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Complex rational approx. 1 — measures & potentials — 2

1. Measures and potentials.
1.1. Algebra of rational interpolation, orthogonality.
Rational interpolant p/q of degrees m/n of f at m+mn-+1 points 2, ..., zm+n € E: if f analytic
in a domain containing F,

W) —pl) = = [ B e dDID)

2mi ¢t (Hermite, Walsh), (1
2mi Cn (t_zo)”'(t_zm-l-n) t—=z ( ermite, als )7 ()

where C), is a contour containing 2, ..., Zm+n, and z in its interior. This leaves a numerator
p(z) = L/ (t—20) - (t = 2mtn) — (2 —20) - (2 — 2mtn) f(®) (1) dt
21 Jo, t—z (t—2z0) - (t — Zmtn)

which is of degree m 4 n unless ¢ is ‘orthogonal’ with respect to the ‘weight’
wp(t) == f@)/[(t—20) -+ (t = Zman)]: / q(t)tFw, (t)dt = 0, for k =0,--- ,n—1. Indeed, the big

n

polynomial in z and t above contains terms t*2°, with a + b < m + n. If only the t* with a > n
have to be considered, then only 2° with b < m are left.
Using orthogonality, () is left unchanged when one susbtracts from (¢t — z)~! its interpolant
q(t)
(t —2)q(2)
fo-BD L L[ oGm0 10,
q(z)  2mi Jo, (t—20) (= 2man)d?(2) t — 2

Remark also that the ‘scalar’ product of two functions u and v is

at the zeros of ¢, so that is left, and

(2)

1 u(t)v(t)
o =5m [ s f(r)d @

2mi ) (t — Zmin)
is the divided difference of uvf at zg,..., 2Zmin-

1.2. Distributions of interpolation points, poles, and their potentials.

Let pp; and pp,p the distributions of interpolations points on E, and poles on C),, with unit
total weight, i.e., such that

1 m+n 1 n
/EF(t) dpin,i(t) = p—— kZ:O F(z), /Cn E(t) dpnp(t) = — kZ:lF(Pk)-

These distributions can be seen as staircase functions, but they will receive smoother approxima-
tions.
(Complex) logarithmic potentials: V(z) = [log(z — t) du(t). Then,

f<z>—% = 57 Pl 1)V () -2V (2) [ n exp(20V, (1)~ (m -+ 1)V (1) L .
Vip(2).

(4)
When m ~ n, everything depends on V,(2) := Vy,i(2) — Wy,
Let ¢y, be the largest absolute value of f(t) exp(—2nV,(t)) on C,, then the error bound of (?7?)
is dominated by

{ cnexp(2n ReV,(2)) if z is inside Gy, 5)

max [c, exp(2n ReV,(2)), |f(2)]] if z is outside Cp,

as one must take into account the residue at ¢ = z in the latter case.
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tn and V, ; are known if one interpolates on a given set of points. V), , has to be determined
from a theory of orthogonal polynomials.

Simple example: interpolation concentrated on a single point (Padé), say 0, and f analytic
outside the real interval [a,b], 0 ¢ [a,b]. Then C), may be deformed up to [a,b] used twice,
first with limit values from above fy(t) of f, and next with —f_(¢). If f+ — f_ has a constant
phase and basically an integrable logarithm, then V), ,(z) outside [a,b] is close to log[d(z — ¢) +
(1 —d)\/(z—a)(z —b)], where ¢ = 2/(a™> +b"Y) and d = 1/(1 + |¢|/vVab) (Szegdl). Then,
Vi(2) is close to —log[d(1 — ¢/2) + (1 — d)\/(1 — a/z)(1 — b/z)], whose real part is the constant
log[(b + a)/(d(b — a))] on [a,b], and is less than this constant everywhere else the square root
must be taken accordingly). Also, ¢, ~ [d(b — a)/(b+ a)]*". For small z, the error behaves like

dib—a) = 1" _[(b-a)z]™ ((b— a)/(4ab) is the logarithmi ity of p'.a-1])
b +a 2dC _ 4ab a a 1S € logarithmic capacity o ,a .

1.3. Orthogonal polynomials behaviour.

Remark that, as ¢, is the maximum of | f exp(—2nV,)| on a
contour C,, which may be deformed, we can as well look for the
contour yielding the smallest maximum: the smallest extimate
will be the most realistic. The point where the maximum oc-
curs (actually, it will be a whole subarc) is a saddle-point of
|f exp(—2nV,, = w,q?|. This is exactly what happens with true
orthogonal polynomials with respect to positive measures, for
the L? norm on C,, and we have a theory giving Vnp in that
case (Szeg6, Widom). So, for a given C,, the true (monic) or-
thogonal polynomal has the smallest possible L? norm on C,,
wpq? has often an almost constant absolute value (“envelope”)
on a subarc A,, but probably a fast varying phase there. As
a consequence, the integrals we need, involving w,q?, without
the absolute value, will be much smaller than L? norms, and we
will not get valuable estimates.

Suppose that, among all the possible C},’s, a miraculous one is
such that w,q? happens to have only a slowly varying phase on
the subarc where the absolute value is close to its maximum c,,.
Then, q,/w,, is almost real, we do not need complex conjugation
in the scalar products any more, and the kind of orthogonal
polynomials needed in rational interpolation look like righteous
L?—orthogonal polynomials.

