 3 and 5 times smaller, I hope that no strongly accurate estimate will be needed. However the expected value of  $x_n$  is about  $-16a_1b_1n^3/(9\pi^2 n) \approx -0.6045...n$ , whereas the formula for the small x's predicts  $x_n \sim -n^2\pi^2/(16n) \approx -0.6185...n$ .

2.2.2. The potential function of the distribution of the interpolation points. When  $f(t) = \log(z-t)$ ,  $F(t) = (t-z)\log(z-t) - t + z\log z$ , ouch, I try differential equations for  $\mathcal{V}_{n,i}$ , as above in section 2.1.3 for  $\mathcal{V}_n$ :

$$\mathcal{V}'_{n,i}(z) = \int_{-\infty}^{0} \frac{\mu'_{n,i}(t) \, dt}{z - t},$$
$$\mathcal{V}''_{n,i}(z) = -\int_{-\infty}^{0} \frac{\mu'_{n,i}(t) \, dt}{(z - t)^2} = \lim_{\varepsilon \to 0} \left[ -\frac{\mu'_{n,i}(\varepsilon)}{z - \varepsilon} + \int_{-\infty}^{\varepsilon} \frac{\mu''_{n,i}(t) \, dt}{z - t} \right]$$

hmm, multiply by z = z - t + t:

$$z\mathcal{V}_{n,i}''(z) = \lim_{\varepsilon \to 0} -\frac{\varepsilon\mu_{n,i}'(\varepsilon)}{z-\varepsilon} - \frac{1}{2\pi\sqrt{n}} \int_{-\infty}^{0} \frac{dt}{(z-t)\sqrt{-t(1-t/a_n)(1-t/b_n)}}$$

this begins to look like (8), leading to

$$\sqrt{n}\sqrt{\frac{z}{(1-z/a_n)(1-z/b_n)}} \left(\mathcal{V}'_n(z) - \frac{1}{2n}\right) = 1 + z^2 \mathcal{V}''_{n,i}(z)$$
$$\mathcal{V}''_{n,i}(z) = -z^{-2} - \mathcal{V}''_n(z)(2n\mathcal{V}'_n(z) - 1)$$
$$\mathcal{V}'_{n,i}(z) = z^{-1} + \mathcal{V}'_n(z) - n(\mathcal{V}'_n(z))^2$$
(18)

Wow! Remark that  $\mathcal{V}'_n - n(\mathcal{V}'_n)^2 = n\mathcal{V}'_n(1/n - \mathcal{V}'_n)$  is precisely the product (i.e., a symmetric function) of the two determinations of  $\mathcal{V}'_n$  near the cut  $(a_n, b_n)$ : there is no more any branchpoints there.

Series: from (15),

$$\begin{split} \sqrt{n}\mathcal{V}_{n,i}'(z) &= \sum_{0}^{\infty} \frac{P_m(\cos\theta) z^{m-1/2}}{(1-2m)(-\sqrt{a_n b_n})^m} - \sqrt{n} \sum_{m=1}^{\infty} \frac{\sum_{k=0}^{m} \frac{P_k(\cos\theta) P_{m-k}(\cos\theta)}{(1-2k)(1-2m+2k)}}{(-\sqrt{a_n b_n})^m} z^{m-1} \\ &= \frac{\sqrt{n}}{z} + \sum_{0}^{\infty} \frac{P_m(\cos\theta)(-\sqrt{a_n b_n})^{m+1}}{(3+2m)z^{m+3/2}} - \sqrt{n} \sum_{m=0}^{\infty} \frac{\sum_{k=0}^{m} \frac{P_k(\cos\theta) P_{m-k}(\cos\theta)}{(3+2k)(3+2m-2k)}}{z^{m+3}} (-\sqrt{a_n b_n})^{m+2} \end{split}$$

the series are not easier than before, integer powers of z are added to the series of (15). And the convergence radius is not changed. Only the singular points on the second sheet Re  $\sqrt{z} < 0$  are still there. Also, the series for  $|z| < \sqrt{ab}$  and  $|z| > \sqrt{ab}$  must be the perfect continuation of each other.

