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Abstract

A historical account is given of the development of methods for solving approximation problems set in normed linear
spaces. Approximation of both real functions and real data is considered, with particular reference to Lp (or lp) and
Chebyshev norms. As well as coverage of methods for the usual linear problems, an account is given of the development
of methods for approximation by functions which are nonlinear in the free parameters, and special attention is paid to
some particular nonlinear approximating families. c© 2000 Elsevier Science B.V. All rights reserved.

1. Introduction

The purpose of this paper is to give a historical account of the development of numerical methods
for a range of problems in best approximation, that is problems which involve the minimization of a
norm. A treatment is given of approximation of both real functions and data. For the approximation
of functions, the emphasis is on the use of the Chebyshev norm, while for data approximation,
we consider a wider range of criteria, including the other lp norms, 16p¡∞. As well as the
usual linear problems, a general account is given of nonlinear best approximation, and we also
consider some special cases. Only a passing mention is made of least-squares problems, as that is
considered elsewhere. The focus is also entirely on the approximation of real quantities, and so best
approximation of complex quantities is not covered. A partial justi�cation of this is that dealing
with problems in generality as complex ones would introduce additional complication not entirely
justi�ed by the additional algorithmic initiatives.
Since we are concerned here with historical development, technical details are not included for

their own sake. The intention is, where appropriate, to be descriptive, rather to give a technically
rigorous and detailed account of methods. However, it seemed necessary at times for the sake of
comprehensibility, and in order to fully appreciate algorithmic developments, to include a reasonable
amount of technical detail.
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Obviously a major factor in the development of methods has been the advent of powerful com-
puting facilities, as this has opened up opportunities to tackle a wide range of practical problems.
Whereas at one time, the main consideration may have been elegance and simplicity, with attention
perhaps focussed on a set of problems satisfying “classical” assumptions, those considerations now
usually have to take second place to the treatment of problems which are seen to be of practical
importance, for which algorithms have to be robust and e�cient.
The paper is e�ectively divided into two parts, the �rst (Section 2) being concerned with ap-

proximation by linear families, and the second (Section 3) being concerned with approximation by
nonlinear families. These sections themselves further subdivide into two parts, where we consider
separately approximation of data and of functions, and these are dealt with in that order within the
two sections, with a further breakdown in what seems to be a reasonably natural way to take account
of important special cases.
For the approximation of functions, we are primarily concerned with univariate functions on an

interval [a; b], because that is where most e�ort has been concentrated. However, some relevant
comments are made on the extent to which multivariate functions may also be treated, with a few
references made to this.

2. Linear approximation

The approximation of a given function de�ned on an interval by a linear combination of given
functions is the most fundamental problem in approximation theory. The functions involved are
usually continuous, and this can be thought of as a continuous in�nite dimensional approximation
problem. If the functions are replaced by vectors in Rm, then we have a class of �nite dimensional
or discrete problems, many of which have their origins in data �tting. That solutions to linear best
approximation problems always exist is a result which goes back at least to Riesz in 1918 [174].
We will consider the �nite dimensional problem �rst, and begin by making some general remarks,
before looking at special cases.

2.1. Linear approximation in Rm

Let A ∈ Rm×n where m¿n, and let b ∈ Rm. Then the statement of a linear best approximation
problem in Rm can be given as

�nd x ∈ Rn to minimize ||r||; (1)

where

r = Ax− b;
and ||:|| is a given norm on Rm. The dependence of r on x will generally be suppressed, unless
confusion is possible.
This particular problem has attracted enormous interest. It will be assumed throughout that

rank(A) = n, and there is no x such that r = 0. These are not essential, neither in theory nor
in practice; however, they are conditions that are normally satis�ed in practice, and their assumption
considerably simpli�es the presentation. If the norm is a di�erentiable function of x, then we can
easily characterize a minimum by zero derivative conditions: these are necessary, and, exploiting
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convexity, also su�cient. The best known example is when the norm is the least-squares norm, when
zero derivative conditions just give the usual normal equations

ATAx= ATb:

The method of least squares is considered in detail elsewhere. But in a data �tting context, other
lp norms, particularly those for values of p satisfying 16p¡ 2 are also important. The reason for
this is that it is common for the usual conditions justifying the use of the l2 norm not to hold, for
example there may be wild points or gross errors in the data, and these other norms give reduced
weight to these wild points. This is considered in Sections 2.2 and 2.3. Of great interest also has
been the use of the Chebyshev norm; this is perhaps of less value in a data �tting context, but
problems arise for example in continuous function approximation when the region of approximation
is discretized. The problem is rich in structure and the theory is a beautiful one; we consider this
case in Section 2.4.
We will restrict attention here to the problem (1), although there are many modi�cations of that

problem which are relevant in a data �tting context. Most modi�cations have only been given serious
treatment comparatively recently, and so they are of lesser interest from a historical point of view.

2.2. Linear l1 approximation in Rm

Consider now the problem (1) with the l1 norm

||r||1 =
m∑
i=1

|ri|: (2)

This problem has a long history: its statement goes back well into the mid eighteenth century, and
predates the introduction of least squares. Certainly, it was used in work of Laplace in 1786, in
solving the overdetermined system of linear equations determining planetary orbits [110]. The �rst
systematic methods for solving this problem seem due to Edgeworth [61]; in 1887 he gave a method
based on tabulation, and in 1888 a method for the case when n=2 which was essentially graphical
and conceptual, but based on calculating descent directions. In 1930, Rhodes [167], motivated by
the problem of �tting a parabola to data, tried Edgeworth’s later method but found it “cumbrous”.
He gave a method where each iteration was calculated by solving 2 interpolation conditions for 2
of the parameters, and minimizing with respect to the remaining parameter. A proof that this kind
of approach can give a solution was established by Singleton in 1940 [182]. A detailed historical
account is given by Farebrother in a 1987 paper [63], covering the period 1793 to 1930. 1

The �rst modern systematic study of this problem appears to be by Motzkin and Walsh [131,132]
in the late 1950s, and characterization results are given in the 1964 book by Rice [172]. A convenient
form of these may be deduced from these results or as a simple consequence of applying to this
special case known results in abstract approximation theory: we will not attempt to go down that
historical route, since it is something of a diversion from the main theme. However, it is the case

1 The 1999 book by Farebrother [64] is also relevant.
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that a vector x ∈ Rn solves the l1 problem if and only if there exists a vector C ∈ Rm satisfying

ATC= 0;
where ||C||∞61, and vi = sign(ri) whenever ri 6= 0. The �rst simple (direct) proof of this was
probably given by Watson [199] in 1980. A formal treatment of the important result that when A
has rank n, a solution will be such that n components of ri are zero, was given by Motzkin and
Walsh [131] in 1955. In the context of the l1 problem, any point characterized in this way can be
de�ned to be a vertex. The interpolation result (in special cases) appears to have been known to
Gauss, and to have been used in early methods: for example, the methods of Rhodes and Singleton
are essentially vertex to vertex descent methods.
The results of Motzkin and Walsh were arrived at by direct consideration of the problem. However,

its relationship with a linear programming problem was recognized around the same time, 2 and linear
programming theory provides a parallel route to the same properties. Around 1947, Dantzig did his
pioneering work on the simplex method of linear programming, and over the next few years, duality
theory was developed, largely by von Neumann, Gale, Kuhn and Tucker. The signi�cance of these
developments for numerical methods for the l1 (and the l∞) problem cannot be overemphasized.
The �rst representation of the l1 problem as a tractable linear programming problem seems due

to Charnes et al. [35] in 1955. The key observation is that if extra variables u and C ∈ Rm are
introduced, then the problem can be posed as

minimize
m∑
i=1

(ui + vi) subject to (3)

[I : −I : A]


 uC
x


= b

u¿0; C¿0:
Since in the simplex method, no columns of I and −I can simultaneously be basic, then

uivi = 0; i = 1; : : : ; m:

It follows that ui + vi = |ui − vi| for all i and the equivalence of the simplex method applied to this
problem with the minimization of (2) can readily be established.
Another version of the primal can be stated:

minimize eTs subject to

−s6Ax− b6s:
This goes back at least to the 1964 Russian edition of the book by Zuhovitskii and Avdeyeva [211].
However, this form of the problem does not seem to have attracted as much attention as (3). The
zero residuals will result in a form of degeneracy.

2 Farebrother [63] in his 1987 paper interprets the work of Edgeworth in this context, and states that “..it must be
conceded that Edgeworth had developed a fully operational, if somewhat complex, linear programming procedure for the
L1 estimation problem in 1888”.
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Fisher [66] in 1961 gave some publicity to (3) for the bene�t of the statistical community, and this
form was also used by Barrodale and Young [13] in 1966, who provided an Algol implementation and
numerical results. The fact that the components of x may be non-negative is not a major problem in
this context: for example, they can each be replaced by the di�erence of two non-negative variables.
It was also noted that no �rst phase simplex calculation is required because an initial basic feasible
solution can readily be obtained: if bi ¡ 0 then ei can be present in the initial basis, if bi ¿ 0 then
−ei can be, with either used if bi = 0.
The linear programming connection is sometimes wrongly credited to Wagner [192] in 1959, who

posed the problem as a bounded variable or interval programming problem. In fact the form of the
problem considered by Wagner [192] can be interpreted as the dual of (3). This can be written as

maximize bTC subject to (4)

