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1. Preludium.

Let ρ be a weight function of support s. The Padé [n − 1/n] rational approximation to

f(z) =

∫

s

ρ(t) dt

z − t
∼

m0

z
+

m1

z2
+ · · · about z = ∞ is

νn(z)

pn(z)
of degrees n− 1 and n such that

f(z) −
νn(z)

pn(z)
= O

(

1

z2n+1

)

, when z → ∞, or

qn(z) := pn(z)f(z) − νn(z) = O

(

1

zn+1

)

.

Remark that pn(z)f(z) =

∫

s

[pn(z) − pn(t) + pn(t)]ρ(t) dt

z − t
, that the part involving pn(z)−

pn(t) is a polynomial of degree 6 n−1 in z, and that what remains is at most O(1/z): this
means that we just encountered the numerator polynomial νn and the remainder qn:

νn(z) =

∫

s

[pn(z) − pn(t)]ρ(t) dt

z − t
, qn(z) =

∫

s

pn(t)ρ(t) dt

z − t
,

and that this latter qn(z) is only O(1/zn+1) amounts to the orthogonality of pn and all
polynomials of degree < n with respect to ρ.

2. Thema.

Let {b0, . . . , bn−1} be a basis of the space Pn−1 of polynomials of degree 6 n − 1, and
R an operator. We consider a matrix representation Ri,j = 〈bi|R|bj〉, where 〈 〉 is tha
scalar product 〈f |g〉 =

∫

s
f(t)g(t)ρ(t) dt. The matrix R of finite order n does not tell

everything on the operator R, it only allows to recover the orthogonal projection (Galerkin

approximation [2]) on Pn−1 of Rr, where r is also in Pn−1. So, if the expansion r in the
bi’s basis is r =

∑

k αkbk,

R





α0

...
αn−1



 =





〈b0|R|r〉
...

〈bn−1|R|r〉



 , r = [b0 · · · bn−1]R
−1





〈b0|R|r〉
...

〈bn−1|R|r〉



 .

Well, for a fixed z, let R be z times identity minus the multiplication operator by

the variable, that is, Rf(t) = (z − t)f(t). Let us take r(t) =
pn(z) − pn(t)

z − t
, then Rr(t) =

pn(z)−pn(t) which is reduced to the constant pn(z) when it comes to orthogonal projections
on Pn−1:

νn(z) = 〈r|1〉 = pn(z)[〈b0|1〉 · · · 〈bn−1|1〉]R
−1





〈b0|1〉
...

〈bn−1|1〉



 ,
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or

νn(z)

pn(z)
= 〈r|1〉 = [〈b0|1〉 · · · 〈bn−1|1〉]R

−1





〈b0|1〉
...

〈bn−1|1〉



 , (1)

the Nuttall’s compact formula [1]. Of course pn(z) is (a constant times) the determinant
of R, i.e., det [z〈bi|bj〉 − 〈bi|bj+1〉].

Remark also that if bk = pk, the basis of orthonormal polynomials, R is zI − J , where J
is the jacobi tridiagonal matrix of recurrence coefficients.

3. Variations.

If





α0

...
αn−1



 is R−1





〈b0|1〉
...

〈bn−1|1〉



, then









0 〈b0|1〉 · · · 〈bn−1|1〉
〈b0|1〉

... R
〈bn−1|1〉

















−1
α0

...
αn−1









=









νn(z)/pn(z)
0
...
0









,

so νn(z) = −
pn(z)

det R

∣

∣

∣

∣

∣

∣

∣

∣

0 〈b0|1〉 · · · 〈bn−1|1〉
〈b0|1〉

... R
〈bn−1|1〉

∣

∣

∣

∣

∣

∣

∣

∣

or also

qn(z) = pn(z)f(z) − νn(z) =
pn(z)

det R
det









f(z) 〈b0|1〉 · · · 〈bn−1|1〉
〈b0|1〉

... R
〈bn−1|1〉









, but this does

not suggest the O(z−n−1) behaviour for large z. However, the latter matrix can be written

as

〈









1
(z − t)b0

...
(z − t)bn−1









∣

∣

∣

∣

1

z − t

∣

∣

∣

∣

[

1 (z − t)b0 . . . (z − t)bn−1

]

〉

, and considering that 1, (z −

t)b0(t), . . . , (z−t)bn−1(t) are linear combinations of b0(t), . . . , bn(t):









1
(z − t)b0

...
(z − t)bn−1









= T









b0

b1

...
bn









,

so that

qn(z) = constant det

〈









b0

b1

...
bn









∣

∣

∣

∣

1

z − t

∣

∣

∣

∣

[

b0 b1 . . . bn

]

〉

= const. det[〈bi|(z − t)−1|bj〉]
n
i,j=0,

which is Pierre’s formula [4].
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