| $z/\sqrt{a_n b_n}$       | 3/5    | 4/5    | 1      | 1       | 6/5     | 7/5     |
|--------------------------|--------|--------|--------|---------|---------|---------|
| $n\mathcal{V}'_n(z)$     | 1.3050 | 1.2222 | 1.1715 | -0.1715 | -0.1377 | -0.1138 |
| $n\mathcal{V}_{n,i}'(z)$ | 0.5117 | 0.4108 | 0.3449 | 0.3449  | 0.2982  | 0.2632  |

How to decide the constants in the series for the integral  $\mathcal{V}_{n,i}$ ?

$$\mathcal{V}_{n,i}(z) = \text{const.} + 2(z/n)^{1/2} - 2\cos\theta(z/n)/\sqrt{a_1b_1} + 2\cos\theta(z/n)^{3/2}/\sqrt{a_1b_1} + \cdots$$
$$= \text{const.} + \log(z/n) + 2\sqrt{a_1b_1}(n/z)^{1/2}/3 - 2a_1b_1(n/z)^{3/2}/15 + a_1b_1(n/z)^2/18 + \cdots$$

if we drop the last constant, so as to have a potential with  $\lim |\mathcal{V}_{n,i}(z) - \log(z/n)| = 0$  for large z, we find that 0.3946 must be subtracted from the first series, so

| $z/\sqrt{a_n b_n}$     | 0       | 3/5    | 4/5    | 1      | 1      | 6/5    | 7/5    |
|------------------------|---------|--------|--------|--------|--------|--------|--------|
| $\mathcal{V}_{n,i}(z)$ | -0.3946 | 1.1347 | 1.3022 | 1.4399 | 1.4399 | 1.5573 | 1.6599 |

2.2.3. The distributions of poles.

And of course, from  $\mathcal{V}_n = \mathcal{V}_{n,i} - \mathcal{V}_{n,p}$ :

$$\mathcal{V}'_{n,p}(z) = z^{-1} - n(\mathcal{V}'_n(z))^2 \tag{19}$$

Must indeed be near  $z^{-1}$  for large z. Check near the origin:  $z^{-1} - [z^{-1/2} + z^{1/2}(\cos \theta)/(n\sqrt{a_1b_1}) - z^{3/2}(3\cos^2 \theta - 1)/(6n^2a_1b_1) + \cdots]^2 = z^{-1}$  $-2\cos\theta/(n\sqrt{a_1b_1}) + z/(3n^2a_1b_1) + \cdots$ 

Denominator =  $\prod (1-z/\text{poles}) \sim \exp(n(\mathcal{V}_{n,p}(z) - \mathcal{V}_{n,p}(0))) = \exp(-2z\cos\theta/\sqrt{a_1b_1} + z^2/(6na_1b_1) + z^2/(6na_1b_1)))$ ...), has a fixed limit when  $n \to \infty$ . Moreover,  $\exp(-2z\cos\theta/\sqrt{a_1b_1}) = \exp(-0.71203...z)$  fits with tables from [2]

# 3. A family of (1/9) rational interpolants.

#### 3.1. Trefethen's problem.

3.1.1. Problem. Show that the **best** rational approximations  $\hat{r}_{m,n}$  of degrees m and  $n \ (m \leq n)$  and  $m \sim n$  to  $\exp z$  on  $(-\infty, 0]$  satisfy

$$\limsup_{n \to \infty} \|e^z - \hat{r}_{m,n}(z)\|_{\infty,K}^{1/n} \leqslant 1/9'$$
(20)

for any compact set  $K \subset \mathbb{C}$ . (Trefethen, 2005 [8]).

3.1.2. *Strategy*. Current asymptotics [4] consider only weak limits of distributions, one could have errand poles visiting sometimes any bounded set (but avoiding the negative real axis).

Also, Aptekarev's near-best approximant [1] has a most decent behaviour, but there is no solid proof that the actual best approximant is equally well behaved.

I intend to study a family of rational functions, containing the best approximant, interpolating  $e^z$  at points close to be equidistributed with respect to  $\mu_{n,i}$ . Of course, 'close' will have to receive an accurate description.

First thing is to be sure of the denominator.

If denominator q is innocuous, we consider q and  $q(x)e^x - p(x)$ , which is the polynomial interpolation error

$$q(x)e^{x} - p(x) = [x_0, \dots, x_{m+n}, x]_{q(x)\exp(x)}(x - x_0) \cdots (x - x_{m+n}).$$
(21)

The product of the  $x - x_i$ 's behaves like  $\exp(n\mathcal{V}_{n,i}(x))$ , and the divided difference will be explored right now.