Artist’s (?) view of a typical
wyq? along its support.

1.3.1. L?—orthogonal polynomials. Szegé-Widom theory: w,q?
behaves essentially outside A, |J E as ¢, 2", where ® maps the
exterior of A, on |®| > 1 and behaves near E as dictated by
c,®" = f exp(—2nV, ;i + 2nV, p).

For instance, if all the interpolation points are concentrated

What we’d like to see.

on zp, c}/ ) $ must have a pole with unit residue at z5. The unit residue allows to compute

cn. So, in the example above, ®(z) = [2ab/z — a — b+ 2/ab(1 — a/2)(1 — b/2)]/(b — a) maps

1Actually7 t™q(1/t) is orthogonal with respect to a fixed weight on [b~", a™], so that 2~ "¢g(z) involves mainly the
logarithm of 2~ — (a ™' +b7')/2+ /(21 —a=1)(2~1 — b=1), which is the “usual” potential related to an interval.
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indeed the exterior of [a,b] on |®| > 1, and has a pole at z = 0 with residue 4ab/(b — a), whence
cn = [(b— a)/(4ab)]*" as already found.
Remark also that log @ is the complex Green function of A,, with a singularity at a given point.
“Essentially” means that only n'" powers are considered for the moment.
If the interpolation points are spread on an arc E with a known distribution, log ® is a sum of

Green fuctions
2n

log ®(z) ! Zlog@z zi —>/10g<I>zt)d,um() (6)

5#%%H_ém%w¢@maww. (7)

In the example above,

B(x:t) = (2t —a—b)(z—t)+2(t —a)(t —b) +2\/(t —a)(t —b)(z —a)(z — b)
’ (b—a)(z —1t)

such that |®| > 1 outside [a, b] (there can be no doubt: the other possibility is 1/®). The residue
at the pole z =t is 4(t — a)(t — b)/(b — a).

The z—derivative is de(zt)/d> =— L (t=a)t=b) .

D(z;t) z—t\l (z—a)(z—0b)

Let E be another interval [c,d] with a uniform distribution du,(t) = dt/(d — ¢) (here is

where point distributions are replaced by easier smooth distributions). So we have log ®(z) =

fcd log ®(z;t) dt/(d — c), with the eerie ®(z;t) just above. But use

, with the square root

1 (2t —a—"0b)(z—1t)+2(t—a)(t—Db) a+b—2z (z—a)(z—=0)
D(z; =2 =2 4
=0+ 500 b—a)z—1 b—a o a)-0 "
t=t(®)==z2— b= a)(@ -(|-z<1>_ ?;(Z _(z)+ SEWPE with poles ® = ®*!(z, 00) and residues
+0+, /(2 —a)(z — b), and
1 P(z;d)
log ®(z) = —/ log ®(z;t) d log ® dt(®)
C Jd(z0)
dlog ®(z;d) — clog ®(z;¢) 1 ®(=d) 1(P)
= - —=dP
d—c d—c Joe @

turning as

(d — 2)log ®(z;d) — (¢ — z) log ®(z; ¢)

d—
Eo a0, (B~ BB /s
d—c (P(z;d) — 1/P(2;00))(P — P(z;00

)
P'(2) /t—a(—b
D(2) —c/ (z—a) dt

A more interesting interpolation points distribution is the Chebyshev distribution on [c,d] :
dpni(t) = 7Yt — ¢)(d — t)]7"/2dt. Then, log®(z) is the constant term of the Chebyshev
expansion of log ®(z;t). The z—derivative is

P'(2) (t—a)(t—

1
®(2) __m/(z—a)(z—b)/c z—t\ (t—c)(d—

a typical complete elliptic integral of the third kind. “Simple examples” do not seem much easier
than the “big” example. But suppose that [c,d] is far from [a,b]. Then, for z near [c,d], ®'/P is

Awful. From the derivative above:

2See that ® + 1/® = 2(2ab/z — a — b).
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not far from —7~! fcd(z —t)"(t—c)(d—1t)]"V2dt = —[(z—¢)(z —d)]~ /2, which is pure imaginary

on [c,d], so the rational interpolant is close to the best rational approximation. And the error
b—a 2n

(c+d—2a)(c+d—2b)

norm, from ([), is about ¢, ~

1.3.2. Experiment with several poles supports. So far, with real intervals [a, b], [c, d], we discussed
actual orthogonal polynomials as true denominators of rational interpolants. But let us keep |c, d]
real, and try several arcs joining two fixed nonreal points, say ia and —ia.

to be continued

2. ‘1/9’, again and again, ad nauseam.

OK, back to ‘1/9’. Now, according to Trefethen et al. [8,10] recent work, I stick to rational
approximation to e* on (—oo, 0].

There are still things to find! Did anybody see that the denominators in Carpenter et al. [2]
look like exp(—0.712z) (after z « —z)ﬁ,, and, of course, the numerators look like exp(0.288z).
What can these numbers be??

We try to go further in investigating the distributions of poles and interpolation points.

