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One looks for rules of determination of denominators of rational approximations to
analytic functions (Padé-type approximations). Functions with branch points are
analytic outside systems of cuts which have an influence on the rate of convergence.
The quest for the best system of cuts is discussed.

1 Convergence regions of transformations of Taylor series.

Let f be an analytic function in a known domain (i.e., a connected open subset of the
extended complex plane) D, known by its Taylor coefficients about a point zq € D:

[e.0]

1) =3 eule — 200" (1)

k=0
Of course, if we only know that f is analytic in D, we can only ensure that this series
converges in the part of D which is the largest disk {z : |z — z0| < 7o} contained in D.
Moreover, if z is in this disk, the partial sums of increasing degrees of (1) converge to f
with a guaranteed rate of convergence |(z — zg)/rg|. Some functions will exhibit a better
rate of convergence, but there are functions analytic in D which will have this rate of
convergence.

The problem is to be able to approximate f in the whole of D, and to achieve the
best rate of convergence, which means: if R, is the approximation using n coefficients of
(1), we want

limsup |f(z) — Ra(2)|"/"
n— 00
to be as small as possible. Actually, we consider the worst case with respect to functions
analytic in D, so to try to minimize

sup limsup|f(z) — Rn(z)|1/n’
fEA(D) n— 0o

*Dedicated to T. Rivlin on the occcasion of his 70'" anniversary and to J. Meinguet on the
occcasion of his 65" anniversary
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on the way of constructing R,, i.e., on the mapping f — R,, which shows that we are
close to be dealing with a problem of optimal recovery [25, 32], or of determination of
n-width [49], but the present study will not try to formalize this approach, it will only
give progressive hints. Moreover, what is usually considered to be the most stable base
of these problems, the domain D itself, will be questionned (in § 3).

An interesting example of convergence enhancement of series is the Euler transfor-
mation [22, 35, 42, 46] with a parameter. For a power series of the form (1), the Euler
transformation amounts to

f(z)zicw—zwk:gjodk (‘) @

7 —
k=0 p

with p outside D. Each dg is a linear combination of cg, ..., cx. Remark also that the
partial sum of the n + 1 terms of the last series of (2) is a rational approzimation of
degree n to f, with denominator Q,(z) = (z — p)”, showing a first example of Padé-type
approximation (see [12, 14, 20] for more on the connections between series transformations
and rational approximation). The new series has a rate of convergence

|p(z)| = constant X |(z — z0)/(z — p)]

increasing from z = zg up to a circle touching the boundary of D. Figure 1 shows a
“typical” (but is it so typical? see § 3) elliptic-like domain D, examples of convergence
domains of (1) and (2) for two values of p, together with level lines of rate of convergence
= 1/4,1/2 and 3/4. These level lines are Apollonius circles related to zg and p [46, p.
PA-32]. A discussion of what should be the best choice of p is made in [45] for Stieltjes
functions.

7

Figure 1: Examples of convergence domains of Euler transformations of Taylor series.

Much better results can be reached if a new parameter is introduced in each term:

1= (== z0) 3)

= (z—p)(z—p2) .. (2 —px)
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For a first analysis, let us work with a finite number of r distinct p’s,1.e., px = px_r, k > 7,
outside D. The series (3) is then basically a combination of Taylor series

[ee]

> eompe (52 )"

— (z=p1)...(z —pr

s =0,...,7— 1, of the variable (z — z0)" /((z — p1) ... (¢ — pr)), therefore convergent in
the domain D, = {z : |p(2)| < 1}, with

(z—=20)/[(z=p1)...(z = p)]M"
SUPy e D |w — ZO|/|(w —p1) . ..(w —pr)|1/7"

(4)

p(z) =

Figure 2: Convergence domain of (3) with 2 different points p; and pa.

To the largest domain of convergence corresponds the best rate of convergence. This
is a special case of a deep result of complex approximation theory, see for instance [48,
§5.1].