#### 3.2. Retrieving the denominator.

#### 3.2.1. Scalar product.

Denominator q is the orthogonal polynomial of degree n with respect to the scalar product

$$\langle f, g \rangle_{n} = [x_{0}, \dots, x_{m+n}]_{f(x)g(x) \exp(x)}$$

$$= \sum_{j=0}^{m+n} \frac{f(x_{j})g(x_{j})\exp(x_{j})}{\prod_{m \neq j} (x_{j} - x_{m})}$$

$$= \frac{1}{2\pi i} \int_{C_{n}} \frac{f(t)g(t)\exp(t) dt}{(t - x_{0})\cdots(t - x_{m+n})}$$
(22)

as seen in (3). Is there any chance to get accurate estimates of such things? First elementary fact is of course that the divided difference = 1 for  $x^{m+n}$ , suggesting an order O(1/(m+n)!) for the simplest scalar products. Probably not wrong, but no easy correction coming from  $e^x = \dots + x^{m+n}/(m+n)! + x^{m+n+1}/(m+n+1)! + \cdots$ , yielding the useless  $1/(m+n)! + (x_0 + \dots + x_{m+n})/(m+n+1)!$ . Useless because  $e^x$  is so small at the most negative  $x_j$ 's. The divided difference is also a particular value of the  $(m+n)^{\text{th}}$  derivative divided by (m+n)!, and this derivative involves the exponential of a presumed strongly negative number. Ah, there is also the B-spline formula

$$\langle f, g \rangle_n = \int_{x_{m+n}}^{x_0} \frac{B(x)}{(m+n)!} \frac{d^{m+n}}{dx^{m+n}} [f(x)g(x)e^x] \, dx, \tag{23}$$

where B(x) is actually (deBoor [3])

$$B(x) = (m+n)[x_0, \dots, x_{m+n}]_{(.-t)_+^{m+n-1}}$$
  
=  $M(x; x_{m+n}, \dots, x_0)$   
=  $(m+n)\frac{B(x; x_{m+n}, \dots, x_0)}{(x_0 - x_{m+n})}.$ 



3.2.2. The shape of things to come. Here are some instances of B(x) and  $B(x)e^x$  on the  $x_i$ 's of best approximants, m = n - 1:





3.2.3. B-spline towards Gaussian. Well-known and linked to the central limit theorem, but has only been worked for cardinal (equidistant points) B-splines [11].

Let us look at the moments of a 
$$B$$
-spline defined on a set of real points  $t_0, \ldots, t_N$ : apply  

$$\begin{bmatrix} t_0, \ldots, t_N \end{bmatrix}_f = \frac{f(t) - \text{interp. of} f \text{ at } t_0, \ldots, t_{N-1}}{(t-t_0)\cdots(t-t_{N-1})} \Big|_{\text{at } t=t_N} = \int_{-\infty}^{\infty} \frac{f^{(N)}(x)}{N!} M_N(x) \, dx:$$

$$\begin{bmatrix} t_0, \ldots, t_N \end{bmatrix}_{t^{N+r}} = \frac{t^{N+r} - \text{interp. at } t_0, \ldots, t_{N-1}}{(t-t_0)\cdots(t-t_{N-1})} \Big|_{\text{at } t=t_N} = \frac{(N+r)!}{N!r!} \int_{-\infty}^{\infty} x^r M_N(x) \, dx.$$
The nu-

merator is  $(t-t_0)\cdots(t-t_{N-1})$  times a polynomial of degree r such that the product has no term in  $t^{N+r-1},\ldots,t^N$ . In other words, what remains is the singular part of the Laurent expansion of  $t^{N+r}/((t-t_0)\cdots(t-t_{N-1}))$  at  $\infty$ . This expansion involves the complete homogeneous symmetric functions of  $t_0,\ldots,t_{N-1}$ , and the result is the same function  $h_r$  for  $t_0,\ldots,t_N$ , so, for large N,  $\int_{-\infty}^{\infty} x^r M_N(x) \, dx \sim r! N^{-r} h_r(t_0,\ldots,t_N)$ . Fourier moments:  $\int_{-\infty}^{\infty} e^{i\xi x} M_N(x) \, dx \sim \sum_{0}^{\infty} i^r \xi^r N^{-r} h_r(t_0,\ldots,t_N)$  $= \prod_{0}^{N} (1-i\xi t_k/N)^{-1}$ . If the  $t_k$ 's are regularly distributed on an interval (a,b) with respect to a

measure  $d\mu$  with finite moments,  $\int_{-\infty}^{\infty} e^{i\xi x} M_N(x) dx \sim \exp[-N \int_a^b \log(1 - i\xi t/N) d\mu(t)]$ , involving only the first moments of  $d\mu$  when N is large, whence the Gaussian look.