2.1. The complex potential.

bn

2.1.1. Conditions. As we suspect the poles to be distributed on
E " an single arc A, joining a,, and b, (still unknown), V), is a func-
tion with branch-points such that
1. its derivative V), takes opposite pure imaginary values on the
two sides of the negative real axis = F,
2.V, —f'/(2nf) = V), —1/(2n) takes opposite values on the two
sides of A,,, and vanishes at the endpoints a,, and b,.
3. for V, itself, V,,(—oo0 + 0i) — Vp,(—o0 — 07) = 27i.

an

2.1.2. First integral formula. The second condition means that [V}, (2)—1/(2n)]/\/(z — an)(z — by)
has no more branchpoints at a, and b,, and can be recovered at any z ¢ E through a Cauchy
integral on a contour allowed to stretch up to the two sides of E. Same experiment with a further
multiplication by +/z:

\/<z ) Eh) (‘W) - %> =3 /_: \/ (Tt ®)

Explanation: there should be a numerator V/,(t) — 1/(2n) in the integral, but vtV (¢) has no
branchpoint at 0, and its contributions from the two sides of E cancel, only —1/(2n) remains,
whose equal contributions on the two sides are added.

Signs of the square roots: if the square root in z at the left is positive for positive z, square
root inside integral is positive. \/zV) (z) must be positive if z is a small positive number.

3Coefficient of z in denominators of [2] behave like 0.712 + 0.18/n.
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2.1.3. Transformation of (). : the derivative of the left-hand side of () is

2\/2:(2“@;;;5 = <V£L(z) - %) + \/(z — an)z(z — bn)v;[(z),

and we integrate by parts (in t) the z—derivative of the right-hand side to get

1 /0 (t? — apby,)dt anby — t2
27m/_oo2(z—t)\/ t(t — an)3(t — by)3 27m/ \/t—an )t —bp) 2(2 — 1)z (t—an)(t—bn)dt

( must decrease faster than |z|~! for large 2z, remark also that t* — a,b,

over the big /" is the derivative of a function vanishing at 0 and oo
so, replace 1/(z —t) by 1/(z —t) — 1/z =t/[2(z — t)])

b _ 2
27m/ \/ —ap) t—b) 2(z —t)z(z — an)(z bn)dt

/ —t [2a,b, — (an + bn)t]z + 2a, byt — anby(ayn + by) gt
27m —ap)(t —by) 22(z — ap)(z — b)) (t — an)(t — by)
which is
anb, — 22 ( ' (2) - i) a polynomial of degree < 1 in z
2v/2(z — an)3(z — b,)3 \ " 2n 2(z — an)(z — by)

and what remains is
this polynomial

V23 (2 — an)(z — by)

but, as V, is the potential of the sum of two opposite charges, V/(z) must decrease faster than
|z|=2 for large z, this implies a first condition on a,, and b,

0 —t 0 —t
2t | \/<t e [ \/<t —ap-syp ¥

leading to (in?)famous elliptic integrals (to do: look at Carlson’s forms). Elementary change of

an + by
iable t = —u+/a,b,, and
variable uvapb, an SN

Vi) =

= —cos 0 leads to

o0 1 2
0(1 -2
0:/ \/ “ 53 (1 —ucosf)du = — cosfl £ u) — 2u du (10)
0 (1 — 2ucos 6 + u?) 0 Vu(l —2ucosf + u?)3
(put u < 1/u in the integral from 1 to oo). Apply a crude integration formula:

cos 6 | 0 0.25 0.5 0.6 0.65 0.7 0.75 1
(i) |0.8472 0.5919 0.2656 0.0998 0.0045 -0.102 -0.224 —o0

Root is cos @ = 0.6522295... (computed through elliptic integrals [5]).
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We have now

Im V)
VIO o , ()
T~ VA \/23(2 - an)(z - bn)
RN / with some (still unknownﬁ) constant A,,, as already stated by
A Gonchar and Rakhmanov [4]. When one crosses the line of
poles, V! is replaced by its opposite. The picture at left shows
Im V), V/'(z) for positive z, and its imaginary part on the upper side

< of (—00,0).

\\‘\\ \/ /\/ A, dt (1)

t3(t — an)(t — by)

- - to be sure that V'(co ) 0. The path of integration in (2

ImV, ~_ /ﬁn\ joins oo to z by avoiding the cutﬂ —00,0) and (ap,by,). The
\

continuation from small positive z to large z would exhibit —1/n
as limit. However one switches to 1/n — V), by crossing the line
of poles. We also have V) (a,) = V), (b,) = 1/(2n), allowing a first connection between A4,,, a,

and by,:
dt _ An(anbn)_3/4i/ du ’
\/t?’(t - an)(t - bn) exp(i6) \/u3(u2 — 2ucos 0 + 1)

or A, = —X(anbn)?’/‘l/n7 where X = 0.369. .. is a computabld] constant, as 6 is known.

—t)dt : dt
(2 — 2V (2) — Ay / : (13)
\/t3 t—an)(t —by) 0o \/t(t —an)(t —by)
where the imaginary part depends on the integration contour, as the periods around (—o0,0)
and (ay,by,) are 2w and —27i (V,, looks like log around the first cut (negative unit charge), and

—log around the second cut (positive unit charge)). These periods values allow at last the full
determination of a,, and b,:

0 o)
- _An/ - _An(anbn)_1/4i/ du 5 (14)
—oo V/H(t —ay)(t —by) 0 vu(u?—2ucosf+1)
or A, = —(anbn)1/4Y, with another computable constant Y = 0.677.... Then, Va,b, = nY/X

remains, as well as A, = —/XY aypb,/n. Funny thing is that the product XV is exactly 1/4, I
have a proofl hidden in [5], but not a fast one.