ATC= 0

−e6C6e;
where e is a vector with every component equal to 1. Attention was re-focussed on (4) by Robers
and Ben-Israel [175] in 1969, and Robers and Robers [176] in 1973, who argued the advantages
of that approach, which included computational e�ciency: the problem with the primal appeared
to be the large number of extra variables required. However, an improved version of the primal
linear programming method was given by Davies [53] in 1967 and Barrodale and Roberts [10] in
1970, where a special pivot column selection rule was employed, and in 1973, both Spyropoulos
et al. [183] and Barrodale and Roberts [11] gave e�cient implementations of the simplex method
applied to the primal which fully exploited the structure. The Barrodale and Roberts method achieved
e�ciency by taking multiple pivot steps, exploiting the fact that descent can continue beyond the
usual point when feasibility is lost, because feasibility can readily be recovered by swapping certain
variables into and out of the basis. Further e�ciency was achieved by imposing certain restrictions
on the choice of variables to enter and leave the basis. A Fortran programme and numerical results
were provided, together with favourable comparisons with some other primal and dual methods [12].
In 1975, Abdelmalik [2] developed a special purpose method for the dual, using the dual simplex

method, and his method seemed comparable with that of Barrodale and Roberts [10]. This turned
out not really to be surprising, because, as pointed out by Armstrong and Godfrey [6] in 1979, the
application of the dual simplex method to the dual is equivalent to applying the primal simplex
method to the primal. So apart from implementation aspects, the methods were the same.
A basic feasible solution to (3) in which all columns of A are present in the basis can readily be

shown to correspond to a vertex as de�ned above. Therefore, once the columns of A are present in
the basis, the simplex method is a vertex to vertex descent method. There are many other variants
of these linear programming methods, but away from a linear programming context, direct descent
methods were being considered. For given x, let

Z = {i : ri = 0}:
Then since for full rank problems the solution occurs at a point x with Z containing n indices (a
vertex), we want to systematically descend to such a point. Perhaps the �rst modern direct descent
methods were given by Usow [189] in 1967, and Claerbout and Muir [43] in 1973. A natural way
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to implement descent methods is by �rst �nding a vertex, and then descending through a sequence
of vertices. Thus there are two types of step depending on whether at the current point, Z contains
(a) fewer than n indices (b) exactly n indices. (The possibility that Z contains more than n indices
corresponds to a degenerate situation, and although there are ways round it, will for our purposes
be ignored.) Then in case (a) movement as far as possible is made in the direction d in such a way
that the number of indices in Z at the new point is increased, and in case (b) movement as far as
possible is made in the direction d in such a way that the number of indices in Z is maintained.
E�ective methods of this type, therefore, have this strategy in common, and are distinguished by
the way the descent direction is calculated. There are mainly two approaches, (i) reduced gradient
methods, where the “active constraints” are used to express certain variables in terms of others,
the objective function is expressed in terms of the latter group, and its gradient is obtained in
terms of those, and (ii) projected gradient methods, where the gradient is obtained by projecting
the gradient of the objective function onto the orthogonal complement of the span of the active
constraints.
Bartels et al. [18] in 1978 gave a projected gradient method, and reduced gradient methods were

given by Osborne [147,148] in 1985 and 1987. Both projected and reduced gradient methods were
analyzed in detail by Osborne [147] in 1985, and he pointed out that although reduced gradient
methods seem more suitable for implementation using a tableau format, with updating, in fact such
organization is available for implementing both methods. On relationships with linear programming
methods, he showed that there is an exact equivalence between the possible options available in
implementing the simplex method and those available in the direct application of the reduced gra-
dient method. Thus these algorithms are equivalent: only the implementational details are di�erent.
The usual simplex step corresponds to a particular option in the reduced gradient method, based
on an unnormalized steepest edge test for determining the variable to leave the basis. A di�er-
ent way of choosing this variable (a normalized steepest edge test, which is scale invariant) was
used by Bloom�eld and Stieger [26] in 1983, and their evidence showed that this can lead to
improvement.
Nearly all the good methods considered to the end of the 1980s were vertex to vertex methods,

which exploit the polyhedral nature of the function to be minimized, and (in the absence of degener-
acy) they are �nite. There has been recent interest in interior point methods for linear programming
problems, stimulated by the results of Karmarker [102] in 1984. In conjunction with a formal con-
nection with classical barrier methods for constrained optimization problems, this has resulted in
renewed interest in linear programming, and there has of course been an impact on special cases
such as the l1 problem.
The use of interior point methods for l1 problems goes back at least as far as work of Meketon

[127] in 1987, and methods have been given since then by Ruzinsky and Olsen [178] in 1989,
Zhang in 1993 [209] and Duarte and Vanderbei [56] in 1994. Portnoy and Koenker [157] in 1997
make a case for the superiority of interior point methods over simplex-based methods for large
problems. Based on comparisons of l1 problems having n up to 16 and m from 1000 to 200 000,
they conclude that there is “a compelling general case for the superiority of interior point methods
over traditional simplex methods for large linear programming problems”. Their algorithm of choice
for the l1 problem is based on a primal–dual log barrier method due to Mehrotra [123] in 1992, and
includes a statistical preprocessing approach which estimates whether a residual is zero or not. The
opposition is represented by a variant of the Barrodale and Roberts method.
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Meantime, two other types of smoothing method were being developed for the l1 problem. 3

The �rst of these is typi�ed by an algorithm of Coleman and Li [46] in 1992, which is based on
a�ne scaling: while not strictly speaking an interior point method, it is nevertheless in the spirit
of such methods. Here, an attempt is made to satisfy the characterization conditions by an iterative
descent method which has the following characteristics: (a) it generates a sequence of points which
are such that Z is empty, so that derivatives exist, (b) it is globally convergent, (c) it ultimately
takes damped Newton steps (damped to satisfy (a)), but with su�ciently accurate approximations
to the full Newton step to permit quadratic convergence (under nondegeneracy conditions). Careful
implementation of the method can avoid di�culties with near-zero components of r and the approach
seems promising for large problems as it is insensitive to problem size. Some comparisons show
that it is superior to Meketon’s interior point method for problems with n up to 200, m up to 1000.
A second approach to smoothing the l1 problem was developed by Madsen and Nielsen [116] in

1993. It is based on the use of the Huber M-estimator, de�ned by

 
 ≡  
(r) =
m∑
i=1

�(ri); (5)

where

�(t) =
{
t2=2; |t|6
;

(|t| − 
=2); |t|¿
;

(6)

and 
 is a scale factor or tuning constant. The function (5) is convex and once continuously di�eren-
tiable, but has discontinuous second derivatives at points where |ri|=
. The mathematical structure of
the Huber M-estimator seems �rst to have been considered in detail by Clark [44] in 1985. Clearly
if 
 is chosen large enough, then  
 is just the least-squares function; in addition if 
 tends to zero,
then limit points of the set of solutions may be shown to minimize the l1 norm. It is the latter
property which concerns us here.
It has been suggested by Madsen and Nielsen [116] in 1993 and also by Li and Swetits [113] in

1998 that the preferred method for solving the l1 problem is via a sequence of Huber problems for
a sequence of scale values 
 → 0. This algorithmic development has lead to increased interest in the
relationship between the Huber M-estimator and the l1 problem; for example there is recent work of
Madsen et al. [117] in 1994, and Li and Swetits [113] in 1998. The method of Madsen and Nielsen
generates Huber solutions for a sequence of values of 
, tending to zero. The solutions are obtained
by solving least-square problems, exploiting structure so that new solutions can be obtained using
updating often in O(n2) operations. A key feature is that it is not necessary to let 
 reach zero; once
a su�ciently small value is identi�ed, then the l1 solution may be obtained by solving an n × n
linear system. Madsen and Neilsen give some comparisons (for randomly generated problems, and
with m mostly set to 2n for m up to 1620) with the method of Barrodale and Roberts [10] and
claim superiority.
An important issue as far as the implementation of simplex type methods is the e�ciency of the

line search. The Barrodale and Roberts [10] method incorporates the equivalent of a comparison
sort, and this leaves room for considerable improvement. Bloom�eld and Stieger [26] considered

3 The observation that a best approximation can always be computed as the limit of a sequence of lp approximations
as p → 1 is due to Fischer [65] in 1983 (an algorithm based on this was in fact given by Abdelmalik [1] in 1971),
although this is not a very practical approach.
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this aspect in their 1983 book, and suggested using a fast median method. An alternative based on
the use of the secant algorithm was considered (in a related context) by George and Osborne [71]
in 1990, and again by Osborne [147] in 1985. Numerical experiments were reported by Osborne
and Watson [154] in 1996, where the secant-based method was seen to be as good as fast median
methods on randomly generated problems, and to perform considerably better on problems with
systematic data. Comparisons of other types of method with simplex methods really need to take
this into account before de�nitive conclusions can be drawn.

2.3. Linear lp approximation in Rm, 1¡p¡∞, p 6= 2

For given x ∈ Rn, let D|r| be de�ned by

D|r| = diag{|r1|; : : : ; |rm|}:
Then x minimizes

||r||pp =
m∑
i=1

|ri|p

with 1¡p¡∞ if and only if derivatives with respect to x are zero, that is if

ATDp−1
|r| �= 0; (7)

where �i = sign(ri); i = 1; : : : ; m. This is a nonlinear system of equations for x.
This criterion (for p even) was mentioned by Gauss as a generalization of his least-squares crite-

rion. Apart from this special case, the more general lp problem only seems to have attracted relatively
recent computational attention. The range 1¡p¡ 2 is of particular interest computationally because
there is potentially reduced smoothness: problems with p¿2 are twice di�erentiable, but problems
with 1¡p¡ 2 may be only once di�erentiable. If p¿2 or if 1¡p¡ 2 and no component of r
is zero then twice di�erentiability is guaranteed and so (7) can be written as