For a proof using (4), suppose Dy C D,(C D), then |ps| = 1 on the boundary 0D, of
D; (by definition of Dy), |pr| < 1 on dD; (as |pr| < 1 in the whole of D, containing Dj),
and p, /ps is regular! in D, (no singularity at zq), has a modulus < 1 on the boundary of
Dy, therefore |p,(2)/ps(2)| < 1 for any z € D, by the maximum principle.

Remark that such discussions usually are found about approximations by polyno-
mials on compact sets [23, 48]. However, they also apply to our rational approxima-
tions constructions, thanks to Walsh duality [48, § 8.4]: we are in the conditions of
[48, § 8.4, Example ITa, IIb] (with zo = oo, but, with Walsh’s F(t) = f(zo + t71)
approximated by the rational function S, : F(t) — S,(t) = O(Jt|™"71),n — oo, it is

Lof course, one chooses a single determination for the root in (4).
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clear that R,(z) = S,((z — 2z0)~1) is still a rational function of degree n satisfying now
f(2) = Ru(2) = O(|z — z0|"*!) when 2z — 2p).

One can fill arbitrarily closely the whole domain D by a domain D, if r is large
enough: D, is the interior of a lemniscate, which can indeed approximate the boundary
9D under mild conditions [48, § 4.2]. Indeed, let us write (D — zo)~! the (unbounded)
domain {t : zo +t=' € D}. Then, if the boundary of (D — z)~! is made of a finite
number of mutually exterior Jordan curves and arcs, one can construct a polynomial
I, (t) = (t—71)...(t—7) such that (D —z)~?! is close to a set {t : |II(¢)| > constant }.
Moreover, |Hr(t)|1/’" is then close to constant x exp(Gg(t)) in (D — z0)~!, where Gy is
the harmonic function (Green function) in (D — z0)~! such that Go(t) — log|t| remains
bounded in a neighbourhood of ¢ = oo, and Gy(t) — 0 when ¢ — the boundary of
(D—2z)~!. Acceptable polynomials may be constructed through conformal mapping data,
Fekete points, Fejér points, Leja points, Faber polynomials and points [13, 21, 23, 30, 48]
associated to the complement of (D — zg)~!.

Returning to D and the z = zy + ¢t~! variable, we find that D can indeed be ap-
proximated by a set D, = {z : |H;:1((z —29)7' = 7j)| > constant}, i.e., a set defined
by |p(z)| < constant with the p(z) of (4) and p; = 2o+ 1/7;,5 = 1,...,7. The rate of
convergence in D is arbitrarily close to

port(2) = exp(=G(z ), z €D, (5)

where G(z; zg) is the Green function of D with singularity at zg.

We arrived at (5) as the ultimate performance of series (3) still constructible with
the data of (1). The partial sum of degree n of (3) is a rational function N, /P, of
degree n with preassigned denominator P,(z) = (z —p1) ... (2 — pn) and a numerator N,
constructed such that f(z)— Ny, (2)/Pa(z) = O(]z — z0|*T'). We just essentially discussed
the construction of optimal Padé-type rational approrimations.

2 Padé-type rational approximation.

Whenever we are able to represent the coefficients of (1) as results of applying a linear
functional & to successive powers:

o = 2L(t5), k=0,1,..., (6)
. . . 1
so that £ (p) is known for any polynomial p, we may approximate f(z) = .& <ﬁ>
—1ilzZ — Zp
by applying .Z to a polynomial interpolant of (1 —#(z — zg))~1:
Ru(z) =% ( interpolant of m at t =1tg,t1, .. .,tn.) . (7)

We so get an “integration formula” at preassigned points, which is called Padé-type
approximation, emphasising the similarity with the representation of Padé approximation
as formal Gaussian quadrature ([3, 9] [10, p.34] ). The result is a combination of (1 —
to(z —20))7, ..., (1 —tn(z — 20))71, i.e., a rational function of z.