2.1.4. Some constants. a,/n and b,/n = —1.19489931555068 F 1.38871265581533 4, \/anb,/n =
1.83202271130168, 6 = arg (—a,) = 0.86027434674909, sin § = 0.75802152847146,

cos 0 = 0.65222953196998, cos0/2 = k = 0.90890855754855, K(k) = 2.32104973253061, /" =
‘1/9' = 0.10765391922651 = exp(—7K(v/1 — k2)/K(k) = —2.22883364871411).

4actually7 related to a, and b, by an integral formula, but a simpler one will be considered further.

5However, the path may accumulate any number of tours around the cuts: the periods about (—oo,0) (there is
a nasty pole on this one) and (an,b,) do vanish. From this latter cut, an interesting variant of the condition on
b
n dt

o VPG —an) by

cos @ follows: choose the circular arc t = v/anbp expip, § —m < ¢ < ™ — 0. Then, 0 =

T—0

cos ¢ dy

o_r \/COSQFcosB
60f course related to elliptic integrals, see later on
"That X = K(cos/2)/(2r) and Y = 1/(2K(cos 6/2)).

const.
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2.1.5. A littlebit AGM.

Let us consider transformations of the two integrals

z dt o dt
F(z’a’b):/oo t(t—a)(t—b)’ G(z’a’b):/oo Bt —a)(t—b)’

t—2\/E+a—b

where we put u = —t Remark that (t —a)(t —b) = 4t(u — @), with @’ = (a +b)/4 —

Vab/2. t =2u+ Vab + \/4u2—|—4u b, dt/t = du/\/u(u — V), with b = —/ab.

F(z;a,b) = F(z';d,1'),

. ovary @

with 2/ = ————— 2 This transformation is convenient when a + b < 0 and ab > 0.

Starting with the a and b above, fast convergence to a common limit occurs: from a,b =
—1.19489931555068 + 1.388712655815331,

—Vab -1.83202271130168 -1.66514111992540 -1.66704022256651 -1.66704049330862
(a — 2vab + b)/4 —1.51346101342618 -1.66894149114466 -1.66704076405077 -1.66704049330863
b Vi a

and when a = b, F(z;a,a) =

VAT v

G(z'ab):/Z, 2u+Vab — Vdu? +4duvab  du
Y o0 aby/u(u —b') VAa(u —a’)

_ / {3 d N(u—a')(u—b’)_ F] +1/<2m>+<a'b'>/<abu>}du

ab du u Vulu —a)(u—V)

2 (2 =d)(Z =) —— | F(dV) Vo,
_%[\/ i —VZ —a 72\/% +EG(Z7(I,Z7)
u—a'b /u

. d Ju—d)u=0V) d T
usmg%\/ » —@\/u—a—b +ab/u_2\/u(u—a/)(u—b/)

2.1.6. Playing with Legendre expansions. :

Whenever |t = —uv/a,b,| < or > Va,by,

L = ! i (cosB)u ZP (cosf)u
0

V(A —t/a,)(1—t/b,)  V1—2ucosf + u?

— const. +Z a(cos 0) 21/ _ipm(cosg)(_m)mﬂz_m_g/g 5)
B 0 2m)(vab)r 2 o

The constant vanishes, as V has opposite (imaginary) values on the two sides of (—o0,0).
Check that V! (a,,) = V! (b,) = 1/(2n): the two slowly convergent series at 2 = —v/a,,b,, exp(+if):

NOYAE

nineleg.m

ab4=sqrt (1.8320227113) ; th=0.86027434675;c=cos(th);
sqrtz=ixexp(-ixth/2); Vp=1/(abd*sqrtz) ;Vp2=-1/(3*abd*sqrtz~3);
PO=1;Pl=c;sm=-1;

for m=1:1000,Vp=Vp+sm*Pl*sqrtz” (2*m-1)/(abd* (1-2*m)) ;
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Vp2=Vp2-sm*P1lxsqrtz” (-2*m-3)/ (ab4d* (3+2*m) )
P2=((2*m+1) *c*P1-m*P0) / (m+1) ; PO=P1;P1=P2; sm=-sm;
if mod(m,100)==0, [m/100,Vp,Vp2],end;
end;

n1| 1 10 100 200 500 1000

0.5090 - 0.2335i 0.5078 - 0.1084i 0.5026 - 0.03361 0.5018 - 0.02391 0.5011 - 0.0151i 0.5008 - 0.0107i
0.3173 - 0.0153i 0.3984 - 0.0080i 0.4666 - 0.0024i 0.4762 - 0.00181 0.4849 - 0.0011i 0.4893 - 0.0008i

i (cos §)zm+1/2 B Z 2Py, (cos 0)(—v/anby, )"+ z—m—1/2 (16)
5 1—4m2 —Vapb,)™ 2m+1)(2m+3)
choosing V,,(0) = 0.
At 2z = —a,b, exp(—if),
.V=2*abdx*sqrtz; ... V=V+sm*2*Plxsqrtz”(2*m+1)*abd/(1-4*m*m) ;
V2=2%ab4/(3*sqrtz) ; V2=V2+sm*2*P1*sqrtz” (-2*m-1) *ab4/ ((2*m+1) * (2*m+3) ) ;

value of V,,(2) — z/(2n) is found to be 1.1144... 4+ 1.5708...i = —(log¢,)/(2n) + mi/2 with the
first series; —(log¢,,)/(2n) — mi/2 with the second one.