ATDr = 0; (8)

where

D = Dp−2
|r| ;

and this is a particularly convenient form with which to work. It represents a generalized system of
normal equations, e�ectively a least-squares problem apart from the “weighting” matrix D. Fixing
x to an approximate value in D and solving this weighted system for a new approximation gives
an example of the technique known as iteratively reweighted least squares or IRLS, which seems
to have been introduced by Beaton and Tukey [20] in 1974. Since good software for (weighted)
least-squares problems was then available, this seemed an attractive idea, additionally so since there
are some apparently good theoretical properties: this simple iteration process will converge locally
if p is close to 2, and if zero components of r are avoided, it is globally convergent (from any
initial approximation) for 1¡p¡ 2. The last result seems �rst to have been given by Dutter [60]
in 1975. However, convergence can be slow, particularly as p nears 1 (it is linear with convergence
constant |p − 2|, as shown by Wolfe [206] in 1979), and there are potential numerical di�culties
for reasons which will be clear from the previous section. The matrix D (which may not exist) can
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be replaced by approximations (even by the unit matrix), and this gives rise to variants of the IRLS
technique, but again convergence can be very slow.
Most recent algorithms for solving (8) are based on Newton’s method, and many variants were

proposed in the 1970s. It is interesting that the Newton step is just 1=(p− 1) times the IRLS step
(as measured by the di�erence between successive approximations), as pointed out by Watson [196]
in 1977, and this gave an explanation of some success obtained by Merle and Sp�ath [128] in 1974
in using a damped IRLS procedure with step length (p− 1). Thus apart from di�erences due to the
line search, IRLS and Newton’s method with line searches are essentially the same method. It is
easily seen that the region of convergence of Newton’s method is proportional to |(p− 1)=(p− 2)|,
so good line search procedures are needed even with the basic method, certainly far from p = 2.
However, for p¿ 2, Newton’s method with line search is usually perfectly satisfactory.
Since from a practical point of views the interesting cases are those when 1¡p¡ 2, di�erent

strategies have been proposed for getting round the di�culties arising from zero (or near zero) com-
ponents of r. These included the substitution of small nonzero values, solving a slightly perturbed
problem, or identifying and so removing these components from the set. However, not just zero
components but nearly zero components are potentially troublesome. There is some evidence, how-
ever, that these phenomena are not by themselves a major problem, but only if they are accompanied
by p being close to 1. The main di�culty appears to be due the fact that as p approaches 1, we are
coming closer to a discontinuous problem, e�ectively to a constrained problem. It seems necessary
to recognize this in a satisfactory algorithm, and consider some of the elements of the l1 problem in
devising an approach which will deal in a satisfactory with small values of p. This is the philosophy
in a recent method due to Li [114] in 1993, which is essentially equivalent to the method for the
l1 problem of Coleman and Li [46] referred to in the previous section. Numerical results show that
the new method is clearly superior to IRLS (with the same line search) for values of p close to
1, with the gap between the two methods widening as p approaches 1. There is little di�erence for
values of p¿1:5 or so. As with the l1 case, the number of iterations appears to be independent of
the problem size.

2.4. Linear Chebyshev approximation in Rm

The use of the criterion now known as the Chebyshev norm

||r||∞ =max
i

|ri|; (9)

seems to go back to Laplace in 1786, who gave a solution procedure for n = 2. Cauchy in 1814
and Fourier in 1824 gave descent methods. A detailed historical account is given by Farebrother
[63] in his 1987 paper, covering the period 1793 to 1824. The function space analogue was studied
�rst by Chebyshev 4 from the 1850s, arising from an analysis of a steam engine linking, and both
continuous and discrete problems now carry his name.
For any x ∈ Rn, let

�I(x) = {i: |ri(x)|= ||r||∞}:
4 The number of variants in the western literature which have been used for Chebyshev is legendary, but most people

now seemed to have settled on this one. Butzer and Jongmans [33] in 1999 gave a detailed account of Chebyshev’s life
and work.
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Then x is a solution if and only if there exists a subset I ⊂ �I containing at most n+ 1 indices, and
a nontrivial vector � ∈ Rm such that

�i = 0; i 6∈ I;

AT�= 0;

�i sign(ri)¿0; i ∈ I:

This is an example of a “zero in the convex hull” type of characterization result, and is the discrete
analogue of Kirchburger’s 1903 result for the continuous problem [106]. A simple consequence is
that for the full rank problem, there always exists a solution with �I containing n+ 1 indices. Such
a point can be thought of as a vertex.
An early method for the minimization of (9) was the Polya algorithm [156], which solves a

sequence of lp problems with p → ∞: the assumption here is that the lp problems are relatively
easy to solve, being di�erentiable for large �nite p. This method was given (in fact for continuous
functions) in 1913, and convergence is readily established if the Chebyshev solution is unique. A
proof of convergence to a particular Chebyshev approximation called the strict Chebyshev approx-
imation (in the event of nonuniqueness of the Chebyshev solution) was given by Descloux [54] in
1963. Fletcher et al. [69] in 1974 used an extrapolation technique to accelerate convergence of the
Polya algorithm, and in the same year Boggs [27] used a technique based on deriving a di�erential
equation describing the lp solution as a function of p. An algorithm due to Lawson [111] in 1961
was based on the solution of a sequence of weighted least-squares problems, but like the Polya
algorithm, it can be very slowly convergent. Indeed none of these methods has been regarded as
giving a particularly practical approach.
A fundamental assumption which was identi�ed as important at an early stage was the Haar

condition, that every n × n submatrix of A is nonsingular. This is su�cient for uniqueness of x
minimizing (9) (and also necessary in the case when m= n+1). This “classical” assumption played
a major role in the minimization of (9) until the 1960s. It goes back to Haar [79] in 1918.
Before proceeding, it is helpful to point out an important property which is satis�ed at a minimum

of (9). The result, due to de la Vall�ee Poussin [190] in 1911, tells us that if J runs through all
subsets of n+ 1 indices from {1; : : : ; m}, then

min
x
max

i
|ri|=max

J

{
min
x
max
i∈J

|ri|
}
: (10)

Therefore, if we can identify a set J where the maximum on the right-hand side is attained, solving
a Chebyshev problem on that subset (and this is relatively easy) will give a solution to the original
problem. For any J such that the corresponding problem matrix is full rank, the solution on J will
occur at a vertex. Therefore, if A has full rank, so that the problem has a solution at a vertex, then
it is su�cient to investigate all the vertices in a systematic way.
An exchange algorithm for �nding an extremal subset or optimal vertex was given by Stiefel

[184] in 1959. It assumed that A satis�ed the Haar condition, and worked with a sequence J1; J2; : : :
of subsets of n+1 components of r. The key aspect of the method was that Jk+1 di�ered from Jk by
one index, and a rule was given for exchanging one of the indices in Jk for another index outside
it to give Jk+1 in such a way that

hk+1¿hk;



G.A. Watson / Journal of Computational and Applied Mathematics 121 (2000) 1–36 11

where

ri(x) = �ihk ; i ∈ Jk ; (11)

with |�i|= 1; i ∈ Jk . Thus, we have an example of a vertex-to-vertex ascent method. Because there
are only a �nite number of selections of n + 1 indices from m the method must terminate, when
from (10) it follows that a solution has been obtained. If the Haar condition is not satis�ed, then
strict inequality may hold for successive hk values and the theory of the method is compromised.
Because the function of x given by (9) is piecewise linear, the Chebyshev problem may be posed

as a linear programming problem, and as in the l1 case, properties of the problem are again available
through this route. Let h=maxi |ri|. Then the problem may be stated

minimize h subject to

−h6ri6h; i = 1; : : : ; m:

In terms of the variables h and x, this may be restated

minimize z = eTn+1

[
x
h

]
subject to

[
A e
−A e

] [
x
h

]
¿

[
b
−b

]
:

One of the �rst to consider the linear programming formulation of the problem was Zuhovickii
[211,212] in a series of papers originating in the Russian literature in the early 1950s. The above
form is not particularly suitable for the application of standard techniques such as the simplex
method because 2m slack variables are required, the basis matrices will be 2m× 2m, and although
h is nonnegative, this is not true in general of the components of x.
All of these di�culties are overcome by turning to the dual problem, which is

maximize z = [bT; −bT]w subject to

[AT − AT]w= 0;

[eT eT]w61;

w¿0:

Only one slack variable is required (to make the inequality an equality), the basis matrices are
only (n + 1) × (n + 1), and all the variables are nonnegative. The advantage in using the dual
seems to have been �rst pointed out by Kelley in [105] 1958 in an application to curve �tting.
Standard linear programming theory tells us that if a variable is dual basic, then the corresponding
primal constraint holds with equality. Thus a basic feasible solution corresponds precisely to a
solution to a set of equations having the form (11). It would appear therefore that there is a precise
equivalence between a step of the simplex method applied to the dual, and a step of the Stiefel
exchange method. This result was known to Stiefel [185] in 1960, who gave an indication of it by
considering a small problem and using a geometric argument. He also (unnecessarily) eliminated the
unconstrained variables from the primal before proceeding to the dual.
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The precise equivalence was �rst worked out in detail by Osborne and Watson [149] in 1967,
although Bittner [24] in 1961 examined how linear programming could be used to relax the Haar
condition. In order for the usual simplex method to be applied to the dual, the Haar condition is
not required, only the nonsingularity of successive basis matrices: for this it is only necessary for
A to have full rank n. The point here is that the simplex method does not permit nonsingular basis
matrices. Note however that if the Haar condition does not hold, degeneracy may cause cycling in
the simplex algorithm, although this can always be resolved.
A programme implementing the standard simplex method for the problem considered here seems