3.2.4. Moments and recurrence relations. With the distribution  $\mu_{n,i}$  of the interpolation points,  $\int_{-\infty}^{\infty} e^{i\xi x} M_{m+n+1}(x) \, dx \sim \exp[-(m+n+1) \int_{-\infty}^{0} \log(1-i\xi t/(m+n+1)) \, d\mu_{n,i}(t)]$   $= \exp[-(m+n+1) \log(-i\xi/(m+n+1)) - (m+n+1) \mathcal{V}_{n,i}(-i(m+n+1)/\xi)].$  Polynomial moments of  $e^x M_{m+n+1}(x)$  ask for derivatives at  $\xi = -i$ :  $\int_{-\infty}^{\infty} e^x M_{m+n+1}(x) \, dx \sim ((-1)^{m+n+1}/(m+n+1)^{m+n+1}) \exp[-(m+n+1)\mathcal{V}_{n,i}(m+n+1)], \\ \int_{-\infty}^{\infty} x e^x M_{m+n+1}(x) \, dx \sim \text{etc.}$  Now, as  $\mathcal{V}_{n,i}(z) \sim a$  fixed function  $\mathcal{V}_i(z/n), \ \langle 1,1 \rangle_n \sim (2n)^{-2n} \exp[-2n\mathcal{V}_i(2)] \ \dots \ \text{and} \ \mathcal{V}_i(2) = 0$ 

Now, as  $V_{n,i}(z) \sim a$  fixed function  $V_i(z/n)$ ,  $\langle 1, 1 \rangle_n \sim \langle 2n \rangle^{-1} \exp[-2nV_i(2)]$  ... and  $V_i(1, 1/2)$  according to series calculations made above.

Let us explore some moments computed with interpolation points of actual best approximants, still with m = n - 1:

|                        | n = 1                               | n=2                                 | n=3 $n$                               | n = 4 $n = 5$                         |                                       |               |
|------------------------|-------------------------------------|-------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------|
| $\langle 1, 1 \rangle$ | $1\rangle_n$ 5.44883 10             | $^{-1}$ 3.12788 $10^{-2}$           | $4.56673 \ 10^{-4} \ 2.81$            | $12 \ 10^{-6}  9.3567 \ 10^{-6}$      | -9                                    |               |
| an a                   | pproximate exp                      | onential pattern ap                 | pears with                            |                                       |                                       |               |
| n                      | $(2n-1)^{2n-1}\langle 1,1\rangle_n$ | $(2n-1)^{2n-1}\langle x,1\rangle_n$ | $(2n-1)^{2n-1}\langle x^2,1\rangle_n$ | $(2n-1)^{2n-1}\langle x^3,1\rangle_n$ | $(2n-1)^{2n-1}\langle x^4,1\rangle_n$ | $(2n-1)^{2n}$ |
| 1                      | 0.5448824                           | 0.2432842                           |                                       |                                       |                                       |               |
| 2                      | 0.8445255                           | 5 1.3814579                         | 0.1258217                             | -1.9972810                            |                                       |               |
| 3                      | 1.4280243                           | 3.9964734                           | 5.3448847                             | -4.7087498                            | -10.2860880                           |               |
| 4                      | 2.3184672                           | 9.1527609                           | 23.0989445                            | 17.2386863                            | -69.4132043                           |               |
| 5                      | 3.6289523                           | 3 18.4766184                        | 68.1524072                            | 140.5080478                           | -47.5999317                           |               |
| 6                      | 5.5149784                           | 4 34.3675234                        | 166.4234039                           | 547.7093760                           | 734.8526838                           |               |

the  $\langle 1, 1 \rangle_n$ 's behave like powers of about 1.6, the  $\langle x, 1 \rangle_n$ 's are about *n* times larger, etc. ??