The poles cut A,, is the locus where the real part of V,,(z)—z/(2n) is the constant —(log ¢;,)/(2n).

Reversion of the first series ([I6)

z z z 20089 3/2
Y = Va(z) — — =2,/2 :
Val2) 2n n 3\/a1b1 < >

\/E Y N y? N cos v 4
n 2 16 24+/a1by 64
%nineleg.m

ab2=1.8320227113;ab4=sqrt (ab2) ;th=0.86027434675; c=cos(th) ;
sqrtz=ixexp(-ixth/2); Vp=1/(abd*sqrtz) ;V=2*abd*sqrtz;
dirser(1)=2;dirser(2)=-1/2; % direct series for V
PO=1;Pl=c;sm=-1;
for m=1:30,Vp=Vp+sm*Pl*sqrtz” (2*m-1)/ (abd* (1-2*m)) ;
dirser (2*m+1)=2*%P1*sm/ ((1-4*m~2)*ab2"m) ;dirser (2*m+2)=0;
V=V+sm*2+P1*sqrtz” (2*xm+1) *ab4/ (1-4*m+*m) ;

P2=((2*m+1) *c*P1-m*P0) / (m+1) ;PO=P1;P1=P2;sm=-sm;

if mod(m,10)==0, [m/100,Vp,V+abd*abd*exp(-i*th)/2],end;
end;
remser=dirser; dirserp=dirser;
% reverse series
for m=2:25,

dirserp=conv(dirserp,dirser);

dirserp=dirserp(1:62);

invser (m)=-remser(m)/dirserp(1);

remser (m:62)=remser (m:62)+invser (m) *dirserp(1:63-m) ;
end;
invser(1)=1;invser=invser/2;

>> invser’

0.50000000000000
0.06250000000000
0.00079099694365
-0.00438843941022
-0.00175241217516
-0.00017749173926
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0.00017594354142
0.00011197044512
0.00002432567762
-0.00000832085472
-0.00000889811069
-0.00000296374323
0.00000025219279
0.00000074799463
0.00000034599104
0.00000002544551
-0.00000006162914
-0.00000003920805
-0.00000000772542
0.00000000458961
0.00000000429681
0.00000000133248
-0.00000000025095
-0.00000000045047
-0.00000000019381

Nice “sine wave” (Henrici), these Taylor coefficients behave like real parts of powers of about

e™/3 /1013 ~ 0.3 4 0.4i. It figures: the direct series of Y = Vi(z) — 2/2 has singularities at a;
and by with behaviour —log(c;)/2 £ mi/2 + A1 (2 — a1, b1)%? 4 --- = 1.1144... + 1.5708...i+ const.

(z

near a; or by, and coefficients behaviour as n

—ay,b1)??+- - whence for the inverse function z = a; or bj+ const (Y — (log ¢; £7i)/2)%/3+- - -

~5/3 times a combination of n'* powers of 2/(log ¢; &

mi) = 0.300... 7 0.423...0 (Darboux).

>>

yy

Locus of poles A,,/n is the image of [1.1144.. — wi/2,1.1144.. 4+ wi/2]. With 100 terms:

yy=1.1144168...+(0:0.05:0.5) *pix*i

= 1.1144168 , 1.1144168+0.0157796...1, 1.1144168 + 0.314159265358981 , 1.1144168 + 1.570796326794901

(yy.~100.*polyval (invser,1./yy))." 2
.39243973943344

.38283919896697 + 0.119487584409981
.35378081869954 + 0.23932622697562i
.30445719600034 + 0.359905636159291
.23338515636343 + 0.481703940364781
.13814111186681 + 0.60536640116891i
.01482293663859 + 0.731851914245001
.14313215474693 + 0.862752325715281
.34802443454987 + 1.001146037116271i
.62904340404614 + 1.154836080350051
.15073795280994 + 1.348475000687451

The last item should have been —1.194899... + 1.3887...7

2.2. Distributions of interpolation points and poles.

2.2.1. Interpolation points. As the second term of V;(2) := V], ;(2)=V,, ,(2) = / _—
E

is

z—1

dpni(t) / dpin,p(t)
z—1 A
real on the two sides of £ = (—00,0) (the distributions are symmetric with respect to the real

axis), we immediately have
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Vi (z £ 0i) = Fripy, ;(2), z2<0
(Sokhotskyi- Plemelj formulas). This means that, for any reasonable f,
1 10 t du
— F(@5) = mrn—oo —/ f(t)/ dt
m+mn+1 ZO: 277—\/5 —o0 —00 \/_u3(1_u/an)(1_u/bn)
1 0 F(t)dt
o / ®) (17)
21v/n J oo \/—13(1 — t/an) (1 — t/by,)

where F(t) = fgf(u)du Check with f(¢) = 1: use ([d), knowing A,, = —v/a,b,/2. No many
other elementary examples: with f(¢) =t in order to discuss (zg + - - - + Tintn)/(m +n + 1), the
integral is divergent (result is of order n?, see below).

