A Stochastic Programming Framework for the Large-Scale Integration of Renewable Energy in Power Systems

Anthony Papavasiliou
Department of Mathematical Engineering
Catholic University of Louvain, Belgium

Joint work with
Prof. Shmuel Oren (IEOR, U.C. Berkeley)

December 11th, 2013
Renewables Making Headlines

Germany: Nuclear power plants to close by 2022

Denmark aims for 100 percent renewable energy in 2050

California to nearly double wind, solar energy output by 2020 -regulator
Uncertainty

Tehachapi Wind Generation in April – 2005

Could you predict the energy production for this wind park either day-ahead or 5 hours in advance?

Each Day is a different color.

Day 5

Day 26

Day 9

Day 29

Average

Megawatts

-100

0

100

200

300

400

500

600

700

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

Hour

California ISO
Variability of wind and solar resources - June 24, 2010
Stochastic unit commitment appropriate for quantifying:

- Renewable energy utilization
- Cost of unit commitment and economic dispatch
- Capital investment in generation capacity
A Ubiquitous Problem: Unit Commitment under Uncertainty

Appropriate for modeling various balancing options:
- Demand (deferrable, price responsive, wholesale)
- Storage (pumped / run-of-river hydro, batteries)
- Transmission control (FACTS, smart wires, switching)
A Ubiquitous Solution: Parallel Computing

- Optimization under uncertainty (stochastic / robust / probabilistically constrained) can be tackled by distributed algorithms: dual / primal-dual / proximal point / cutting plane methods
- Shift of computation towards parallelization (cloud, multi-core) is impending
- Competitive positioning due to access in LLNL HPC cluster (3rd largest supercomputer worldwide)
Unit Commitment

- **Objective:** \(\min \sum_{g,t} (K_g u_{gt} + S_g v_{gt} + C_g p_{gt})\)

- **Load balance:** \(\sum_{g \in G} p_{gt} = D_t, \forall t\)

- **Min / max capacity limits:** \(P^-_g u_{gt} \leq p_{gt} \leq P^+_g u_{gt}, \forall g, t\)

- **Ramping limits:** \(-R^-_g \leq p_{gst} - p_{gs,t-1} \leq R^+_g, \forall g, t\)

- **Min up times:** \(\sum_{q=t-UT_g+1}^t v_{gq} \leq u_{gt}, \forall g, t \geq UT_g\)

- **Min down times:** \(\sum_{q=t+DT_g}^{t+1} v_{gq} \leq 1 - u_{gt}, \forall g, t \leq N - DT_g\)

- **State transition:** \(v_{gt} \geq u_{gt} - u_{g,t-1}, \forall g, t\)

- **Integrality:** \(v_{gt}, u_{gt} \in \{0, 1\}, \forall g, t\)

- **Kirchhoff voltage/current laws**

- **Transmission line thermal constraints**

A. Papavasiliou
Catholic University of Louvain
Unit Commitment

- **Objective**: \(\min \sum_{g,t} (K_g u_{gt} + S_g v_{gt} + C_g p_{gt}) \)
- **Load balance**: \(\sum_{g \in G} p_{gt} = D_t, \forall t \)
- **Min / max capacity limits**: \(P_g^- u_{gt} \leq p_{gt} \leq P_g^+ u_{gt}, \forall g, t \)
- **Ramping limits**: \(-R_g^- \leq p_{gst} - p_{gs,t-1} \leq R_g^+, \forall g, t \)
- **Min up times**: \(\sum_{q=t-UT_g+1}^t v_{gq} \leq u_{gt}, \forall g, t \geq UT_g \)
- **Min down times**: \(\sum_{q=t+DT_g}^{t+1} v_{gq} \leq 1 - u_{gt}, \forall g, t \leq N - DT_g \)
- **State transition**: \(v_{gt} \geq u_{gt} - u_{g,t-1}, \forall g, t \)
- **Integrality**: \(v_{gt}, u_{gt} \in \{0, 1\}, \forall g, t \)
- **Kirchhoff voltage/current laws**
- **Transmission line thermal constraints**
Unit Commitment