�rst to have been given by Barrodale and Young [13] in 1966, who gave an Algol programme along
with numerical results, and Bartels and Golub [19] gave a version in 1968 which used a numerically
stable factorization procedure. In 1975, Barrodale and Phillips [8] used the special structure present
in the dual formulation to greatly reduce the number of iterations required: conditions were imposed
on variables entering and leaving the basis, and the fact exploited that some variables could easily
be exchanged for others. The usual simplex rules were modi�ed to permit ascent through a number
of vertices, beyond the one which would usually be reached in a simplex step, by exploiting the fact
that feasibility could easily be regained by such exchanges. Modi�cations of this basic technique to
allow more than one index to be exchanged at each step were given by Hopper and Powell [90] in
1977 and by Armstrong and Kung [7] in 1979.
The Stiefel exchange method and variants which solve the dual formulation of the problem are

examples of ascent methods, whose justi�cation is based on (10). However, it is possible to solve the
problem by a descent process. The primal linear programming problem is an example of a descent
method, and although its direct solution is not recommended for the reasons already given, it is
nevertheless possible to implement satisfactory descent methods.
As for the l1 problem, good direct descent methods might be expected to follow the common

strategy of having (in the absence of degeneracy) basically two types of step depending on whether
the current point x is such that �I contains (a) fewer than n + 1 indices, or (b) exactly n + 1
indices. In a manner precisely analogous to that considered for the l1 problem, a strategy can be
developed which ultimately gives a vertex-to-vertex descent process. Methods of reduced gradient
type were given by Cheney and Goldstein [37] in 1959 and Cline [45] in 1976. A projected gradient
method was given by Bartels et al. [16] in 1978. It appeared to be the case that such methods
did not seriously compete with ascent methods. However, improvements in descent methods were
considered by Bartels et al. [17] in 1989: they argued that the good performance of the Barrodale
and Phillips method was due to the way the method chose a good starting point. By modifying the
way in which a starting point is obtained for their descent method, they enhanced its performance
and made a case for its superiority for data �tting problems.
All the approaches considered so far are essentially vertex-to-vertex methods. They exploit the

polyhedral nature of the function to be minimized, and are of course (in the absence of de-
generacy) �nite. The recent interest in interior point methods for linear programming problems
has, as in the l1 case, extended to the special case of Chebyshev problems. Ruzinsky and Olsen
[178] in 1989, Zhang [209] in 1993 and Duarte and Vanderbei [56] in 1994 all proposed in-
terior point methods. An a�ne scaling algorithm analogous to that for the l1 problem was given
by Coleman and Li [47] in 1992. This is a descent method which involves a sequence of
least-squares problems to de�ne descent directions. It provides a smooth transition from guaran-
teed descent steps far from a solution, to steps close to a solution which are su�ciently accurate
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approximations to the Newton step to permit quadratic convergence under suitable nondegeneracy
assumptions.
In contrast to the l1 situation, detailed comparisons of other methods with simplex type methods

for large problems do not yet seem to be available. It should in any event not be assumed that
conclusions can be drawn from the l1 case, because large Chebyshev problems normally arise from
discretizations of continuous Chebyshev approximation problems on intervals or multidimensional
regions, and the data are highly systematic. Indeed, the solution is then normally part of a method
for the continuous problem, or exploits the connection: we will defer further consideration of this
until the following Section.

2.5. Linear Chebyshev approximation in C[a; b]

Let C[a; b] denote the set of continuous functions de�ned on the real interval [a; b], and let f(x),
�1(x); : : : ; �n(x) be in C[a; b]. Then the usual Chebyshev approximation problem in C[a; b] can be
expressed as

�nd a ∈ Rn to minimize ||f − �||∞; (12)

where �=
∑n

i=1 ai�i(x), and

||f||∞ = max
a6x6b

|f(x)|:
This class of problems was systematically investigated by Chebyshev from the 1850s, although

Chebyshev credits Poncelet with originating the problem. The “classical” case occurs when the set
of functions forms a Chebyshev set (or is a Haar subspace) on [a; b], that is any nontrivial linear
combination has at most (n− 1) zeros; the model problem here is approximation by polynomials of
degree n − 1. The problem (12), with the interval [a; b] replaced by m points in [a; b], reduces to
a problem of the form considered in the previous section. Indeed it is readily seen that the matrix
A in this case satis�es the Haar condition if and only if the set of functions �1(x); : : : ; �n(x) forms
a Chebyshev set on [a; b]. Continuing this theme for a moment, arbitrarily good solutions to (12)
can be obtained by choosing �ner and �ner discretizations; the main convergence results here are
due to Motzkin and Walsh [132] in 1956. Although this observation by itself does not give practical
algorithms, the use of a sequence of discretizations, where successive point sets are carefully chosen,
is the key to the success of many good algorithms.
A general characterization result was obtained by Kirchberger [106] in 1903. Let

�E = {x ∈ [a; b]; |r(x; a)|= ||r(:; a)||∞}:
Then a is a solution if and only if there exists E⊂ �E containing t6n + 1 points x1; : : : ; xt and a
nontrivial vector � ∈ Rt such that

t∑
i=1

�i�j(xi) = 0; j = 1; : : : ; n;

�i sign(ri)¿0; i = 1; : : : ; t:

Borel [28] in 1905 established the well-known alternation result for approximation by degree
(n − 1) polynomials, that a is a solution if and only if there are n + 1 points in [a; b] where the
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norm is attained with alternating sign as we move from left to right through the points; we can state
this concisely in the form

A(f − pn−1)[a;b]¿n+ 1;

where pn denotes the best degree n polynomial approximation. Uniqueness of solutions under these
conditions is also due to Borel [28] in 1905. That this result extends to approximation by functions
forming a Chebyshev set was shown by Young [208] in 1907, who also established uniqueness in
this case. Haar [79] in 1918 showed that the solution is unique for all possible functions f(x) if
and only if �1(x); : : : ; �n(x) forms a Chebyshev set on [a; b].
Polya [156] in 1913 gave his algorithm for this problem, where a sequence of continuous Lp

problems is solved with p → ∞. A counterexample to a general convergence result for non-
Chebyshev set problems was given by Descloux [54] in 1963. As in the discrete case this is anyway
not a particularly e�ective approach.
Two important algorithms for solving the Chebyshev problem were given by Remes [165,166]

in the 1930s. The method traditionally known as the “Second Algorithm” applies to Chebyshev
set problems, exploiting the alternation property. It solves a sequence of discrete problems in Rn+1

de�ned by sets of n+1 points in [a; b]: each of these is just the solution of a system of n+1 equations
for n + 1 unknowns, using the fact the solutions have an alternation property. By exchanging the
current set of n + 1 points for n + 1 local maxima of the modulus of the error function, subject
to some simple rules, an ascent process is obtained. Under mild conditions this converges to the
(unique) Chebyshev approximation, and at a second-order rate: the result, due to Veidinger [191]
in 1960, is based on showing that the method is asymptotically Newton’s method for solving the
characterization conditions. A comparatively modern implementation of the method was given by
Golub and Smith [73] in 1971. Note that if only one point is exchanged at each iteration (bringing
in a point where the norm of the error is attained), then an equivalence can be drawn between a step
of the method and a step of the Stiefel exchange method. An analysis of the one-point exchange
method is given by Powell [158] in his 1980 book, where it is shown that this method also converges
at a second-order rate.
The “First Algorithm of Remes” applies to general problems. Again it corresponds to the solution

of a sequence of discrete problems, but of increasing size. Starting with a solution on m1¿(n+ 1)
discrete points in [a; b], a point where the error function attains the norm is added, and a new
solution obtained on m1 +1 points. If the matrix A of the initial problem has rank n, then successive
matrices also have rank n and so linear programming techniques, for example, can be used, and
implemented e�ciently using postoptimality theory. This is an “implicit” exchange method, since
every solution corresponds to a vertex de�ned on the current set of points. In fact since much of the
work in implementing such a method lies in �nding a global maximum of the error function, and
this would normally involve calculating all the local maxima, it is sensible to add in all such local
maxima: the method is then an implicit multiple exchange method. For Chebyshev set problems this
is equivalent to the second algorithm of Remes. Modi�cations of the �rst algorithm of Remes to
allow multiple exchanges have been considered by Carasso and Laurent [34] in 1978, and Blatt [25]
in 1984, based on constructing “chains of references”.
Unfortunately there are examples where this kind of approach performs badly, when the solution

to the continuous problem does not occur at a vertex, that is it attains the norm in fewer than n+1
points: such problems were called singular problems by Osborne and Watson [151] in 1969. Note
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that this phenomenon is speci�c to problems on a continuum, and has no analogue in the (full
rank) discrete case. Therefore, because each discrete problem has a solution at a vertex, the limiting
situation in this case is obtained by some of these points coalescing, slowing down convergence and
giving ill-conditioned simplex bases.
For multivariate problems (where x is a vector in Rs, s¿ 1), singularity is very common. A partial

explanation for this is that Chebyshev sets of more than one function do not exist in continuums of
dimension higher than one: this was �rst pointed out by Mairhuber [119] in 1956. Nevertheless, a
method of this type can be developed for multivariate problems, as demonstrated by Watson [194]
in 1975.
Therefore, there are two main di�culties with such methods: (a) the calculation of the local and

global maxima of the error function, (b) the problem of singularity. It is perhaps only recently that
close attention has been paid to e�cient calculation in (a), for example by Reemtsen [163] in 1991,
and Price and Coope [159] in 1996: it is usually assumed that all local maxima can be calculated to
su�cient accuracy, and so the relevant algorithms are always implementable. But attempts to avoid
(a) have been made, for example by Dunham [58] in 1981, Hettich [85] in 1986 and Reemtsen
[162] in 1990. The main idea is to only require maxima of the error at each step on a grid, where
the discretization error tends to zero as the method progresses. In particular, Reemtsen proved the
convergence of a modi�ed version of the �rst algorithm of Remes, in which the maximum of the kth
error function was computed on a grid, with the grid density tending to zero. The method of Hettich
is also based on successive grid re�nement (and using a numerically stable simplex algorithm)
and applies to one- and two-dimensional problems; solutions have been successfully obtained for
problems with n up to 37.
An alternative approach which tries to avoid both (a) and (b) is through the use of two-phase

methods. The �rst phase involves the solution of a single discretization of the problem, on a suf-
�ciently dense set to enable identi�cation of the number of points (with signs) where the norm
is attained and good approximations of these. In the second phase, the characterization conditions,
together with zero derivative conditions at points identi�ed as extrema in (a; b), can then be solved
(for example by Newton’s method). This main idea for an approach of this type (in a more general
context) is due to Gustafson [77] in 1970. Its application to Chebyshev approximation problems was
considered by a number of people in the mid-1970s, among them Gustafson, Hettich, Andreassen and
Watson [5,78,84]. The approach can be successful, but while the di�culty (a) above is essentially
removed, (b) can still emerge in the �rst phase, and there is also the (new) di�culty of having to
decide what level of discretization to use, or when to enter the second phase, and also when the
information provided at that point is completely reliable. It may be necessary to permit re-entry to
phase 1 with a more stringent exit criterion.
The second phase can be considered in two ways, depending on whether or not the local maxima