1/(2ny/7)

N;z,i(t)

. "
For large (negative) t, i, ;(t) TR0 e =1/
is about (vaibin/(27))(—t)~%/2, so ,u;m(t) ~ (Varbin/(3m))(—t)=3/2,
and fi, ;(t) ~ =1+ (2y/a1bin/(37))(—t)~1/2. This means
that the most negative interpolation points are in the
n3 range. Indeed, pi, ;(t) = —1+k/(2n) = t ~ —(16a1b1/972)(—n3/k?).
Near the origin, u;, ;(t) = (1/(2my/n)) (=) 7320t 1/?),
pin () ~ (1) (/) (=) 712, i(8) ~ —(2/ (/) (=) 1/2.
Corresponding interpolation points are at about pu,, ;(x;) ~
i/(2n) = z; ~ —j?7?/(16n). Here are samples of small-
est and largest interpolation points for best approximants
of degrees (n —1)/n:

n Zo z1 T2 Ton—3 Zon—2 Zon—1

2 ]| —0.062 | —0.574 | —1.891 || —0.574 | —1.891 | —5.751
3 || —0.043 | —0.402 | —1.185 || —2.612 | —5.359 | —14.906
41| —0.034 | —0.311 | —0.892 || —5.874 | —10.905 | —29.745
5 || —0.028 | —0.254 | —0.715 || —10.432 | —18.993 | —53.292

The smallest points happen to be about 1,9,25,... times —m2/(64n + 32): a better formula is
z; ~ —(j +1/2)*72/(16n + 8), corresponding to i, ;(z;) ~ —(j +1/2)/(2n + 1).

Zon_1 is about —0.4n3, and x9,_» and a,_3 about 3 and 5 times smaller, I hope that no strongly
accurate estimate will be needed. However the expected value of z,, is about —16a1b1n3/(97%n) ~
—0.6045 . .. n, whereas the formula for the small x’s predicts x,, ~ —n?72/(16n) ~ —0.6185...n.

2.2.2. The potential function of the distribution of the interpolation points. When f(t) = log(z—t),
F(t) = (t—z)log(z —t) —t+ zlog z, ouch, I try differential equations for V, ;, as above in section
for V,:

0 ul .(t)dt
Vo= [ el

I
_/omwwﬁ: +/emmwﬁ]
oo (2 —1)2 e z—t
hmm, multiply by z =z — t + ¢

Eﬂgm,i(g dt

)1 /0
Z—¢€ 2mV/n oo (Z_t)\/_t(l_t/an)(l_t/bn)

V;:,i(z) =

. [ N;z,i(g)
m J—
e—0 zZ— €

2V, i(2) = lim —
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this begins to look like (), leading to

Vi T (0= 5) =1+ V000

Vni(z) = =272 = Vi(2) 20V, (2) = 1)

Vni(2) = 271+ V,(2) = n(Vy(2)) (18)

Wow! Remark that V, — n(V,)? = nV/,(1/n — V!) is precisely the product (i.e., a symmetric
function) of the two determinations of V/ near the cut (a,, b,): there is no more any branchpoints
there.

Series: from ([0,

Py(cos )Py, (cos 0)

, = Pyp(cosf)zm1/2 e Lk (1-2k)(1—2m+2k) ,,_
Vv, (2) = Zo: (1= 2m)(—vaub)m \/ﬁmzz:l CVad) om—l

5 Py (cos )Py, —k(cos )
i (c08 0) (—v/anbn)™ Jr i F=0 (3 4 2k)(3 + 2m — 2k) (—/anbn) ™2

3+2m Zm+3/2 »m+3
0 m=0

the series are not easier than before, integer powers of z are added to the series of ([[H). And the
convergence radius is not changed. Only the singular points on the second sheet Re/z < 0 are
still there. Also, the series for |z| < vab and |z| > Vab must be the perfect continuation of each
other.

2/anbn || 3/5 | 4/5 1 1 6/5 7/5
nV (z) || 1.3050 | 1.2222 | 1.1715 || -0.1715 | -0.1377 | -0.1138
nV’ (z) || 0.5117 [ 0.4108 | 0.3449 || 0.3449 | 0.2982 | 0.2632

How to decide the constants in the series for the integral V), ;7

Vn.i(z) = const. + 2(z/n)"? — 2cos 0(z/n)//arby + 2 cos 0(z/n)>/?/\/arby + - --
= const. + log(z/n) + 2v/a1bi (n/2)"/? /3 — 2a1b1(n/2)*? /15 + a1by (n/2)? /18 + - - -

if we drop the last constant, so as to have a potential with lim[V, ;(z) —log(z/n)] = 0 for large z,

we find that 0.3946 must be subtracted from the first series, so

2/Vanbn || 0 3/5 | 4/5 1 1 6/5 | 7/5
Voa(z) || -0.3946 | 1.1347 | 1.3022 | 1.4399 || 1.4399 | 1.5573 | 1.6599