- **Objective:** \(\text{min } \sum_{g,t} (K_g u_{gt} + S_g v_{gt} + C_g p_{gt}) \)
- **Load balance:** \(\sum_{g \in G} p_{gt} = D_t, \forall t \)
- **Min / max capacity limits:** \(P_g^- u_{gt} \leq p_{gt} \leq P_g^+ u_{gt}, \forall g, t \)
- **Ramping limits:** \(-R_g^- \leq p_{gst} - p_{gs,t-1} \leq R_g^+, \forall g, t \)
- **Min up times:** \(\sum_{q=t-UT_g+1}^{t} v_{gq} \leq u_{gt}, \forall g, t \geq UT_g \)
- **Min down times:** \(\sum_{q=t+DT_g}^{t+1} v_{gq} \leq 1 - u_{gt}, \forall g, t \leq N - DT_g \)
- **State transition:** \(v_{gt} \geq u_{gt} - u_{g,t-1}, \forall g, t \)
- **Integrality:** \(v_{gt}, u_{gt} \in \{0, 1\}, \forall g, t \)
- **Kirchhoff voltage/current laws**
- **Transmission line thermal constraints**
Unit Commitment

- Objective: \(\min \sum_{g,t} (K_g u_{gt} + S_g v_{gt} + C_g p_{gt}) \)
- Load balance: \(\sum_{g \in G} p_{gt} = D_t, \forall t \)
- Min / max capacity limits: \(P_g^- u_{gt} \leq p_{gt} \leq P_g^+ u_{gt}, \forall g, t \)
- Ramping limits: \(-R_g^- \leq p_{gst} - p_{gs,t-1} \leq R_g^+, \forall g, t \)
- Min up times: \(\sum_{q=t-UT_g+1}^{t} v_{gq} \leq u_{gt}, \forall g, t \geq UT_g \)
- Min down times: \(\sum_{q=t+DT_g}^{t+1} v_{gq} \leq 1 - u_{gt}, \forall g, t \leq N - DT_g \)
- State transition: \(v_{gt} \geq u_{gt} - u_{g,t-1}, \forall g, t \)
- Integrality: \(v_{gt}, u_{gt} \in \{0, 1\}, \forall g, t \)
- Kirchhoff voltage/current laws
- Transmission line thermal constraints
Unit Commitment Model

- **Objective**: \(\min \sum_{g,t} (K_g u_{gt} + S_g v_{gt} + C_g p_{gt}) \)
- **Load balance**: \(\sum_{g \in G} p_{gt} = D_t, \forall t \)
- **Min / max capacity limits**: \(P_g^- u_{gt} \leq p_{gt} \leq P_g^+ u_{gt}, \forall g, t \)
- **Ramping limits**: \(-R_g^- \leq p_{gst} - p_{gs,t-1} \leq R_g^+, \forall g, t \)
- **Min up times**: \(\sum_{q=t-UT_g+1}^{t} v_{gq} \leq u_{gt}, \forall g, t \geq UT_g \)
- **Min down times**: \(\sum_{q=t+DT_g}^{t+1} v_{gq} \leq 1 - u_{gt}, \forall g, t \leq N - DT_g \)
- **State transition**: \(v_{gt} \geq u_{gt} - u_{g,t-1}, \forall g, t \)
- **Integrality**: \(v_{gt}, u_{gt} \in \{0, 1\}, \forall g, t \)
- **Kirchhoff voltage/current laws**
- **Transmission line thermal constraints**
Unit Commitment