Let tg = 0, then, R,(z) = Nyp(2)/Pn(z) with N, and P,(z) = constant x (1 —#1(z—
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z0)) ... (1 —tn(z — 20)) of degrees < n. The approximation error is

1 tt—t1) ... (t—1,)

1—t(z—zo)z_1z0 <Z_120—t1>~'<z_1z0_t“) (8)

= (2 — z)"t! tt—t1)...(t—1tn)
=( ) g<(1—t(z—z0))(1—tl(z—zo))...(1—tn(z—z0)))

=0(z = x|,

J(2) = Rul2) = 2

showing that the Padé-type approximation of degree n to f with preassigned denominator
P, is N, /P, with N, of degree < n such that P,(z)f(z) — Nn(z) = O(]z — 20|**1).

We now see that the partial sums R, of n + 1 terms of the various series trans-
formations discussed in section 1 are indeed Padé-type approximations of degree n to
f: these partial sums are indeed rational functions (of denominator P,(z) = 1 in (1);
Po(z) = (z—p)" in (2); Po(z) = (z —p1) ... (2 — pn) in (3)), and satisfy f(z) — Rn(z) =
O(|z — zo|"*') when z — 2.

The determination of a good denominator P, in terms of D and zg is achieved through
a contour integral representation of (6):

1
Z(P) = /C P(t) f(zo +t~ ")t~ 'dt for any polynomial P (9)

T 2mi

where Cg is a contour C {t : zo +¢~1 € D}, let us write this as Co C (D — 29)~!. With
Py(z) = constant x [Jr_;(1 —tk(z — 20)), (8) becomes

F(2) = Ra(2) = ﬁ(z ;:8? /C tni f’;((jofzg ) fzo + 4=~ 2dt. (10)

We now see how to choose good denominators P,: when D, zp, and z are given, we
take Cj close or equal to the boundary of (D—z0)~!, and P, such that maxiec, [t” P, (20+
t=1)| is as small as possible with respect to |P,(z)/(z — 20)"|.

This is basically achieved by Chebyshev polynomials (least norm polynomials) on Cq:
if T1,, is a monic polynomial of least norm, let P, be such that " P,(zo +t71) = M, (),
ie., Pu(z) = (2 — 20)" I ((z — 20)71). We know ([23, 26, 48] etc.) that |Hn(t)|1/" —

constant exp Go(t) when ¢ € (D — zp)71.

Returning to the initial geometry, we get

lim 2ol

I ] _ -1y A
A TP = constant x exp(—Go((z — 20) ™) = constant x exp(—G(z; z0)),

and we recover exactly (5)!
From (8),

limsup |f(z) — R (2)|"" < exp(—G(z; 20)), (11)

n—0o0

uniformly on z in compact sets of D.
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Example 1

For instance, with f(z) = 27V Log (1 + z) = > 0 (—=1)*zF/(k + 1), 20 = 0, D = C\
(—oo,—1], D71 = C\ [-1,0], we may immediately choose Cy = [—1,0], as we have
the obuvious representation cx, = (—1)¥/(k +1) = L(t*) = ffltk dt. Least norm poly-
nomials on Cy are of course the historical Chebyshev polynomials [18, 37, 39] M, (t) =
constant T, (2t + 1), so, P,(z) = constant z2"T,(2/z+1). The preassigned poles of the ap-
prozimant of degree n are therefore 2/(cos((k+1/2)m/n)—1), k =0,...,n—1. Successful
numerical tests have been reported by C. Brezinski [8].

4 1/2 1/4

NP,

Figure 3: Convergence rates of approximants to z~! Log (1+z), 2o = 0, using Chebyshev
denominators.
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The corresponding rate of convergence s

|| 1 ||

= lim ————— = li =
&)= i, o T = WS @/ DI~ r a4 2o+ D)

where the square root is such that |p(z)] < 1 in D = C\ (—o0,0]. One may also check
that the Green function is G(2;0) = log(|z + 2+ 2(z 4+ 1)'/?|/|z]). Also, as D is simply
connected, G(z;0) is the real part of the logarithm of ®(2;0) = (2 + 2+ 2(z + 1)1/?)/2
which maps conformally D on the exterior of the unit disk, with zg = 0 mapped on co.

The level lines |p| = 1/4,1/2, and 3/4 are indicated in Fig. 3. These lines are the
boundaries of larger and larger domains tending to fill D = C\ (—oo, —1]. These lines
meet the real aris at —16/25 and 16/9 when |p| = 1/4; at —8/9 and 8 when |p| = 1/2;
and at —48/49 and 48 when |p| = 3/4!

