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Summary. '1/9’ = exp(—T1KK'/K), where K is the complete elliptic integral of the first kind such
that K = 2E.

Statement. Gutknecht and Trefethen (GT) have shown how to adapt the Carathéodory-Fejér (CF)
approximation scheme to the study of polynomial and rational approximation. In doing so, they
have expressed a paradigm. A demonstration follows.
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Introductory material. Consider the best Lo rational n/n approximation to F(x) = %'cka(x)

n [—1,1]. The error norm Ep is often very close to oy, the nth singular value (o1 > 02 > ...) of
the Hankel matrix H = [ckim-1] k,m=1,2,... (see L.N. TREFETHEN and M.H. GUTKNECHT,
The Carathéodory-Fejér method for real rational approximation, SIAM J. Numer. Anal. 20 (1983)
420-436).

Problem: appreciate if a,, must be expected to show a g" behaviour and give q.

00

If F is real, on = |An|, nth eigenvalue of H. P(p) = |_| (1 —An) = det(l —pH) = %d,pl (De-
n=1

00

terminant exists if Z Z lhknl = Zn|cn| < 00),
n

Problem becomes: appreciate |dp| ~ q”z/2 and give g.

00 00

dn is aseries of determinants of ordern: dg=1,d; = — %02k+1, dn=(-1)" z Zk - - det[Chk;+1]
k1=0ks

Tt

F (cos 8) exp(ik8) d6 — %/(:F((u—l—u_l)/Z)uk_ldu

_2 _g2)ylzgy = 1
Now, use cx = = F(X)Tk(X)(1—x%)"“dx = =
~1

i ) —T
(C = unit C|rcle)'

1
dn = (—1i) " Y / (“””1 )dul---/ F <M> dundet u km*"l}
kl 0k2 kKo 1 C 2 mj=1
1 ug+upt Un+upt |
= W/C /CD(Ul,Uz,---,Un)F ( 5 ) F( 5 dup---dun , after (1/n!)

sum of permutations on us,...,Un, in order to have a symmetric D(us,...,un). This function
D(us,...,un) does not depend on F, it can be found through special finite rank Hankel matrices.

2 n
. Um — U] )
The result is D(us, . .., Un) = <M> [1(2—uf) ™", checked by André Hautot.
1<m<j<n 1-umlj/ g2y

Applications.

If F((u+u~1)/2) is analytic between a contour Cy inside C and its inverse (C1) ™2, the integrals
may be performed on C; instead of C. The integral for d is then dominated by configurations
(u1,...,Un) maximizing |D(u1,...,un)|. This gives q = exp(—2/k), where K is the capacity of the
condenser (C1,CT 1) ui,...,Un are the positions of charges repelling each other on C4, attracted by
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Ci 1 according to the logarithmic potential. Such behaviours have indeed been reported (Gongar,
MATH USSR Sb. 23 (1974) 254-270). If there are still degrees of freedom on C1, minimize K on
the admissible C1’s.

If F(x) =G((x—1)/(x+ 1)) and G is entire, (+— approximation to G(z) on z € (—,0]), C1
and C7* touch at x = —1(= k = ), but there is no other constraint on C1, which can decrease in

size when n — oo.

1- 1 2
Then, withv==——.d :7// < ) G(v2)---G(v3) dvy---dvpn/(V1---Vn).
1+u n (Zm)”n! r r11<n|1_<|j<n Vi +Vj ( 1) ( n) 1 n/( 1 n)

— o0 when n — oo, estimated by values at saddle-points (Nuttall’s technique?):

G'(v3) 1 o _ _
4 = -2 m/ L = m=1.2.....n. (Any relation with Opitz-Scherer saddle-points?
Z V%]_VZ VmG(Van) —I_Vm’ 5L 5 ( Yy 10N wi pitz poi

[Constr. Approx. 1 (1985) 195-216])

Solution when G(z) = exp(z).
Assume the vm’s distributed on a curve ', = n/2rg, where Iy joins two fixed points X and

n Y
Y in the right half-plane: f(n~Y2yp) ~ n/ f(w)d(w)dw. This yields the equation for ¢:
m=1 X

Y
]é( ﬁq)(w) dw = —g, X € g, solved (assuming further ¢ to be analytic up to branch points)

Y
through X(x) = /x ﬁq)(w)dw (definition of X) =

properties of such integrals, x ¢ I'g)

= E[(XZ—XZ)(XZ—Yz)]l/Z/Y[(WZ—XZ)(WZ—YZ)]‘l/2 W W aw (inversion trick). The re-
T X X2 —w2 2 '

X

5 + %q)(x) (from the equation and the

v
maining conditions / [(wW? — X?)(w? —YZ)]‘l/ng dw = 0 (x(x) must be o(1) when x — o) and
X

Y

/ ¢(w)dw =1 determine X and Y. Practically, with X and Y = Rexp(=+i6p), the conditions turn
X

into a complete elliptic integrals equation K(sinB8g) = 2E(sinBp) giving

k=sinBp = 0.90800855754854147823611890874479350490101306934041
K —cosBp = 0.41699548440604205639041957807087776692610248051382
K =K(sinBp) = 2.32104973253042114734283739983633918849213061106173
E—K/2 = 1. 16052486626521057367141869991816959424606530553086
K'=K(cosBo) = L.64669144431046837372958069030713103423036178930922
E'— E(cosBp) = L1.50010688065199892576311071782207995131063998866470
X,Y = k' +ik)/K = 0.564412701731271 + 1. 230228033100522 i ,
ex [z/Y/Ylo ‘X_y‘ d(x)b( )dxd} exp(—TKK' /K):
a=exp |2/ | log|i y) dxdy| = ... = exp ,

‘ q=1/9. 28902549192081891875544943595174506103169486775012
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Approximation and Interpolation, Proceedings, Tampa, Florida, 1983 (P.R. Graves-Morris, E.B. Saff and R.S. Varga,
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