- **Objective:** \(\min \sum_{g,t} (K_g u_{gt} + S_g v_{gt} + C_g p_{gt}) \)
- **Load balance:** \(\sum_{g \in G} p_{gt} = D_t, \forall t \)
- **Min / max capacity limits:** \(P_g^- u_{gt} \leq p_{gt} \leq P_g^+ u_{gt}, \forall g, t \)
- **Ramping limits:** \(-R_g^- \leq p_{gst} - p_{gs,t-1} \leq R_g^+, \forall g, t \)
- **Min up times:** \(\sum_{q=t-UT_g+1}^{t} v_{gq} \leq u_{gt}, \forall g, t \geq UT_g \)
- **Min down times:** \(\sum_{q=t+DT_g+1}^{t+1} v_{gq} \leq 1 - u_{gt}, \forall g, t \leq N - DT_g \)
- **State transition:** \(v_{gt} \geq u_{gt} - u_{g,t-1}, \forall g, t \)
- **Integrality:** \(v_{gt}, u_{gt} \in \{0, 1\}, \forall g, t \)
- **Kirchhoff voltage/current laws**
- **Transmission line thermal constraints**
Unit Commitment

- Objective: \(\min \sum_{g,t} (K_g u_{gt} + S_g v_{gt} + C_g p_{gt}) \)
- Load balance: \(\sum_{g \in G} p_{gt} = D_t, \forall t \)
- Min / max capacity limits: \(P^-_g u_{gt} \leq p_{gt} \leq P^+_g u_{gt}, \forall g, t \)
- Ramping limits: \(-R^-_g \leq p_{gst} - p_{gs,t-1} \leq R^+_g, \forall g, t \)
- Min up times: \(\sum_{q=t-UT_g+1}^{t} v_{gq} \leq u_{gt}, \forall g, t \geq UT_g \)
- Min down times: \(\sum_{q=t+1}^{t+DT_g} v_{gq} \leq 1 - u_{gt}, \forall g, t \leq N - DT_g \)
- State transition: \(v_{gt} \geq u_{gt} - u_{g,t-1}, \forall g, t \)
- Integrality: \(v_{gt}, u_{gt} \in \{0, 1\}, \forall g, t \)
- Kirchhoff voltage/current laws
- Transmission line thermal constraints
Unit Commitment

- **Objective**: \(\min \sum_{g,t} (K_g u_{gt} + S_g v_{gt} + C_g p_{gt}) \)
- **Load balance**: \(\sum_{g \in G} p_{gt} = D_t, \forall t \)
- **Min / max capacity limits**: \(P_{g^-} u_{gt} \leq p_{gt} \leq P_{g^+} u_{gt}, \forall g, t \)
- **Ramping limits**: \(-R_g^- \leq p_{gst} - p_{gs,t-1} \leq R_g^+, \forall g, t \)
- **Min up times**: \(\sum_{q=t-UT_g+1}^t v_{gq} \leq u_{gt}, \forall g, t \geq UT_g \)
- **Min down times**: \(\sum_{q=t+DT_g}^{t+1} v_{gq} \leq 1 - u_{gt}, \forall g, t \leq N - DT_g \)
- **State transition**: \(v_{gt} \geq u_{gt} - u_{g,t-1}, \forall g, t \)
- **Integrality**: \(v_{gt}, u_{gt} \in \{0, 1\}, \forall g, t \)

- Kirchhoff voltage/current laws
- Transmission line thermal constraints
Unit Commitment

- Objective: $\min \sum_{g,t} (K_g u_{gt} + S_g v_{gt} + C_g p_{gt})$
- Load balance: $\sum_{g \in G} p_{gt} = D_t, \forall t$
- Min / max capacity limits: $P^{-}_g u_{gt} \leq p_{gt} \leq P^{+}_g u_{gt}, \forall g, t$
- Ramping limits: $-R^{-}_g \leq p_{gst} - p_{gs,t-1} \leq R^{+}_g, \forall g, t$
- Min up times: $\sum_{q=t-UT_g+1}^{t} v_{gq} \leq u_{gt}, \forall g, t \geq UT_g$
- Min down times: $\sum_{q=t+DT_g}^{t+DT_g} v_{gq} \leq 1 - u_{gt}, \forall g, t \leq N - DT_g$
- State transition: $v_{gt} \geq u_{gt} - u_{g,t-1}, \forall g, t$
- Integrality: $v_{gt}, u_{gt} \in \{0, 1\}, \forall g, t$
- Kirchhoff voltage/current laws
- Transmission line thermal constraints
Unit Commitment