3 From Padé-type to Padé.

The preceding sections showed how to construct rational approximants N, /P, to a func-
tion f whose Taylor series (1) is known, taking into account a known domain D where
f is presumed to be analytic (the consequences of a wrong assumption about D are not
discussed here, let me just say that convergence still holds in a subset of D defined by a
level line of G(z; zg)).

The approximant is determined by its preassigned denominator P, and the property
F(2) = Nu(2)/Pa(2) = O(]z — 20| *!) when z — zg, i.e., N, is the truncated Taylor
expansion of degree n of the product fP,.

Such approximants are called Padé-type approximants by C. Brezinski [9] (and Padé-
like approximants by other authors [5]).

Interpolatory Padé-type approximation, in particular two-point Padé-type approxi-
mation has also been investigated [15, 19], as well as approximations based on other than
Taylor expansions [12, 31].

On the other hand, Padé approximation is characterized by the removal of any refer-
ence to any possible domain of analyticity D, the denominator P, as well as the numerator
N, are constructed with the coefficients of (1) in such a way to achieve an error of the
highest possible order near zg, usually O(]z — zo|?"*!). This does not mean that the
Padé approximant is better than other ones, nor even that it is good! Tt simply happens
that the Padé construction summarizes parts of valuable works on continued fractions
and approximations (by Gauss, Hermite, Stieltjes, Markov, etc., see [11]), but does not
contain itself any hint of convergence.

However, as Padé approximation calculations do not require any knowledge on the
domain D, they soon became used for exploring functions only known from the coefficients
of (1). In particular, sequences of Padé approximants to functions with branchpoints have
zeros and poles (often) concentrating on a beautiful net of lines [6, 36, 43], [24, pp. 283-
291] joining these branchpoints in some way (the usual principal value cuts [27] for most
elementary functions), and convergence occurs (in a weak sense) in the domain Dpags
bounded by these lines (Padé cuts). The domain Dpage associated to f is such that
(Dpads — 20)~! has a boundary of minimal capacity (see [36, 43, 44] for a survey and
main results; least capacity property is already discussed in [4, p.192] with credit to J.
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Nuttall). In fortunate cases, the rate of convergence is
|ppade(2)| = exp(—2Gpaqs(z; 20)), (12)

but has only been proved in general in a weak sense, in capacity: if £(z) is the error of
the n'® degree approximant, the subset of Dpage where |g(2)|1/™ > |ppaae(2)| has capacity
— 0 when n — co.

Recently, a similar discrepancy between proved knowledge and expected performance
has been partially solved [38]: best rational approximation error norms ¢, on a compact
K C D were known to satisfy limsup,,_, . 6,1/n < ptf? (with a p similar to the right-hand
side of (12), but with G(z; zg) replaced by an appropriate harmonic measure). The result
can not be improved, as, given D and K, there are functions for wich the lim sup is actually
this pl/z. However, most of of the €,,’s are expected to be much smaller than p”/2, and to
behave essentially like p”. Stahl [44, eq. (7.7) p. 630] gives classes of functions for which
the limit of ex/™ is indeed p, but Prokhorov [38] succeeded to prove that one has always

limsup, _, . (£1 - .En)2/”2 < p, a deep and clever new way to look at error behaviour.
One may wonder if a similar enhancement will be achieved in Padé convergence theory

4 Optimal Padé-type cuts for functions with branch points.

Variation of Padé-type cuts would never have been imagined if experiments would not
have been performed with Padé approximants of functions with branch points. Padé-
type approximation would not even bear this name, 1t would still be called “rational
approximation with preassigned poles”, as Walsh [48] calls it.

The need to move cuts appeared when one encountered Padé approximants with lines
of zeros and poles dangerously near the region of interest, or even exactly upon this region
[16, 28]!

One may then perform a nonlinear change of variable in the series (1) [28, 29], or
even choose a new zg if we can afford it [16], [24, p.291].