are considered as di�erentiable functions of the unknown parameters, and whether or not this is
exploited. If it is, then the zero derivative conditions can be used to eliminate these maxima in
terms of the other unknowns, and there is a consequent reduction in the size of the linear system
to be solved for the Newton step.
Of course the second phase applies equally to nonlinear problems, so we will return to some

of these ideas in Section 3.4. Indeed, continuous Chebyshev approximation problems (both linear
and nonlinear) are special cases of semi-in�nite programming problems, that is problems with a
�nite number of variables and an in�nite number of constraints, and many algorithms which have
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been developed for the more general problem class may be adapted for the Chebyshev approximation
problem. Semi-in�nite programming is an active research area – the recent survey paper of Reemtsen
and G�orner [164] in 1998 has 233 references, 96 of them dated 1990 or later. Algorithmic develop-
ment has encompassed methods based on the ideas considered above, but also other approaches, for
example the use of interior point methods. These are of comparatively recent origin, their usefulness
(certainly as far as continuous Chebyshev approximation is concerned) does not appear to have been
established, and we will not consider them further here.

2.6. Chebyshev approximation by splines with �xed knots

Approximation by splines is considered in some detail elsewhere, so we will not go into the
history of the origins of this class of function. The main focus of approximation by splines has been
on interpolation; however, Chebyshev approximation by splines has also attracted a lot of attention.
Because we are concerned at present with linear problems, we assume in the present section that
the knots are �xed a priori, and we will consider approximation from the space of spline functions
de�ned as follows. Let integers m and k be given, and let a= x0¡x1¡ · · ·¡xk+1 = b. Then

Sm = {s ∈ Cm−1[a; b] : s(x) ∈ �m on [xi; xi+1]; i = 0; : : : ; k};
where �m denotes the space of polynomials of degree m, is the space of polynomial splines of
degree m with k �xed knots. Sm is a linear space with dimension m + k + 1. The �rst results on
Chebyshev approximation by splines seem to be due to Johnson [96] in 1960.
The theory of approximation by Chebyshev sets does not apply to approximation from Sm. How-

ever, Sm is an example of a family of functions forming a weak Chebyshev set: any linear combi-
nation of such a set of n functions has at most (n − 1) changes of sign. For such sets Jones and
Karlowitz [100] showed in 1970 that there exists at least one best Chebyshev approximation � to
any continuous function f which has the classical alternation property

A(f − �)[a;b]¿n+ 1;

(although there may be others which do not).
The theory of Chebyshev approximation by splines with �xed knots is fully developed, and a

characterization of best approximation goes back to the Ph.D. dissertation of Schumaker in 1965,
and his publications over the next few years, e.g. [180]. Results were also given by Rice [173] in
1967. What is required is the existence of an interval [xp; xp+q]⊂ [a; b], with q¿1 such that there
are at least q+ m+ 1 alternating extrema on [xp; xp+q], or in the notation previously introduced

A(f − s)[xp;xp+q]¿q+ m+ 1;

where s ∈ Sm. In addition to characterization of solutions, there has been interest in conditions for
uniqueness (and strong uniqueness) of best approximations. In general of course, best approximations
are not unique. However, the uniqueness (and strong uniqueness) of best spline approximations is
characterized by the fact that all knot intervals contain su�ciently many alternating extrema as shown
by N�urnberger and Singer [143] in 1982.
The solution of a discretized problem by linear programming techniques was suggested by Barro-

dale and Young [14] in 1966 and also by Esch and Eastman in an 1967 technical report (see their
1969 paper [62]). These methods do not make explicit use of characterization results, in contrast to
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the (explicit) Remez exchange method of Schumaker presented again in technical reports about the
same time (see his 1969 paper [181]). The latter method also solved the discretized problem, but
had no convergence results.
Of course any methods for best Chebyshev approximation by linear functions may be used, but

a special iterative algorithm for computing best Chebyshev approximations from spline spaces was
given by N�urnberger and Sommer [144] in 1983. As in the classical Remes method, a substep at
each iteration is the computation of a spline s ∈ Sm such that

(−1)i(f(�i)− s(�i)) = h; i = 1; : : : ; m+ k + 2;

for some real number h, and given points �1; : : : ; �m+k+2 in [a; b]. The number of equations re
ects
the fact that Sm has dimension m + k + 1. Then one of the points �i is replaced by a point where
||f−s|| is attained in [a; b] to get a new set of points {�i}. The usual Remes exchange rule can result
in a singular system of equations, so a modi�ed exchange rule is needed. Such a rule was given by
N�urnberger and Sommer [144], which ensures that the new system has a unique solution. Because
of possible nonuniqueness of best approximations, the proof of convergence is fairly complicated.
However, convergence can be established.
A multiple exchange procedure can also be implemented, and quadratic convergence is possible.

The above results can be extended to more general spline spaces, where the polynomials are replaced
by linear combinations of functions forming Chebyshev sets: this was considered by N�urnberger et
al. [141] in 1985.
To permit the full power of splines, one should allow the knots to vary, rather than be �xed in

advance. The corresponding approximation problem is then a di�cult nonlinear problem and we say
more about this in Section 3.7.

2.7. Linear L1 approximation in C[a; b]

Given the same setting as at the start of Section 2.5, we consider here the problem

�nd a ∈ Rn to minimize
∫ b

a

∣∣∣∣∣f(x)−
n∑

i=1

ai�i(x)

∣∣∣∣∣ dx: (13)

This problem was apparently �rst considered by Chebyshev in 1889.
Characterization results go back to James [93] in 1947. A convenient form is the analogue of that

available in the discrete case: a vector a solves the L1 problem if and only if there exists a function
v with ||v||∞61 such that∫ b

a
v(x)�j(x) dx = 0; j = 1; : : : ; n;

v(x) = sign r(x); r(x) 6= 0:
If the set {�1(x); : : : ; �n(x)} forms a Chebyshev set in [a; b], then Jackson [92] in 1921 showed

that the solution is unique. For polynomial approximation, perhaps the �rst “algorithm” was given
by Hoel [89] in 1935, who showed that the polynomials of best Lp approximation converge to
the best L1 approximation as p → 1. This is the analogue of the Polya algorithm for Chebyshev
approximation. A more general convergence result, and a characterization of the limiting element,
was given by Landers and Rogge [109] in 1981.
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The L1 problem is greatly simpli�ed if it can be assumed that the zeros of f(x) − ∑n
i=1 ai�i(x)

form a set of measure zero in the interval [a; b] (for example the zeros just consist of a �nite set
of points). Then the function to be minimized in (13) is di�erentiable, and necessary and su�cient
conditions for a solution are that∫ b

a
g(x; a)�j(x) = 0; j = 1; : : : ; n;

where g(x; a) denotes the sign of f(x)−∑n
i=1 ai�i(x). This was known to Laasonen [107] in 1949.

This means that great store is placed on the points where there are sign changes, or equivalently
where the approximation interpolates f. If these points were known, and were exactly n in number,
then we could compute the best approximation by interpolation, provided that there were no other
changes of sign in the error of the resulting approximation. The points x1¡ · · ·¡xt ∈ (a; b) =
(x0; xt+1), where 16t6n, are called canonical points if

t∑
i=0

(−1)i
∫ xi+1

xi
�j(x) dx = 0; j = 1; : : : ; n: (14)

For the Chebyshev set case, Laasonen [107] in 1949 showed that there is a unique sign function
and further t= n. This was extended to weak Chebyshev sets by Micchelli [129] in 1977. Existence
of a set of t6n canonical points for the general problem was shown by Hobby and Rice [87] in
1965.
For the special case when �i(x) = xi−1; i= 1; : : : ; n, then the location of the n canonical points is

known – they lie at the zeroes of the Chebyshev polynomial of the second kind of degree n (shifted
if necessary). This result is due to Bernstein [23] in 1926. Thus their location is independent of f.
Interpolation at these points can quite frequently result in the best polynomial approximation, for
example, if the set

{f(x); �1(x); : : : ; �n(x)}
forms a Chebyshev set in [a; b]. However, this is not usually the case, and so this is not a reliable
method in general.
An algorithm of descent type seems �rst to have been given by Usow [188] in 1967, who gave

an analysis applicable to problems with Chebyshev sets, and some numerical results for polynomial
approximation. However, Marti [120] in 1975 gave an example where the method converges to a
point which is not a solution. He gave an alternative descent method, valid when the functions {�i}
form a Markov set (any rearrangement is a Chebyshev set).
The �rst general method seems due to Glasho� and Schultz [72] in 1979, based on using Newton’s

method to solve the characterization conditions (14) together with the corresponding interpolation
conditions. A variant of this, which is globally convergent, was given by Watson [200] in 1981. It
is essentially of exchange type, based on the calculation of the zeroes of the error at each iteration
and the construction of descent directions. It is also of Newton type, since it constructs the Hessian
matrix of the error when it exists, and therefore can have a second-order convergence rate. In a
sense, it can be thought of as analogous to the second algorithm of Remes for Chebyshev problems,
where here a sequence of sets of zeroes plays the role of a sequence of sets of extreme points in that
problem; the connection with Newton’s method under appropriate circumstances is also something
the methods have in common. A method for L1 problems based on Newton’s method was also given
by Blatt [25] in 1984.
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3. Nonlinear approximation

There are two major di�erences which arise in moving from linear to nonlinear best approxi-
mation problems. Firstly, existence of solutions cannot generally be guaranteed. Secondly, there is
normally a gap between conditions which are necessary and conditions which are su�cient for a
best approximation. This re
ects the loss of convexity. From an algorithmic pont of view, it is usual
to seek to satisfy �rst-order conditions which are necessary for a solution to the best approximation
problem, and such a point is conventionally referred to as a stationary point. At best this can be
expected to be a local minimum of the norm. Assuming that the members of the approximating
family are di�erentiable with respect to the free parameters at least in the region of interest, then
a characterization of stationary points is straightforward: it is appropriate simply to replace in the
linear case the basis elements (either vectors making up the columns of A or functions �i; i=1; : : : ; n)
by the partial derivatives of the approximating function with respect to the free parameters at the
relevant points.