- Objective: \(\min \sum_{g,t} (K_g u_{gt} + S_g v_{gt} + C_g p_{gt})\)
- Load balance: \(\sum_{g \in G} p_{gt} = D_t, \forall t\)
- Min / max capacity limits: \(P_g^- u_{gt} \leq p_{gt} \leq P_g^+ u_{gt}, \forall g, t\)
- Ramping limits: \(-R_g^- \leq p_{gt} - p_{gs,t-1} \leq R_g^+, \forall g, t\)
- Min up times: \(\sum_{q=t-UT_g+1}^{t} v_{gq} \leq u_{gt}, \forall g, t \geq UT_g\)
- Min down times: \(\sum_{q=t+DT_g}^{t+1} v_{gq} \leq 1 - u_{gt}, \forall g, t \leq N - DT_g\)
- State transition: \(v_{gt} \geq u_{gt} - u_{g,t-1}, \forall g, t\)
- Integrality: \(v_{gt}, u_{gt} \in \{0, 1\}, \forall g, t\)
- Kirchhoff voltage/current laws
- Transmission line thermal constraints

A. Papavasiliou
Catholic University of Louvain
The Real Thing

- 1,210 generators, 3 part offers (startup, no load, 10 segment incremental energy offer curve)
- 10,000 - Demand bids – fixed or price sensitive
- 50,000 - Virtual bids / offers
- 8,700 - eligible bid/offer nodes (pricing nodes)
- 6,125 - monitored transmission elements
- 10,000 - transmission contingencies modeled

Day-ahead Market – Average Daily Volumes
Relevant Literature

- Wind integration studies based on stochastic unit commitment: (Bouffard, 2008), (Wang, 2008), (Ruiz, 2009), (Tuohy, 2009), (Morales, 2009), (Constantinescu, 2011)
 - **Contribution:** coupling scenario selection inspired by importance sampling with dual decomposition algorithm

- Integrating demand response with unit commitment: (Sioshansi, 2009), (Sioshansi, 2011)
 - **Contribution:** simultaneous modeling of uncertainty and DR

- Parallel computing in power system operations: (Monticelli, 1987), (Pereira, 1990), (Falcao, 1997), (Kim, 1997), (Bakirtzis, 2003), (Biskas, 2005)
 - **Contribution:** application to sort-term scheduling
Validation Process

- Scenario selection
- Representative outcomes
- Stochastic UC
- Slow gen UC schedule
- Deterministic UC
- Economic dispatch
- Min load, startup, fuel cost

Stochastic model (renewable energy, demand, contingencies)

Outcomes

Stoch < Det?
Unit Commitment and Economic Dispatch

- Deterministic model (Sioshansi, 2009)
 1. Reserve requirements
 \[\sum_{g \in G} s_{gt} + \sum_{g \in G_f} f_{gt} \geq T_{t}^{\text{req}}, \sum_{g \in G_f} f_{gt} \geq F_{t}^{\text{req}}, t \in T \]
 2. Import constraints
 \[\sum_{l \in IG_j} \gamma_{jl} e_{lt} \leq IC_j, j \in IG, t \in T \]
 - Slow generator schedules are fixed in economic dispatch model: \[w_{gt} = w^*_{gt}, g \in G_s \]
Two-Stage Stochastic Unit Commitment

1. In the first stage we commit slow generators:
 \[u_{gst} = w_{gt}, v_{gst} = z_{gt}, g \in G_s, s \in S, t \in T \] (corresponds to day-ahead market)

2. Uncertainty is revealed: net demand \(D_{nst} \), line availability \(B_{ls} \), generator availability \(P^+_{gs}, P^-_{gs} \)

3. Fast generator commitment and production schedules are second stage decisions: \(u_{gst}, g \in G_f \) and \(p_{gst}, g \in G_f \cup G_s \) (corresponds to real-time market)

4. Objective:
 \[
 \min \sum_{g \in G} \sum_{s \in S} \sum_{t \in T} \pi_s (K_g u_{gst} + S_g v_{gst} + C_g p_{gst})
 \]
Introduction