Padé-type approximation allows to create a system of cuts bounding a domain D
where convergence can be controlled [5, 6, 29]. In order to have the best possible per-
formance at a fixed point z, we see from (11) that we have to arrange the cuts so that
G(z; zp) is maximized. Only necessary conditions will be examined here:

Proposition .1
Let the domain D be bounded by one or several smooth arcs (cuts) C, and z and zo be
two fized points in D. If the cuts are such that the value of the Green function G(z; zg)
1s extremal, then the product of the exterior normal derivatives takes equal values on the
two sides of C':

9G(n; z) G (n; zq) _ 9G(n; z) 0G(n; z0)

. 1.
3711 3711 6n2 6n2 ’ V?] < ¢ ( 3)
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Figure 4: Variation of cut.

Proof

Indeed, from Hadamard’s variation formula [7, p.126], [34, Chap. 1, § 11], [40], the varia-
tion of G(z; zo) is

. 1 0G(n; z) 0G(n; z0) . .
"G(Z;Zo):%/r én ) (an %) in(s)ds + of Jom]).

where ' is the limit of a contour including C', and where Jn is the variation of C' along the
exterior normal direction. This means that an integral on T is an integral on C' performed
twice, once on each side of C'. As dn takes opposite values on the two sides of C' (Fig. 4),

(13) follows.

Remark that if z — 2, (13) is compatible with Stahl’s symmetry characterization
[43, 44] of Padé cuts. This is not surprising, as Padé approximation is a limit of best
rational approximation on smaller and smaller neighbourhoods of zy [47].

Example 2
Let C be the arc of circle of endpoints +i and midpoint —tana, with —7/2 < a < 7/2
(Fig. 5). Let us show that this C is optimal for a problem with z and zy real.

First, we find G(n;€) for real £ through conformal mapping: G(n;€) is the real part
of log®(n; &) where ®(n;&) maps the exterior of C' on the exterior of the unit disk, with
a pole at n =&. As exp(—2ia)(n+1)/(n — i) maps C on the exterior of the negative real
aris,

A + exp(—ia)\/(n+14)/(n— 1)
A —exp(—ia)\/(n+1)/(n—1)
maps the exterior of C' to the exterior of the unit disk, provided |y| = 1 and Re A > 0.
In order to have a pole at n = &, we find A from A = exp(—ia)\/(€ +14)/(€ — i), i.e.,
A =exp(ia)\/(§ —9)/(§+17), as & is real. More calculations yield
(ncosa+sina)\/E2+ 1+ (Ecosa+sina)y/n>+ 1

P(n; ) = — : (14)
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The values on the two sides of the cut C' correspond to opposite choices of the square root
of n”? 4+ 1 in (14). A convenient change of variable is 1 = —tan { with  in the infinite
vertical strip o < Re ( < a+ . Indeed, as we know that exp(—2ia)(i +n)/(i — n) maps
the exterior of C' to the exterior of the positive real axzis, this gives with n = —tan(,
exp(2i1(¢ — @)) not real positive, meaning 0 < Re (( — ) < m, with the two sides of C
mapped on Re { = a and Re { = a + m. We now have

_sin(a+ (0 —¢)/2)
(G102

®(n; &) =

where § is defined by & = tand.

We now come to the normal deriwatives of G(n; &) along the two sides of C. As G =0
on C, 3G /0n is the norm of the gradient of G = Re log®, so G /0n = |®'/®| = |®’| on
C. We find ® = (d®/d()(d¢/dn) = —sin(a+3)/[2(14+n?) sin?((§4+¢)/2)]. Let z = tan g,
zo = tan By (B and Py are the angles between the imaginary azis and the lines joining i to
z and zg in Fig. 5). In order to check the equality of |®'(n; z)®'(n; z0)| on the two sides
of C, we only have to look at |sin((8+¢)/2)sin((Bo 4+ ¢/2)| = | cos((8 — Bo)/2) — cos(¢ +
(B4 Bo)/2)|/2 on Re ( = & and Re { = a+ w. This amounts to cos(¢ + (8+ fo)/2) being
pure imaginary on Re { = «, finally to a4+ (B+ Bo)/2 = 7/2.