2.2.3. The distributions of poles.

And of course, from V, =V, ; — V. p:

Vip(2) = 271 = n(V,(2))? (19)
Must indeed be near z~! for large z.
Check near the origin: z='—[2=1/2421/2(cos 0) / (n/a1b;)—2%/%(3 cos? 0—1)/ (6narby )+ - - |* =
—2cos0/(nyaiby) + z/(3n%a1by) + - -
Denominator = [[(1—z/poles) ~ exp(n(Vp(2)—Vnp(0)) = exp(—2z cos 0//ar1bi+22 /(6na1 by )+
-+ ), has a fixed limit when n — oo. Moreover, exp(—2zcosf/v/a1b1) = exp(—0.71203...z) fits
with tables from [2]
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3. A family of ‘1/9’ rational interpolants.
3.1. Trefethen’s problem.

3.1.1. Problem. Show that the best rational approximations t,, of degrees m and n (m < n
and m ~ n) to exp z on (—o0, 0] satisfy

lim sup [|e* — (2 )Hl/" <1/9 (20)

n—oo

for any compact set K C C. (Trefethen, 2005 [8]).

3.1.2. Strategy. Current asymptotics [4] consider only weak limits of distributions, one could have
errand poles visiting sometimes any bounded set (but avoiding the negative real axis).

Also, Aptekarev’s near-best approximant [1] has a most decent behaviour, but there is no solid
proof that the actual best approximant is equally well behaved.

I intend to study a family of rational functions, containing the best approximant, interpolating
e” at points close to be equidistributed with respect to p, ;. Of course, ‘close’ will have to receive
an accurate description.

First thing is to be sure of the denominator.

If denominator ¢ is innocuous, we consider ¢ and ¢(z)e®* — p(z), which is the polynomial inter-
polation error

Q(:L')ex - p(:L') = [:L'O’ <oy TmAns :E]q(:(:) exp(x) (l‘ - :L'O) T (l‘ - :L'm-l-n)' (21)
The product of the z — z;’s behaves like exp(nV, i(z)), and the divided difference will be
explored right now.

3.2. Retrieving the denominator.

3.2.1. Scalar product.

Denominator ¢ is the orthogonal polynomial of degree n with respect to the scalar product

(fa g>n = [.Z'(), oo 7xm+n]f(x)g(x) exp(z)

g f(x))g(z;) exp(z;)

Z H (zj — zm) (22)
m#j

1 Bt exp(t) de

2mi Cn (t - xO) e (t - xm-i—n)

as seen in (Bl). Is there any chance to get accurate estimates of such things? First elementary
fact is of course that the divided difference = 1 for ™"  suggesting an order O(1/(m + n)!
for the simplest scalar products. Probably not wrong, but no easy correction coming from e* =
2™ (mo n)! 4+ 2™ (m 4+ n+ 1) 4 - -+ yielding the useless 1/(m + n)! + (zo + - +
Tm4n)/(m + n + 1)l Useless because e” is so small at the most negative x;’s. The divided
difference is also a particular value of the (m + n)™ derivative divided by (m + n)!, and this
derivative involves the exponential of a presumed strongly negative number. Ah, there is also the
B-spline formula

x0 T m-+n
o= [ o (o] o (23)

m—+n
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where B(z) is actually (deBoor [3])

B(m) — (m + n)[l’o, e ’$m+n](._t)r+n71
:M(Z';.Z'm+n,...,(£0)
B(x; Zmgny - - -
= (m+n) (@5 Zme xo).

(1’0 - wm—l—n)

m+n=1 m+n=2 m+n=3

1/(zo — 1) 2/(wo — x2) 3(wy — x3)

I i) T2 T1 Xo

3.2.2. The shape of things to come. Here are some instances of B(z) and B(x)e® on the z;’s of
best approximants, m =n — 1:

m=1n=2

0.43 1.25 1071
—4 —1.6 —4 -1.0
| | |
[ | [ |
0.24 m=2n=3 2.59 102
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m=3n=4

0.15 5.31 1073
-8 48 -8 —26
| | | |
[ | | |
0.1 m=4n=>5 1.08 103
~10 7.0 ~10 34
| |

| |
Tt seems that the scaled B (z)e” tends towards a fixed function.

3.2.3. B—spline towards Gaussian. Well-known and linked to the central limit theorem, but has
only been worked for cardinal (equidistant points) B-splines [11].
Let us look at the moments of a B—spline defined on a set of real points tg,...,tn: apply

f(t) — interp. off at tg,...,tn—1 < fN)(g)
[to,...,tN] = = MN(x)dm:
d (t_tO)"'(t_tN—l) at t=tn —00 N!
tN+T —interp. at tg,...,tN_1 (N +nr) [
toy...,t r = L =" "M dz. The nu-
or st (t—to) - (t—tn-1) at t=ty Nlr! /—oow w(z)dz. Thenu

merator is (t —tp) -+ (t —tn—1) times a polynomial of degree r such that the product has no term
n tNtr=1 V. In other words, what remains is the singular part of the Laurent expansion of
tNHT /((t—tg) -+ (t—tn_1)) at co. This expansion involves the complete homogeneous symmetric

functions of tg,...,ty_1, and the result is the same function h, for tg,...,ty, so, for large N,
o0

/ "My (x)dz ~ rIN""h.(to,...,tn). Fourier moments:/ et My (z) dx ~ Zz’rer_rhr(to, .