Methodology

Results

Conclusions and Perspectives

Unit Commitment Model

Decomposition and Scenario Selection

Wind Model

Lagrangian Decomposition Algorithm

- Decomposition methods: (Nowak, 2000), (Takriti, 1996), (Carpentier, 1996), (Redondo, 1999), (Bertsimas, 2013)

- **Contribution:** relax non-anticipativity constraints on both unit commitment and startup variables

 1. Feasible solution at each iteration
 2. Optimality gap at each iteration

Lagrangian:

\[
\mathcal{L} = \sum_{g \in G} \sum_{s \in S} \sum_{t \in T} \pi_s (K_g u_{gst} + S_g v_{gst} + C_g p_{gst}) \\
+ \sum_{g \in G_s} \sum_{s \in S} \sum_{t \in T} \pi_s (\mu_{gst}(u_{gst} - w_{gt}) + \nu_{gst}(v_{gst} - z_{gt}))
\]
Parallelization

- Lawrence Livermore National Laboratory Hera cluster: 13,824 cores on 864 nodes, 2.3 Ghz, 32 GB/node
- MPI calling on CPLEX Java callable library
Scenario Selection for Wind Uncertainty and Contingencies

- **Past work:** (Gröwe-Kuska, 2002), (Dupacova, 2003), (Heitsch, 2003), (Morales, 2009)
- **Contribution:** Scenario selection algorithm inspired by importance sampling

1. Generate a sample set \(\Omega_S \subset \Omega \), where \(M = |\Omega_S| \) is adequately large. Calculate the cost \(C_D(\omega) \) of each sample \(\omega \in \Omega_S \) against the best deterministic unit commitment policy and the average cost \(\bar{C} = \frac{1}{M} \sum_{i=1}^{M} C_D(\omega_i) \).

2. Choose \(N \) scenarios from \(\Omega_S \), where the probability of picking a scenario \(\omega \) is \(C_D(\omega)/\bar{C} \).

3. Set \(\pi_S = C_D(\omega)^{-1} \) for all \(\omega^s \in \hat{\Omega} \).

A. Papavasiliou
Catholic University of Louvain
2 wind integration cases: moderate (7.1% energy integration, 2012), deep (14% energy integration, 2020)

California ISO interconnection queue lists locations of planned wind power installations

NREL Western Wind and Solar Interconnection Study archives wind speed - wind power for Western US
Calibration

- Relevant literature: (Brown, 1984), (Torres, 2005), (Morales, 2010)
- Calibration steps
 1. Remove systematic effects:
 \[y_{kt}^S = y_{kt} - \hat{\mu}_{kmt} \frac{\hat{\sigma}_{kmt}}{\hat{\sigma}_{kmt}}. \]
 2. Transform data to obtain a Gaussian distribution:
 \[y_{kt}^{GS} = N^{-1}(\hat{F}_k(y_{kt}^S)). \]
 3. Estimate the autoregressive parameters \(\hat{\phi}_{kj} \) and covariance matrix \(\hat{\Sigma} \) using Yule-Walker equations.
Data Fit

Altamont

Clark County

Imperial

Solano

Tehachapi

A. Papavasiliou

Catholic University of Louvain
Model Summary

- **System characteristics**
 - 124 units (82 fast, 42 slow)
 - 53665 MW power plant capacity
 - 225 buses
 - 375 transmission lines

- **Four studies**
 - Deep (14% energy integration) without transmission constraints, contingencies
 - With transmission constraints, contingencies:
 - No wind
 - Moderate (7.1% energy integration, 2012)
 - Deep (14% energy integration, 2020)
Competing Reserve Rules

- Perfect foresight: anticipates outcomes in advance
- Percent-Of-Peak-Load rule: commit total reserve T_{req} at least $x\%$ of peak load, $F_{\text{req}} = 0.5 T_{\text{req}}$
- 3+5 rule: commit fast reserve F_{req} at least 3% of hourly forecast load plus 5% of hourly forecast wind, $T_{\text{req}} = 2 F_{\text{req}}$
Day Types