Much more accurate estimates will be needed in order to discuss the *3-term recurrence* relation of intermediate polynomials  $q_k$  amounting to the building of the denominator polynomial  $q_n$  (for each n, the whole set of intermediate polynomials is to be computed again, they should receive two indexes, but what follows is for a fixed n).

Keeping  $q_k(0) = 1$ , the recurrence relation is

$$q_{k+1}(x) = (1 - \gamma_k - \delta_k x)q_k(x) + \gamma_k q_{k-1}(x)$$

with  $\gamma_0 = 0$ . Then,

$$\frac{1-\gamma_k}{\delta_k} = \frac{\langle xq_k, q_k \rangle_n}{\langle q_k, q_k \rangle_n}, \qquad \frac{\gamma_k}{\delta_k} = \frac{\langle xq_{k-1}, q_k \rangle_n = -\langle q_k, q_k \rangle_n / \delta_{k-1}}{\langle q_{k-1}, q_{k-1} \rangle_n}$$

or

$$\frac{1}{\delta_k} = \frac{\langle xq_k, q_k \rangle_n}{\langle q_k, q_k \rangle_n} - \frac{\langle q_k, q_k \rangle_n}{\delta_{k-1} \langle q_{k-1}, q_{k-1} \rangle_n}$$

allowing progressive calculation of the  $\gamma$ 's and the  $\delta$ 's

Here is how they look:

| n             | $\gamma_1$                                                | $\gamma_2$                                                          | $\gamma_3$                                                          | $\gamma_4$                   | $\gamma_5$         | $\gamma_6$ |            |
|---------------|-----------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------------|------------------------------|--------------------|------------|------------|
| 2             | 1.6410                                                    |                                                                     |                                                                     |                              |                    |            |            |
| 3             | 0.7197                                                    | 2.3551                                                              |                                                                     |                              |                    |            |            |
| 4             | 0.4521                                                    | 1.2316                                                              | 2.7843                                                              |                              |                    |            |            |
| 5             | 0.3280                                                    | 0.8223                                                              | 1.6250                                                              | 3.0808                       |                    |            |            |
| 6             | 0.2569                                                    | 0.6141                                                              | 1.1340                                                              | 1.9385                       | 3.2983             |            |            |
| 7             | 0.2109                                                    | 0.4890                                                              | 0.8670                                                              | 1.4018                       | 2.1990             | 3.4767     |            |
| n             | $\delta_0$                                                | $\delta_1$                                                          | $\delta_2$                                                          | $\delta_3$                   | $\delta_4$         | $\delta_5$ | $\delta_6$ |
| 1             | 2.2397                                                    |                                                                     |                                                                     |                              |                    |            |            |
| 2             | 0.6113                                                    | 1.0623                                                              |                                                                     |                              |                    |            |            |
| 3             | 0.3573                                                    | 0.4025                                                              | 0.7760                                                              |                              |                    |            |            |
| 4             | 0.0010                                                    | 0.4320                                                              | 0.1109                                                              |                              |                    |            |            |
| 4             | 0.2533                                                    | 0.4925<br>0.3175                                                    | 0.7709<br>0.4213                                                    | 0.6138                       |                    |            |            |
| $\frac{4}{5}$ | 0.2533<br>0.1964                                          | $\begin{array}{c} 0.4325 \\ 0.3175 \\ 0.2338 \end{array}$           | $\begin{array}{c} 0.1709 \\ 0.4213 \\ 0.2873 \end{array}$           | $0.6138 \\ 0.3694$           | 0.5099             |            |            |
| $4\\5\\6$     | $\begin{array}{c} 0.2533 \\ 0.1964 \\ 0.1605 \end{array}$ | $\begin{array}{c} 0.4923 \\ 0.3175 \\ 0.2338 \\ 0.1849 \end{array}$ | $\begin{array}{c} 0.7709 \\ 0.4213 \\ 0.2873 \\ 0.2175 \end{array}$ | $0.6138 \\ 0.3694 \\ 0.2627$ | $0.5099 \\ 0.3295$ | 0.4369     |            |

$$q_{k} - q_{k-1} = -\delta_{k-1} x q_{k-1} - \gamma_{k-1} (q_{k-1} - q_{k-2}), \dots,$$

$$q_{k}(x) = 1 - x \sum_{0}^{k-1} (1 - \gamma_{j+1} + \gamma_{j+1} \gamma_{j+2} - \dots + (-1)^{k-1-j} \gamma_{j+1} \cdots \gamma_{k-1}) \delta_{j} q_{j}(x)$$
?