—00 0

N
H (1 —i&ty/N)~". If the t;’s are regularly distributed on an interval (a,b) with respect to a
0

o b
measure dy with finite moments,/ T My () dz ~ exp[—N/ log(1 — i€t/N) du(t)], involving

— o a
only the first moments of dy when N is large, whence the Gaussian look.

3.2.4. Moments and recurrence relations. With the distribution p, ; of the interpolation points,

oo 0
| e M (5) do ~ expl(m 4+ 1) / log(1 — i€t/ (m + 1 + 1)) ditn (1)

:_exp[—(m—l—n—l—l)10g(—z’£/(m—|—n—|—1)) (m+n+1)Vn7i(—i(m+n+1)/5)]. Polynomial moments
of € My, 1n+1(x) ask for derivatives at £ = —i:
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I
.

x€* My yni1(x) dx ~ ete.

" My ny1(z) de ~ ((=1)™ " /(m +n+ 1) expl—(m +n + 1)V i(m +n + 1)),

Now, as Vy.i(z) ~ a fixed function V;(z/n), (1,1), ~ (2n) 2" exp[—2nV;(2)] ... and V;(2) =
1.495 according to series calculations made above.

Let us explore some moments computed with interpolation points of actual best approximants,
still with m =n — 1:

n=1

n =2

(1,1), | 5.44883 10°1 3.12788 10% 4.56673 10~* 2.811210°° 9.3567 10~

an approximate exponential pattern appears with
(2n — 1™ 11, 1),

n

(2n — 1)z, 1),

(2n — 1)%™

CU s W N~

6

0.5448824
0.8445255
1.4280243
2.3184672
3.6289523
5.5149784

0.2432842
1.3814579
3.9964734
9.1527609
18.4766184
34.3675234

2n—1)""""2z% 1), @2n-1>""1% 10, 2n -1z 1),
0.1258217 -1.9972810
5.3448847 -4.7087498 -10.2860880
23.0989445 17.2386863 -69.4132043
68.1524072 140.5080478 -47.5999317
166.4234039 547.7093760 734.8526838

the (1,1),’s behave like powers of about 1.6, the (z,1),’s are about n times larger, etc.

77

Much more accurate estimates will be needed in order to discuss the 3-term recurrence
relation of intermediate polynomials g, amounting to the building of the denominator polynomial
qn (for each n, the whole set of intermediate polynomials is to be computed again, they should
receive two indexes, but what follows is for a fixed n).

Keeping qi(0) = 1, the recurrence relation is

with 79 = 0. Then,

or

Qog1(z) = (1 — v — 0p) @ () + Veqr—1(x)

L=k @Gk, qi)n

O

(@s @r)n

e (@@r—1, Ge)n = — (@ Ge)n/ k-1

Sk

)

(k=1 k—1)n

(qku Qk>n

6 (Ge@k)n k1 (Qe—1, Gh—1)n
allowing progressive calculation of the 4’s and the §’s
Here is how they look:

n gi! V2 V3 V4 V5 Y6

2 | 1.6410

310.7197 2.3551

4 10.4521 1.2316 2.7843

51 0.3280 0.8223 1.6250 3.0808

6 | 0.2569 0.6141 1.1340 1.9385 3.2983

710.2109 0.4890 0.8670 1.4018 2.1990 3.4767

n 50 (51 (52 53 54 (55 56
1] 2.2397

210.6113 1.0623

310.3573 0.4925 0.7769

410.2533 0.3175 0.4213 0.6138

51 0.1964 0.2338 0.2873 0.3694 0.5099

6 | 0.1605 0.1849 0.2175 0.2627 0.3295 0.4369
710.1357 0.1530 0.1750 0.2037 0.2427 0.2985 0.3839
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Gk — k-1 = —0k—12qk—1 — Vh—1(qk—1 — Qk—2), ---,
k-1

qx(z) =1— a:Z(l = Vi1 + Vi1 Vie2 — o+ (=1)
0

k—1—j
Tt m-1)0545 (@)
?
There must be a representation problem, as the “plain” writing of the successive ¢;’s is very
smooth:
with m =6,n =7,

1.0000
—0.1357x + 1.0000

qo0(z)
q1()
g2() = 0.02082% — 0.2601z + 1.0000
g3(x) = —0.00362> 4 0.05612% — 0.3743x + 1.0000
(2)
(z)
(z)
(

qu(z) = 0.0007z* — 0.01192% + 0.101722 — 0.4790z + 1.0000

5(x) = —0.0002z° 4 0.0026z* — 0.025023 + 0.15402% — 0.5749x + 1.0000

g6(z) = 0.0001z°% — 0.0006z° + 0.00602* — 0.04222% + 0.21052% — 0.66242 + 1.0000

g7(x) = —0.0000z" + 0.00012° — 0.00152° + 0.0104z* — 0.06312> + 0.26862 — 0.74192 + 1.0000

Q

3.3. Error function behaviour.
Asks now for a discussion of (ZII)
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