- 8 day types considered, one for each season, one for weekdays/weekends
- Day types weighted according to frequency of occurrence

![Graph showing net load (MW) by day type and hour]
Policy Comparison - Deep Integration, No Transmission, No Contingencies

Explanation of SUC Superior Performance

- When reserve constraints are binding, deterministic policy overcommits.
- When reserve constraints are not binding, deterministic policy underestimates value of protecting against adverse wind outcomes.
Policy Comparison - No Wind Integration

No wind

Relative Cost

-3% -1% 0% 1% 2% 3%

Winter WD Spring WD Summer WD Fall WD Winter WE Spring WE Summer WE Fall WE

- Perfect Forecast
- 30% Peak Load
- 3+5 Rule

A. Papavasiliou
Catholic University of Louvain
Policy Comparison - Moderate Integration

The graph shows the relative cost for different seasons and years for Perfect Forecast and 30% Peak Load, as well as the 3+5 Rule. The moderate integration policy is compared across various scenarios.
Policy Comparison - Deep Integration

- Relative Cost
- Perfect Forecast
- 30% Peak Load
- 3+5 Rule
Summary

<table>
<thead>
<tr>
<th></th>
<th>Deep-S</th>
<th>No Wind</th>
<th>Moderate</th>
<th>Deep</th>
</tr>
</thead>
<tbody>
<tr>
<td>RE daily waste (MWh)</td>
<td>100</td>
<td>0</td>
<td>890</td>
<td>2,186</td>
</tr>
<tr>
<td>Cost ($M)</td>
<td>5.012</td>
<td>11.508</td>
<td>9.363</td>
<td>7.481</td>
</tr>
<tr>
<td>Capacity (MW)</td>
<td>20,744</td>
<td>26,377</td>
<td>26,068</td>
<td>26,068</td>
</tr>
<tr>
<td>Daily savings ($)</td>
<td>38,628</td>
<td>104,321</td>
<td>198,199</td>
<td>188,735</td>
</tr>
<tr>
<td>Forecast gains (%)</td>
<td>32.4</td>
<td>35.4</td>
<td>41.9</td>
<td>46.7</td>
</tr>
</tbody>
</table>

How Many Scenarios? Do we want to solve a more representative problem less accurately or a less representative problem more accurately?

<table>
<thead>
<tr>
<th>Model</th>
<th>Gens</th>
<th>Buses</th>
<th>Lines</th>
<th>Hours</th>
<th>Scens.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAISO1000</td>
<td>130</td>
<td>225</td>
<td>375</td>
<td>24</td>
<td>1000</td>
</tr>
<tr>
<td>WILMAR</td>
<td>45</td>
<td>N/A</td>
<td>N/A</td>
<td>36</td>
<td>6</td>
</tr>
<tr>
<td>PJM</td>
<td>1011</td>
<td>13867</td>
<td>18824</td>
<td>24</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Model</th>
<th>Integer var.</th>
<th>Cont. var.</th>
<th>Constraints</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAISO1000</td>
<td>3,121,800</td>
<td>20,643,120</td>
<td>66,936,000</td>
</tr>
<tr>
<td>WILMAR</td>
<td>16,000</td>
<td>151,000</td>
<td>179,000</td>
</tr>
<tr>
<td>PJM</td>
<td>24,264</td>
<td>833,112</td>
<td>1,930,776</td>
</tr>
</tbody>
</table>
Gaps Versus Number of Scenarios

A large number of scenarios:
- results in a more accurate representation of uncertainty
- increases the amount of time required in each iteration of the subgradient algorithm
Consistent performance of scenario selection:
- Stochastic unit commitment yields 32.4%-46.7% of benefits of perfect foresight over various types of uncertainty
- Favorable performance relative to Sample Average Approximation with 1000 scenarios.

Insights from parallel computing³:
- Reducing the duality gap seems to yield comparable benefits relative to adding more scenarios
- All problems solved within 24 hours (operationally acceptable), given enough processors.