Figure 5: Circular optimal cut.
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The cut is therefore a part of the circle with diameter [— tan a, cot ], the line joining
i to cot a bisecting the angle made by the lines joining i to z and zq (Fig. 5).

In particular, if z = zo, z is on the circle containing the Padé cut [f, p. 123]. If
zp = 00, z 18 the center of the circle.

We now come to an alternate description of optimal cuts, through Schiffer’s (interior)
variation formula, adapting [2, chap. 7], [7, chap.8, § 3], [40, pp.298-305] , [41]:

Let D be bounded by a system of cuts C joining points by, .. ., by, (the branch points)
in some way. We shall consider a family of domains D close to D and examine é(z, z0) —
G(z; zg) for each D.

For each interior point £ € D, let us consider

io B(Z)

U(z;&) =24 ce' ———— 15
6 ==+ 2O (15)
where B(z) = (z—b1)...(2—bm). Let D, (£) be the disk of center ¢ and radius > 0. We
suppose that 7 is small enough so that D, (§) does not intersect C'. Therefore n depends
on ¢ (and ¢ will depend on £ too). Let us look at the image of D\ D, (&) under (15): let
Ky = max|,_¢|=, |B(2)|, as B(z)/(z — &)™ is a polynomial in (z — ¢)™, |B(2)/(z — &)™
is bounded by K;/n™ when |z — €| > 1 (maximum principle), so that ¥(z;¢&) is close to

z when |z — &| > n provided £ > 0 is small with respect to ™ : ¢ = o(n™). We define

D ={¥(z) : z€ D\ Dy()}J Drcyeynm ().

Remark that D is still bounded by a system of cuts C joining the same points by, ..., by,
Later on, it will be useful to be sure of a one-one correspondence between z and ¥(z)
when z € D\ D, (§): the equation ¥(z') = ¥(z) has then only one solution 2z’ = z in
z' € D\ D, (§): should z’ # z be another solution, one should have |[(2'—&) """ B(z')— (2 —
&) ™ B(2)]/(z' — z)| = 1/e, impossible if |d[(z — £) "™ B(z)]/dz| < 1/e for all |z — £| > n,
requiring simply a stronger condition of the form & < Konp™*! for e. _

We now look at G(z;z0) — G(z;20) = G(¥(z;€);¥(z0;€)) — G(z;20) + G(z;20) —
G(¥(2;€); ¥ (20:€)).

First, G(¥(z;&); ¥(z0;€)) — G(z; z0) is harmonic in D\ D, (¢) (without singularity at
zg, remember that ¥(z;&) — ¥(zg;) vanishes only at z = zp) and vanishes on C. From
Green function identities ([2, p.100])

G(W(2;€): ¥ (20;€)) — G(z; 20)

= —% - é(‘l’(t;ﬁ);\l’(zo;ﬁ))ia%:iz) — G(t;z)aG(\p(t;gztw('zogg))] |dt|
Ll [é(\P(t;E);w(zo;E))F(t;z) - G(t;z)f(\Il(t;&);\Il(zo;g))d\llc(ltt;g)] dt,
m 9Dy (€)

where T'(t;z) = 0G(t;2)/0t is the analytic function ®'(¢;2)/(2®(¢; 2)), using G(t;z) =



A.P. Magnus / Optimal Padé-type cuts 12

Re log ®(¢; z). Expanding to first order in &, one finds
é(w(z;g); U(zg;&)) — G(z;20) =

2 Re residue at t = & of [aemF(t; z0)T(t; ) %} + o(e).

Next, a direct first order expansion yields

G(z;20) — G(U(2;€); U(20;€)) =
B(z)
(z—=&m

The Schiffer variation formula needed here is therefore

= —¢ Re €'® [F(z;zo)

+ T'(z0; 2) B(Zo)m] + o(e).