3.1. Nonlinear approximation in Rm

Consider now the discrete problem

�nd x ∈ Rn to minimize || f (x)||;
where f ∈ Rm depends nonlinearly on the components of x, and where the norm is any norm
on Rm.
A general approach to this problem is through a sequence of linear subproblems. Assume that

f is continuously di�erentiable in the region of interest, and at a given point x, let A denote the
m × n matrix of partial derivatives of the components of f with respect to the components of x.
Then consider the iterative method based on computing an updated x as follows:
(i) �nd d ∈ Rn to minimize || f + Ad ||,
(ii) replace x by x+ 
d , where 
¿ 0 is suitably chosen.
The problem in (i) is just a linear approximation problem in the given norm (a linear subproblem),
and (ii) involves choosing 
 so that

|| f (x+ 
d)||¡ || f (x)||; (15)

if this is possible: for example we may try to minimize the expression on the left-hand side with
respect to 
.
When the norm is the least-squares norm, this kind of method (with 
= 1) most probably dates

back to Gauss and is now known as the Gauss–Newton method. For the Chebyshev problem, this
kind of approach was suggested by Zuhovickii et al. [212] in 1963, by Ishizaki and Watanabe [91]
in 1968, and by Osborne and Watson [150] in 1969. Unless x is a stationary point, improvement
can always be obtained via step (ii) since (15) holds for 
¿ 0 small enough. The theory given in
the Osborne and Watson paper required that successive matrices A satis�ed the Haar condition, and
in that case convergence to a stationary point was established. The method was extended to the l1
norm by Osborne and Watson [152] in 1971. Also in 1971, Osborne [146] was able to relax the Haar
condition assumption for the l∞ algorithm, and showed that the method was quadratically convergent
if the maximum error at the limit point of the iteration was attained at n + 1 points. In that case,
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unit length steps were ultimately possible, and a ready connection could be drawn with Newton’s
method applied to the nonlinear equations satis�ed at the stationary point. Osborne contrasted this
with the behaviour of the method in the l2 case, when good performance was dependent on the
goodness of �t of the model, rather than on properties of the data.
The behaviour of the algorithm in a completely general setting was considered in 1978 by Osborne

and Watson [153]; in particular, (15) was always shown to hold for 
¿ 0 small enough away from a
stationary point. It was also pointed out that the above behaviour typi�ed the situation for polyhedral
norms on the one hand, and smooth strictly convex monotonic norms on the other.
A common basis for a convergence analysis which included this kind of algorithm was given

by Cromme [51] in 1978: he showed that for second-order convergence, it was su�cient for the
best approximation to be strongly unique. This criterion was also studied for the above algorithms in
1980 by Jittorntum and Osborne [95], who showed that strong uniqueness was not always necessary.
Meantime, (at least) two developments were taking place. The fact that the solution of the linear

subproblem could be such that very small step lengths were sometimes required led to the idea of
explicitly incorporating bounds. This Levenberg–Marquardt or trust region idea was �nding favour
in descent methods for more general optimization calculations. Another development was to do with
the line search. Trying to �nd the value of 
 to minimise || f || is clearly impractical, and the idea
of inexact, but su�ciently good, line searches was again imported from contemporary optimization
algorithms. These modi�cations were used by Madsen [115] in an algorithm for the Chebyshev
problem, and by Anderson and Osborne [4] in 1977 for polyhedral norm problems (which include
l1 and l∞). While this could improve things in certain cases, slow convergence could, however, still
occur for many problems.
For fast local convergence in general, it was recognized that second derivative information had to

be incorporated. Two stage methods for Chebyshev problems were given independently in 1979 by
Watson [198] and by Hald and Madsen [80]. These methods solved a sequence of linear subproblems
to build up information about the limit point (in particular, the number of points where the norm
was attained, with signs). This information could then (if necessary) be used as input to a second
(locally convergent) phase such as Newton’s method applied to the nonlinear system of equations
characterizing a stationary point. Thus they extended fast local convergence to a much wider range
of problems.
It had long been recognized that the Chebyshev approximation problem could be posed as a

nonlinearly constrained optimization problem, analogous to the way in which the linear problem
could, although it seemed at one time that treating the problem in this way was likely to be less
e�cient than using linear subproblems. However, following advances in techniques for constrained
optimization problems, and a recognition that there was much structure in the Chebyshev problem
which could be exploited, Conn [48] in 1979, Murray and Overton [135] in 1980, Han [82] in
1981, and Womersley and Fletcher [207] in 1986 all proposed methods. These are all variants of
a technique based on the solution of a sequence of quadratic programming problems, involving a
Lagrangian function and linearizations of ri=h, for i in a set which estimates the set of indices where
the extrema are attained at a stationary point. They all incorporate second derivative information, and
involve exploiting the structure and giving descent with respect to the norm. A line search descent
method due to Conn and Li [49] in 1989 is claimed to make more explicit use of the structure: in
addition to giving descent, it attempts to force satisfaction of the stationary point characterization
conditions at the same time.
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This general approach now seems the most e�ective for small problems with dense matrices
A. However, for large problems with sparse structure in A, solving linear rather than quadratic
programming problems is preferable, as the structure may be exploited. Therefore, for such problems,
there has been some recent re-interest in methods of trust region type which use sequential linear
programming. Some work of Jonasson and Madsen [97,98] from the mid-1990s is of relevance here.
As in the linear case, large problems may arise as discretizations of continuous problems; therefore

we will return to this in Section 3.4.
There were analogous developments for the solution of the nonlinear l1 problem. The �rst at-

tempt to incorporate second derivative information into general classes of problems was probably
by McLean and Watson [122] in 1980. This method was of two-phase type which used the solu-
tion of a sequence of bounded variable linear subproblems to provide information about Z at the
desired stationary point, and then used Newton’s method to get an accurate point. The exact Jaco-
bian matrix was used for the Newton step. A similar method by Hald and Madsen [81] in 1985
used quasi-Newton approximations, and allowed several switches between phases. Meantime, (single
phase) methods based on solving a sequence of quadratic programming problems were being de-
veloped, analogous to those mentioned before for Chebyshev approximation problems. In the main,
these constructed the quadratic programming problems by de�ning a Lagrangian function, and by
involving linear approximations to ri=0 for i ∈ Zk , where Zk was an estimate at iteration k to Z at
the solution. Methods of this type which used line searches were proposed by Murray and Overton
[136] in 1981 and Bartels and Conn [15] in 1982, and trust region methods were given by Fletcher
[67,68] in 1981 and 1985.
Perhaps because there is no simple connection analogous to that between continuous and discrete

Chebyshev approximation problems, the nonlinear l1 problem has attracted much less recent interest.

3.2. Rational Chebyshev approximation in Rt

Approximation by rational functions goes back to Chebyshev in 1859. The basic (discrete) problem
is as follows. Let xi; i = 1; : : : ; t be in [a; b]. Then a best approximation is sought from the set

RD
nm =


P(x)=Q(x): P(x) =

n∑
j=0

ajpj(x); Q(x) =
m∑

j=0

bjqj(x); Q(xi)¿ 0; i = 1; : : : ; t


 ;

to the set of values f1; : : : ; ft , in the sense that

max
16i6t

|R(xi)− fi|

is minimized over all R ∈ RD
nm. For this problem, existence of best approximations is not guaranteed,

even in the case of quotients of polynomials, and characterization and uniqueness results are not
available, although of course necessary conditions for a solution may be obtained. In fact necessary
conditions based on alternations may be derived analogous to the characterization conditions which
are available in the case of approximation to a continuous function on an interval: see Section
3.6. Because of this it is possible to implement an algorithm equivalent to the second algorithm of
Remes, although for the discrete problem there are better approaches which do not explicitly use
alternations.
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The quest for algorithms for rational Chebyshev approximation appears to go back at least as far
as Wenzl [201] in 1954. In the late 1950s Loeb considered some approaches which formed the basis
for what was perhaps the �rst really e�ective algorithm for the discrete problem, the di�erential cor-
rection algorithm, given by Cheney and Loeb [38] in 1961. At that time, the convergence properties
were uncertain, and a modi�ed version was subsequently considered by the same authors in 1962
[39], and also by Cheney and Southard [42] in 1963, which was shown to have sure convergence
properties, and drew attention away from the original method. However, in 1972 Barrodale et al. [9]
studied both approaches, and showed that the method in its original form had not only guaranteed
convergence from any starting approximation in RD

nm, but usually had a second-order convergence
rate. Further, their comparisons of the methods showed that the performance of the original method
was better. Some further analysis was given by Cheney and Powell [41] in 1987.
The di�erential correction algorithm is an iterative method where successive approximations from

RD
nm are computed by solving a linear programming subproblem, where one variable is minimized
subject to 2t linear constraints involving also variables representing the coe�cients of the new
approximation, and bound constraints on the coe�cients of the denominator. Each step of the method
may be interpreted as working with an approximation to the original problem which is correct up
to �rst order, and this “Newton method” connection gives a partial explanation of the second-order
convergence rate. In fact, from the point of view of implementation, it is more e�cient to solve the
dual of the original linear programming subproblem.
A potentially unsatisfactory feature of approximation from RD

nm is that the denominator, although
positive, can become arbitrarily close to zero at certain points. It is not su�cient simply to impose
a lower bound on Q, because of the possibility of multiplying both numerator and denominator
by an arbitrary constant. A modi�cation of the di�erential correction algorithm which applies to
problems with a lower bound on the denominator and upper bounds on the absolute values of the
coe�cients bj was given by Kaufmann and Taylor [104] in 1981. 5 It is more natural, however, to
impose upper and lower bounds on the denominators themselves (“constrained denominators”). A
modi�ed di�erential correction algorithm for this problem has been given by Gugat [75] in 1996.
This involves constraints of the form

�(xi)6Q(xi)6�(xi); i = 1; : : : ; t; (16)

where � and � are continuous functions, which replace the constraints on Q(xi) in the de�nition
of RD

nm.
The linear programming subproblem corresponding to (16) above di�ers in that the additional

conditions are imposed on the denominators. However, Gugat’s method di�ers also in that there is
greater 
exibility in choice of initial values, and this turns out to be important. The original algorithm
starts with an approximation R1 in RD

nm and a value �1 which is the maximum modulus error of
this approximation on the discrete set. The method of Gugat starts with R1 as usual, but with an
arbitrary number �1 that is allowed to be smaller than the current maximum error. This 
exibility
turns out to be an important advantage: for example numerical results show that the choice �1 = 0
is a good one. It is shown by Gugat that convergence results for the original version carry over.