Transmission constraints and contingencies strongly influence results - need for advanced optimization

- Overestimation of capacity credit from 1.2% of installed wind capacity to 39.8% for deep integration
- Underestimation of daily operating costs from 7.481 $M to 5.102 $M for deep integration

First steps towards integrating deferrable demand models with renewable supply uncertainty\(^4\): Deferrable demand imposes no additional capacity requirements, coupling results in 3.06% - 8.38% operating cost increase

Perspectives

- **Modeling resources**
 - Transmission networks (FACTS, switching, smart wires)
 - Demand response
 - Storage (hydro, batteries)
 - Solar power

- **Computational extensions: industrial-scale systems**
 - Larger systems: PJM, Germany
 - Better algorithms: proximal point, bundle, cutting plane algorithms

- **Model extensions**
 - Capacity expansion planning, incentivizing capacity investment
 - European balancing market rules
References

A. Papavasiliou, S. S. Oren, *Stochastic Modeling of Multi-Area Wind Production*, under review in Resources special section on Spatial and Temporal Variation of the Wind Resource.

Questions?

Contact: anthony.papavasiliou@uclouvain.be

Demand Response Results

<table>
<thead>
<tr>
<th>No wind</th>
<th>Daily Cost ($)</th>
<th>Daily Load Shed (MWh)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>9,012,031</td>
<td>17.301</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Centralized Moderate Bids Moderate Coupled Moderate</th>
<th>8,677,857</th>
<th>1.705</th>
</tr>
</thead>
<tbody>
<tr>
<td>211,010</td>
<td>609.914</td>
<td>2.217</td>
</tr>
<tr>
<td>265,128</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Centralized Deep Bids Deep Coupled Deep</th>
<th>8,419,322</th>
<th>10.231</th>
</tr>
</thead>
<tbody>
<tr>
<td>578,909</td>
<td>1221.492</td>
<td>112.452</td>
</tr>
<tr>
<td>705,497</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Load Flexibility

System operator control

Coupling renewables with deferrable demand

Price-responsive demand

Centralized

Decentralized

A. Papavasiliou Catholic University of Louvain
Demand Response Study

<table>
<thead>
<tr>
<th></th>
<th>Zero</th>
<th>Moderate</th>
<th>Deep</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wind capacity (MW)</td>
<td>0</td>
<td>6,688</td>
<td>14,143</td>
</tr>
<tr>
<td>DR capacity (MW)</td>
<td>0</td>
<td>5,000</td>
<td>10,000</td>
</tr>
<tr>
<td>Daily wind energy (MWh)</td>
<td>0</td>
<td>46,485</td>
<td>95,414</td>
</tr>
<tr>
<td>Daily DR energy (MWh)</td>
<td>0</td>
<td>40,000</td>
<td>80,000</td>
</tr>
<tr>
<td>DR/firm energy (%)</td>
<td>0</td>
<td>6.1</td>
<td>12.2</td>
</tr>
</tbody>
</table>
Centralized Load Dispatch

- Stochastic unit commitment with additional constraint:
 \[\sum_{t=1}^{N} p_{gst} = R \]

- Assumptions of centralized load control:
 - Central co-optimization of generation and demand (computationally prohibitive)
 - Perfect monitoring and control of demand

- Centralized load control represents an idealization that can be used for:
 - Quantifying the cost of decentralizing demand response
 - Estimating the capacity savings of deferrable demand
Demand Bids

- Based on retail consumer model of (Borenstein and Holland, 2005), (Joskow and Tirole, 2005), (Joskow and Tirole, 2006)

- State contingent demand functions used in economic dispatch $D_t(\lambda_t; \omega) = a_t(\omega) - \alpha b\lambda^R - (1 - \alpha)b\lambda_t$