(20 =€)

G(z;20) — G(z; z0) =

(m—l)!d&m_l [F(£; O)F(£: )B(f)] F( ) 0) (Z—&:)m

=¢ Re €' —T(z0;2)

(20 — &)™

A necessary condition for the Green function at z to be stationary with respect to variation
of the boundary cuts is therefore

P T (60 B = @i - ) - T ET) (16)

where ()7 is a polynomial of degree < m — 2. The final characterization is

Proposition .2

For a domain D bounded by a system C' of cuts joining fized points by, ..., by, to be optimal
with respect to Padé-type approximation at a fired point z € D, it i1s necessary that the
function ®(&; z0) mapping D on the exterior of the unit disk ( or on several copies of the
exterior of the unit disk if D is multiply connected [17, p.183-187] [26, p.277]) satisfies a

quadratic differential equation

(dB(&; 2))? _ Q(€)(d¢)*
®(&; 20)[1 — (25 20) D (E; 20)][B(€; 20) — B(2520)] (2 =€) (20 — ) B()’

where B(E) = (€ —b1) -+ (£ —bm), Q is a polynomial of degree < m — 2.

Proof
Indeed, from (16),

Q2()
(2= &)(z0 =€)’
where @2 is a polynomial of degree < m. We write everything in terms of ®(¢;zq):
T(&; 20) = ®'(&;20)/(2®(&; 20)), D(€; 2) maps D on |®]| > 1 with a pole at § = z: ®(&;2) =
(1 = ®(z;20)P(&; 20)) /(P(&; 20) — ®(2;20) ([2, p.103] [40, p.301] [41]). So, 2T'(§;2) =
[—®(z;z0)/(1 — ®(z; 20)P(&; 20)) — 1/(P(&; 20) — D(2; 20))]9’(€; 20), and (16) follows.

[(&2)T (& 20) B(E) =
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Actually, as oo 1s normally an ordinary interior point of D, any determination of ®
behaves like A + B/& + ---, when ¢ is large, with A # 0, so that T' behaves there like
constant /¢?, and the degree of @ in (16) is not larger than m — 2. O

Quadratic differentials are indeed met in Padé cuts descriptions [36, 43]. The dis-
cussion of the solutions of (17) promises to show rich structures [33] (elliptic functions
of hyperelliptic integrals). The polynomial @ must probably be such that log® has only
pure imaginary periods (as in [36, p.186, eq. 3]).

Tt is not yet clear if (17) actually gives a maximum value for G(z; z0) = Re log ®(z; zg),
nor if there are several local maxima.

When |®| = 1, the left-hand side of (17) is a negative real number, so that the cut C'

correspond to
Q(&)(d¢)®
(z = &) (20 =€) B()
For instance, as in the example of section 2, let m = 2, zo = 0 and B(¢) = &+ 1 (the
branchpoints of the function f are —1 and co). One has

< 0.

(=~ E)e(e + 1172 = i

on C, where t is real, and where « is the still unknown phase of the constant @. A
parametric representation of the cut C' is therefore &(t) = &(e~**/*t + constant ), where
& is some (Weierstrass-like [1]) elliptic function. As C' must join the known branch points
—1 and oo, the line e=#*/2¢{ + constant ,  real, must join the solutions of &(m)=—1and
&(12) = 00. As & is doubly periodic, 71 and 73 are determined up to integer combinations
of the periods. This gives quite a lot (a countable infinity) of possible cuts, which are
believed to be optimal with respect to investigation of f in various Riemann sheets (see
[24, p.256, p.291]). The subject obviously deserves more developments, which will perhaps
be achieved in the future.

Conclusion.

It has first been shown that familiar transformations of Taylor series lead to special ratio-
nal approximants called Padé-type approximants. Slightly more general transformations
are discussed through the usual convergence radius theory and already allow to grasp the
principles of construction of best Padé-type approximation to classes of analytic functions,
in section 1.

An example of function with branchpoints is then given, with a denominator of best
approximant related to Chebyshev polynomials (section 2).

Comparison with Padé approximation results leads to inquiry about the possibility
to change domain boundaries (cuts) (section 3).

Elementary steps towards the description of “best cuts” are presented (section 4).

It is hoped that more research will lead to more solid theoretical knowledge, and that
credible implementation will be tested on some benchmark.
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