5 This is an example of a constrained problem, which arises in a natural way from the rational approximation problem:
it is not our intention to consider constrained problems per se.
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It has been pointed out that the quadratic convergence of the di�erential correction algorithm is a
consequence of a connection which it may be shown to have with Newton’s method. Methods which
set out deliberately to use variants of Newton’s method are given by Hettich and Zenke [86] in 1990
and Gugat [76] in 1996. However, in contrast to the methods based on the di�erential correction
algorithm, these do not generate a monotonically decreasing sequence of maximum modulus errors
on successive approximations.

3.3. Nonlinear approximation in C[a; b]

Consider now the problem

�nd a ∈ Rn to minimize ||f(:; a)||; (17)

where the norm is a given norm on C[a; b] and where a occurs nonlinearly in f. It was shown
by Watson [197] in 1978 that, provided that f was di�erentiable in the region of interest, methods
of Gauss–Newton type (the continuous analogues of the methods introduced in Section 3.1) can be
applied to this class of problems. However, while this may be of some theoretical interest, it does
not lead to practical algorithms. Indeed, such problems cannot really be considered in any generality,
and we will in fact restrict attention to the Chebyshev norm, and some important special cases.

3.4. Nonlinear Chebyshev approximation in C[a; b]

Here we consider (17) when the norm is the Chebyshev norm

||f||∞ = max
x∈[a;b]

|f(x)|:
Some general problems of this type were considered by Chebyshev in 1859 [36], with particular
reference to rational approximation.
Aside from some special cases (for example see below) it is not possible to say very much about

the number of points where the norm is attained at a stationary point. In common with other general
nonlinear problems, characterization results are not available, and numerical methods set out to �nd
a stationary point.
The �rst practical numerical methods seem to have been of two-phase type (see Section 2.5),

and these were proposed independently by Hettich [83] and Watson [195] in 1976. The basic idea
is similar to that used for linear problems: a �rst phase is to solve a discretized problem, whose
solution identi�es the number and associated signs, along with good approximations, of the points
where the norm is attained at a stationary point, and a second phase corresponding to the solution
of a nonlinear system comprising the equations to be satis�ed there. Only the �rst-phase calculation
needs a method which is tailored to whether the problem is linear or not. If a single discretized
problem is to be solved, then any of the methods for solving discrete Chebyshev problems can of
course be used.
The second phase calculation is a Newton type method, whose steps may be interpreted as

quadratic programming problems. The approach can be globalized, thus extending the domain of
convergence. This idea was central to the single phase method given by Jonasson and Watson [99]
in the mid-1980s, based on the use of a Lagrangian function, and solving a sequence of quadratic
programming problems de�ned on the current set of local maxima of the modulus of the error
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function. Descent directions were de�ned, and both line search and trust region algorithms were
developed. Second-order convergence is normal, and there is a nice connection with the second
algorithm of Remes; however, the requirement to calculate exact local extrema at each step is a
major disadvantage, and there can be sometimes slow progress far from a stationary point. A similar
method was given by Jing and Fam [94] in 1987.
The connection between continuous Chebyshev approximation problems and semi-in�nite program-

ming problems has already been drawn, and the earlier comments apply to nonlinear problems. It
may be that more recent methods being devised for nonlinear semi-in�nite programming problems
may also improve on these earlier methods for Chebyshev approximation problems. For example, a
method by G�orner [74] in 1997 consists of the solution of a �nite set of discretized problems by
sequential quadratic programming methods, following on from similar ideas used by Zhou and Tits
[210] in 1996. These methods can lead into a second phase for accurate solution of the continuous
problem: a feature of the method of G�orner is that the same superlinearly convergent sequential
quadratic programming method is used in both phases.
In any event, it would appear that this much at least can be said: a two-phase method with a

discretization technique as �rst phase, and a variant of Newton’s method as second phase, seems to
be the most reliable and e�cient method for solving small to medium size continuous Chebyshev
set problems. However, the di�culties referred to near the end of Section 2.5 are still relevant for
larger problems.

3.5. Nonlinear Chebyshev approximation in C[a; b] – some special cases

In order to close the gap between conditions which are necessary and conditions which are suf-
�cient, it is necessary to restrict the class of approximating functions, and the point at which this
process converges may conveniently be described in terms of alternation conditions, analogous to
those which apply in the (linear) Chebyshev set case. This clearly has implications for numerical
methods, and so it is appropriate to look brie
y at some of this theory. In the linear case, the
Chebyshev set condition simultaneously implies the existence of an interpolation function with a
certain (�xed) number of zeros. In nonlinear cases, these become two conditions which have to be
assumed separately: the interpolation property is a local one (which depends on the approximation),
but in addition we require a global property on the zeros.
The concept of unisolvency was introduced in 1949 by Motzkin [130]. Let �(x; a) :Rn → C[a; b].

Then given any d ∈ Rn and n distinct points xi; i = 1; : : : ; n in [a; b], this family is unisolvent if
there exists a unique vector a ∈ Rn such that

�(xi; a) = di; i = 1; : : : ; n:

This particular generalization of the Chebyshev set property in the linear case leads to the existence
of a unique best approximation � which is characterized by

A(f − �)[a;b]¿n+ 1;

as shown by Tornheim [187] in 1950. Unfortunately this is an extremely restrictive property, pos-
sessed by a small number of approximating functions, and Rice in his Ph.D. thesis in 1959, and in
papers published in the next few years, suggested a more general property of varisolvency, which
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(provided the error is not constant) leads to the best approximation � being characterized by

A(f − �)[a;b]¿m(�) + 1;

where m(�) is the degree of local solvency [168,170]. Rice also showed that there is at most one
best approximation. If � is formed from a linear combination of n functions forming a Chebyshev
set in [a; b], then this is in fact a varisolvent family of constant degree n.
A related theory for nonlinear Chebyshev approximation on an interval was established by Meinar-

dus and Schwedt [126] in 1964, valid for approximating functions di�erentiable with respect to their
parameters. It essentially replaces the local condition required in varisolvency by a local Chebyshev
set condition on the tangent space. An alternation characterization condition was established, along
with an uniqueness result. Braess [31] in 1974 demonstrated the precise relationship between these
various results.
Attempting to de�ne a general class of nonlinear approximating functions which would be vari-

solvent, and so satisfy this kind of characterization result, Hobby and Rice [88] in 1967 de�ned

-polynomials,

�(x; a) =
n∑

i=1

ai
(ai+nx);

where 
 is a continuous function of its parameters. This class is of interest because it includes
some important special cases, for example exponentials and spline functions. Subject to an additional
assumption (Descartes’ rule of signs), Hobby and Rice [88] established that the theory of varisolvent
families applied. This condition is satis�ed if the set

{
(t1; x); : : : ; 
(tn; x)}
forms a Chebyshev set in [a; b] for distinct ti’s. A best approximation � is then characterized by

A(f − �)[a;b]¿n+ l(�) + 1

where l(�) is the length of the 
-polynomial �, de�ned by the restriction that � cannot be expressed
by a sum of fewer terms. The closure of the set of 
-polynomials is in fact required for existence
of best approximations, but then the alternating characterization is lost.
An important special case is given by taking


(t; x) = etx;

when we have approximation by sums of exponentials. This was studied �rst by Rice [169] in 1960
(n = 1), and in 1962 (general n) [171]. Because the set {et1x; : : : ; etnx} forms a Chebyshev set in
[a; b] for distinct ti’s, then a Descartes’ rule of signs holds (this result seems to go back to Laguerre
[108] in 1898), and it follows that the approximating family is varisolvent. This was shown by Rice
[171] in 1962, who also showed that a best approximation � is characterized by

A(f − �)[a;b]¿n+ k(�) + 1;

where the gradient vector of � with respect to ai; i = 1; : : : ; 2n has n + k(�) nonzero components.
There is at most one best approximation. Existence of best approximations from the closure of the
set of exponential functions was proved by Rice [171] in 1962 and Werner [204,205] in 1969.
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As Bellman [21] wrote in 1970, “exponential approximation is a notoriously delicate enterprise”,
mainly because widely varying parameter values can give nearly optimal results. Therefore, the cal-
culation of best Chebyshev approximations (or indeed any approximations) by sums of exponentials
can be di�cult. If an assumption is made about the number of alternations (that k(�) = n), then
a method of Remes type can be applied with a nonlinear system of equations to be solved for the
new coe�cients at each iteration. This is considered by Dunham [57] in 1979, and in subsequent
work with Zhu: it was necessary to have very good starting approximations.
The fact that n of the parameters occur linearly means that if the parameters an+1; : : : ; a2n (the

frequencies) are �xed, then the remaining parameters can be obtained by applying a linear solution
method; this gives a problem which is essentially in the frequencies alone, and which could be tackled
by iteration on the frequencies to obtain optimal values. Local descent methods were suggested by
Braess [29] and Werner [205] in the late 1960s, and related methods were implemented in the
1970s by others such as Cromme, Kammler, Robitzsch and Schaback [50,101,177]. A method due
to Dunham [59] in 1988 worked well with one frequency, but had di�culties with two or more.
Nearly equal frequencies, or coalescing frequencies, are generally a problem.
One feature is that good initial approximations are necessary: in particular it is important to

estimate the positions of the frequencies, before applying an optimal method, and this has led to
interest in “suboptimal approximations”. Prony’s method of “approximate interpolation” may be
applied, although the method is not generally stable. An alternative is Bellman’s 1970 [21] method
of di�erential approximation. These methods were considered in detail by Robitzsch and Schaback
[177] in 1978 and by Schaback [179] in 1979. Any suboptimal method may be considered as a
�rst phase method which can lead into a second phase based on Newton’s method to satisfy the
nonlinear system characterizing the solution.
But it would seem that in practice additional constaints are both natural physically, and necessary

mathematically and computationally – for example, to bound frequencies, or to prevent frequencies
from crossing each other. The computational approach then depends on precisely what is being
assumed, and we will not pursue this further.