- Note that the demand function model has to:
 - Be comparable to the deferrable demand model in terms of total demand R
 - Be consistent with the observed inflexible demand in the system
Coupling

\[\min_{\mu_t(x_t)} \mathbb{E} \left[\sum_{t=1}^{N-1} \lambda_t (\mu_t(x_t) - s_t)^+ \right] \Delta t + \rho r_N \]

\[\mu_t(x) \leq C, \ (\mu_t(x) - s_t)^+ \leq M_t, \ r_{t+1} = r_t - u_t \]
Integrating Demand Response in Stochastic Unit Commitment

Decision support

- Wind and firm load outcomes → Scenario selection → Net load representative outcomes → Centralized stochastic UC → UC schedule → Reserve requirements,
- Wind, firm load and price models → Scenario selection → Flexible load outcomes → Centralized economic dispatch → Decision support
- Wind outcomes → Coupling algorithm → Coupling-based economic dispatch
- Firm load outcomes → Bid-based economic dispatch
- Wind outcomes → Centralized economic dispatch
- Centralized vs Coupling vs Demand bids?

Evaluation

- Wind outcomes
- Firm load outcomes
- Price outcomes
- Coupling outcomes
- Flexible load outcomes
- Coupling-based economic dispatch
- Bid-based economic dispatch
- Centralized economic dispatch
- Centralized vs Coupling vs Demand bids?

A. Papavasiliou
Catholic University of Louvain
Running Times

- CPLEX 11.0.0
- DELL Poweredge 1850 servers (Intel Xeon 3.4 GHz, 1GB RAM)
- \((P1)\), \((P2_s)\) run for 120 iterations, \((ED_s)\) run for last 40 iterations
- Average running time of 43776 seconds on single machine
- Average MIP gap of 1.39%
Cost Ranking: Winter Weekdays

- $S = 1000$ corresponds to Shapiro’s SAA algorithm
- Average daily cost and one standard deviation for 1000 Monte Carlo outcomes
Cost Ranking: Spring Weekdays

- $S = 1000$ corresponds to Shapiro’s SAA algorithm
- Average daily cost and one standard deviation for 1000 Monte Carlo outcomes
Cost Ranking: Summer Weekdays

- $S = 1000$ corresponds to Shapiro’s SAA algorithm
- Average daily cost and one standard deviation for 1000 Monte Carlo outcomes
Cost Ranking: Fall Weekdays

- $S = 1000$ corresponds to Shapiro’s SAA algorithm
- Average daily cost and one standard deviation for 1000 Monte Carlo outcomes
Among three worse policies in summer, \(S = 1000 \) with \(G = 2\%, \ 2.5\% \)

Best policy for all day types has a 1\% optimality gap
(\(S = 1000 \) only for spring)

For all but one day type the worst policy has \(G = 2.5\% \)

For spring, best policy is \(G = 1, \ S = 1000 \)

For spring, summer and fall the worst policy is the one with the fewest scenarios and the greatest gap, namely
\(G = 2.5, \ S = 10 \)
Top performance for winter, summer and fall is attained by proposed scenario selection algorithm based on importance sampling.

For all day types, the importance sampling algorithm results in a policy that is within the top 2 performers.

Satisfactory performance (within top 3) can be attained by models of moderate scale (S50), provided an appropriate scenario selection policy is utilized.
Run Time Ranking: Winter Weekdays

Best-case running times ($S = P$)
Run Time Ranking: Spring Weekdays

Best-case running times \((S = P)\)
Run Time Ranking: Summer Weekdays

- Best-case running times ($S = P$)
Best-case running times ($S = P$)
Running Times: Winter Weekdays

Graphs showing running times for different gaps and parameters:
- Gap = 1%, WinterWD
- Gap = 1.5%, WinterWD
- Gap = 2%, WinterWD
- Gap = 2.5%, WinterWD

Each graph plots running time in hours against different scales for various parameters (P = 10, 50, 100, 1000).
Running Times: Summer Weekdays

Gap=1%, SummerWD

Gap=1.5%, SummerWD

Gap=2%, SummerWD

Gap=2.5%, SummerWD
Running Times: Fall Weekdays

Gap=1%, FallWD

Gap=1.5%, FallWD

Gap=2%, FallWD

Gap=2.5%, FallWD