There must be a representation problem, as the "plain" writing of the successive  $q_k$ 's is very smooth:

with m = 6, n = 7,

$$\begin{split} q_0(x) &= 1.0000 \\ q_1(x) &= -0.1357x + 1.0000 \\ q_2(x) &= 0.0208x^2 - 0.2601x + 1.0000 \\ q_3(x) &= -0.0036x^3 + 0.0561x^2 - 0.3743x + 1.0000 \\ q_4(x) &= 0.0007x^4 - 0.0119x^3 + 0.1017x^2 - 0.4790x + 1.0000 \\ q_5(x) &= -0.0002x^5 + 0.0026x^4 - 0.0250x^3 + 0.1540x^2 - 0.5749x + 1.0000 \\ q_6(x) &= 0.0001x^6 - 0.0006x^5 + 0.0060x^4 - 0.0422x^3 + 0.2105x^2 - 0.6624x + 1.0000 \\ q_7(x) &= -0.0000x^7 + 0.0001x^6 - 0.0015x^5 + 0.0104x^4 - 0.0631x^3 + 0.2686x^2 - 0.7419x + 1.0000 \\ \end{split}$$

#### 3.3. Error function behaviour.

Asks now for a discussion of (21)

## References

- A.I. Aptekarev, Sharp constants for rational approximation of analytic functions (in Russian), Mathematical Sbornik, Vol 193(1), 2002, pp. 3-72, english translation in Sb. Math. vol. 193 (2002) no. 1-2, 1-72.
- [2] A.J. CARPENTER, A. RUTTAN, and R.S. VARGA, Extended numerical computations on the "1/9" conjecture in rational approximation theory, pp. 383-411 in Rational Approximation and Interpolation, (P.R.GRAVES-MORRIS, E.B.SAFF, and R.S.VARGA, editors), Lecture Notes Math. 1105, Springer-Verlag, 1984.
- [3] Carl de Boor, B-spline basics MRC 2952, 1986 in Fundamental Developments of Computer-Aided Geometric Modeling, Les Piegl (ed.), Academic Press (London) 1993; 27–49; % Corrected (in Section 12) on 04 mar 96. % Scaling of figures adjusted and misprints corrected on 03 jun 96 % A misprint corrected (and adjusted to current tex-macros) on 06 jun 96 % A misprint corrected on 12feb98 ftp://ftp.cs.wisc.edu/Approx/bsplbasic.pdf
- [4] A.A. Gonchar, E.A. Rakhmanov, Equilibrium distribution and the degree of rational approximation of analytic functions, Mat. Sb. 134 (176) (1987) 306-352 = Math. USSR Sbornik 62 (1989) 305-348.
- [5] A.P. Magnus, J. Meinguet, The elliptic functions and integrals of the '1/9' problem, Numerical Algorithms, 24 (2000) 117-139. See in http://www.math.ucl.ac.be/membres/magnus
- [6] A.P.Magnus, J. Nuttall, On the constructive rational approximation of certain entire functions, preliminary notes inhttp://publish.uwo.ca/~jnuttall/approx.html= http://www.math.ucl.ac.be/members/magnus/cafe.pdf
- [7] J. Meinguet, An electrostatic approach to the determination of extremal measures, Mathematical Physics, Analysis and Geometry 3 (2000) 323-337.
- [8] T. Schmelzer, L.N. Trefethen, Computing the Gamma functions using contour integrals and rational approximations, preprint
- [9] H. Stahl, Convergence of rational interpolants, Bull. Belg. Math. Soc. Simon Stevin Suppl., 11-32 (1996).
- [10] L.N. Trefethen, J.A.C. Weideman, T. Schmelzer, Talbot quadratures and rational approximation, BIT
- [11] Unser, Michael; Aldroubi, Akram; Eden, Murray On the asymptotic convergence of B-spline wavelets to Gabor functions. IEEE Trans. Inf. Theory 38, No.2/II, 864-872 (1992). http://bigwww.epfl.ch/publications/unser9201.pdf
- [12] J.L. Walsh, Interpolation and Approximation by Rational Functions in the Complex Domain, 4<sup>th</sup> edition, Amer. Math. Soc., Providence, 1965.