3.6. Rational Chebyshev approximation in C[a; b]

The continuous analogue of the class of problems considered in Section 3.2 is based on the
approximating set Rnm de�ned by

Rnm =


P(x)=Q(x) :P(x) =

n∑
j=0

ajpj(x);

Q(x) =
m∑

j=0

bjqj(x); Q(x)¿ 0 on [a; b]


 ;

where the pj(x) and qj(x) are given sets of functions. Then given f(x)∈C[a; b], we require to
determine R ∈ Rnm to minimize ||f − R||, where the norm is the Chebyshev norm on [a; b]. For
the special case when P(x) and Q(x) are polynomials of degree n and m, respectively, existence of
a best approximation is guaranteed, as shown by Walsh [193] in 1931. Achieser in 1947 (see his
1956 book [3]) showed that the best approximation is unique (up to a normalization), and earlier,
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in 1930 (again see his 1956 book [3]), he showed that a best approximation R = P=Q ∈ Rnm is
characterized by

A(f − R)[a;b]¿n+ m+ 2− d(R);

where d(R) is the defect of the approximation: the defect is just the minimum di�erence between
the actual degree of P(x) and Q(x) and n and m respectively. If d(R)¿ 0, the best approximation
is said to be degenerate. These results also follow from the fact that the approximating family is
varisolvent. (The necessary conditions referred to in Section 3.2 correspond to this alternation result
de�ned on the points of the set x1¡ · · ·¡xt introduced there.)
For more general quotients (of linear combinations of functions), existence is no longer guaranteed,

although characterization results are available (not necessarily of alternation type), and uniqueness
results may be extended. The main contributions here are from Cheney and Loeb [39,40] in the
mid-1960s.
For rational approximation by quotients of polynomials on an interval, the analogue of the Remes

exchange method may be applied, using sets of m+n+2 points. It, therefore, requires nondegeneracy
of the best approximation, and can converge at a second-order rate if started from close enough to the
solution: the analysis is primarily due to Werner in a series of papers in the early 1960s [202,203].
The system of linear equations which needs to be solved in the linear problem is replaced by a
nonlinear system in the rational problem, equivalent to an eigenvalue problem. Werner [203] in
1963 showed that the eigenvalues are always real, and there is at most one pole free solution, that
is a rational approximation with Q(x)¿ 0 on [a; b]. Maehly in 1963 [118] gave an example which
showed that in fact no pole free solution need exist; even if it is does exist, it need not be associated
with the smallest eigenvalue. Despite these potential problems, the second algorithm of Remes has
been successfully used for rational approximation. Fraser and Hart [70] in 1962, Werner [202] in
1962 and Stoer [186] in 1964 gave methods based on solving the system of nonlinear equations
directly. In 1966, Curtis and Osborne [52] gave an algorithm which used the eigenvalue connection
explicitly, solving the eigenvalue problem by inverse iteration with zero as an initial estimate for the
eigenvalue; they also established quadratic convergence. Breuer [32] in 1987 suggested a di�erent
direct approach to this subproblem which used continued fraction interpolation, and which it was
claimed can lead to a considerable increase in e�ciency, and also accuracy and robustness.
Variants of the second algorithm of Remes apply to rational Chebyshev approximation problems

which incorporate a generalized weight function. Important work involving rational approximation
on an interval to provide optimal starting values for computing

√
x by the Newton Raphson method

was done, for example, by Moursand [133] in the late 1960s.
The algorithms fail if the solution is degenerate, and indeed for problems which are nearly degen-

erate, extremely good starting approximations are required. Ralston [160,161] in a series of papers
in the late 1960s and early 1970s considered degeneracy in detail. The computation of nearly degen-
erate approximations should if possible be avoided, as equally good results can be obtained through
the use of smaller m and n.
It is possible to make the second algorithm of Remes more robust, by combining its merits with

the di�erential correction algorithm. In particular the discrete subproblems can be solved by that
method, and if no pole-free solution is obtained, additional points can be included. If su�ciently
many points are taken in [a; b], and always assuming that the continuous problem is not degenerate,
then a pole-free solution can be obtained so that the algorithm can be continued. Methods based
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on this idea were given by Belogus and Liron [22] and also Kaufman et al. [103] both in 1978.
Numerical evidence is that such an approach can be successful for problems which give di�culties
with the traditional Remes method.
The di�erential correction algorithm may be applied to problems de�ned on an interval, although

the subproblems are no longer �nite. Dua and Loeb [55] in 1973 established a second order con-
vergence rate if the best approximation is normal. The potentially unsatisfactory feature referred to
in Section 3.2 where the deniminator, although positive, can become arbitrarily close to zero, also
applies to Rnm. The algorithm of Gugat referred to there also may be applied to intervals, although
the numerical performance is unclear.

3.7. Chebyshev approximation by spline functions with free knots

To permit the full power of splines, one should allow the knots to vary, rather than be �xed
in advance. The corresponding approximation problem is then a di�cult nonlinear problem. This
problem can be considered in terms of 
 polynomials. However, the structure of the problem, and
the way in which degeneracies can be introduced makes an attempt to make a straightforward
application unhelpful.
To guarantee existence of best approximations, multiple knots have to be allowed. There may be

local solutions; a characterization of best approximations is not known. For the case of k free knots,
necessary and (di�erent) su�cient conditions of the alternation kind given above may be proved.
Let q′ denote the sum of the knot multiplicities at the points xp+1; : : : ; xp+q−1. Then it is necessary
for s ∈ Sm to be a best Chebyshev approximation with k free knots to f in [a; b] that there exists
an interval [xp; xp+q]⊂ [a; b] with q¿1 such that

A(f − s)[xp; xp+q]¿m+ q+ q′ + 1;

as shown by N�urnberger et al. [142] in 1989; it is su�cient for s ∈ Sm to be a best Chebyshev
approximation with k free knots to f in [a; b] that there exists an interval [xp; xp+q]⊂ [a; b] with
q¿1 such that

A(f − s)[xp; xp+q]¿m+ k + q′ + 2;

as shown by Braess [30] in 1971. The necessary condition was strengthened to a possibly longer
alternant by Mulansky [134] in 1992. Although a characterization of best spline approximations
with free knots is not known, a characterization of strongly unique best spline approximations with
free simple knots is available: what is required is that all knot intervals contain su�ciently many
alternating extrema. The relevant work here is by N�urnberger [137,138] in 1987 and 1994.
Since approximation by splines with free knots is a nonlinear Chebyshev approximation problem,

of course general methods can be used. However, the way in which the knots enter as free parameters
makes this a particularly awkward problem and makes it important that the special structure be
exploited.
For a discretization of the problem, a descent method based on Newton’s method was given by

Esch and Eastman [62] in 1969. Most algorithmic work has been concerned with uniform approx-
imation from a space of piecewise polynomials where the continuity conditions at the knots are
relaxed. A standard algorithmic approach is based on so-called segment approximation, originating
from work of Lawson in 1964 [112], and methods were proposed by Pavlidis and Maika [155] in
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1974, and McLaughlin and Zacharski [121] in 1984. Because pieces were �tted separately, continuity
could be lost between segments. A recent method of this type is due to N�urnberger et al. [145] in
1986 (see also [124]). The algorithm converges through sequences of knot sets from an arbitrary
set of knots. For each set of k knots, best Chebyshev degree m polynomial approximations to f
are obtained on each subinterval using the classical Remes algorithm. The knots are then adjusted
by a “levelling” process, so that the maximum errors of the polynomial best approximations are
equalized. The result of this is a piecewise polynomial which is usually discontinuous. However,
the procedure is augmented by the application of the method for �tting splines with �xed knots to
the optimal knot positions obtained from the �rst part. The outcome of this is a di�erentiable spline
approximation, which numerical results show to be a good one. Note that at present there is no
algorithm for computing (global) best Chebyshev spline approximations with free knots. At best a
local approximation can be expected, so producing a “good” spline approximation may be the most
sensible strategy.
Generalizations to multivariate splines have mainly been concerned with interpolation problems.

But consider bivariate splines on [a1; b1]×[a2; b2]. This region can be divided into rectangles by knot
lines x=xi; y=yi; i=1; : : : ; s, and a tensor product spline space can be de�ned. As in the univariate
problem, partitions can be de�ned and improved systematically in such a way that best Chebyshev
approximations are obtained in the limit. Some recent work on this problem is given by Meinardus
et al. [125] in 1996, and by N�urnberger [140] in 1997. However, there are many unsolved problems,
as pointed out by N�urnberger [139] in 1996.
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