Multi-Stage Stochastic Economic Dispatch under Renewable Energy Supply Uncertainty

Anthony Papavasiliou, Yuting Mou
Center for Operations Research and Econometrics
Université catholique de Louvain

December 23, 2016
National Technical University of Athens, Greece
Outline

• Motivation
• Stochastic dual dynamic programming
• Stochastic multi-period dispatch of pumped hydro resources
 • Renewable supply model
 • Stochastic multi-period economic dispatch
• A Case Study of Germany
Motivation
Multi-Stage Stochastic Economic Dispatch

- Economic dispatch: function of
 - re-dispatching online units
 - mobilizing fast-start units
 in intra-day and real time for purpose of load following
- Should be distinguished from day-ahead unit commitment
- Increasing sophistication of MSED:
 - Multi-period look-ahead
 - ‘Rough’ consideration of uncertainty by securing flexible ramp capacity (e.g. California ISO and Midwest ISO)
- Typical time scale: 5-minute time step, 15-minute look-ahead, solved 7.5 minutes in advance of operations
Multi-Period Decision Making Under Uncertainty

- At each stage:
 - Observe uncertainty (ω_t)
 - Make a decision (u_t) given realized uncertainty and state of the system (x_t)
 - Incur cost ($c_t(x_t, u_t, \omega_t)$)
 - Step forward

- Goal: minimize expected cost over optimization horizon

- Bellman’s principle of optimality: at each stage, decide x_t such that present cost plus expected cost-to-go is minimized

- Dynamic programming algorithm: solve the problem by recursively computing cost-to-go -> avoids redundancy in computations
Applying An Effective Solution ...

• Multi-stage stochastic linear programming
 • Specific class of problems for multi-period decision making under uncertainty
 • Natural formulation for various problems in power system planning / operations

• Stochastic Dual Dynamic Programming (SDDP)
 • Scalable: go-to solution for medium-term hydro-thermal planning
 • Extensive theoretical analysis (representation of uncertainty, convergence, binary decisions)
... To An Emerging Problem

- Multi-period stochastic economic dispatch
 - Limited analysis
 - Highly relevant (e.g. rooftop solar, distributed storage, pumped hydro)
 - Naturally cast as a multi-stage stochastic linear program

- Our research agenda:
 - Can dynamic programming solve MSED?
 - Is MSED an interesting problem?
Stochastic Dual Dynamic Programming
Multi-Stage Stochastic Linear Programming

\[
\min_x \sum_{t=1}^{H} \sum_{\omega[t] \in \Omega[t]} p_{t,\omega[t]} c_t^T x_{t,\omega[t]}
\]

Set of possible history of events up to stage \(t \): **Non-scalable**

\[
T_{t,\omega_t} x_{t-1,\omega[t],A(\omega[t])} + W_t x_{t,\omega[t]} = h_{t,\omega_t}, t \in T, \omega[t] \in \Omega[t]
\]

\[
x_{t,\omega[t]} \geq 0, t \in T, \omega[t] \in \Omega[t]
\]
Decomposing the Problem

Solution approach: break the overall problem by time stage t, and uncertainty realization $k \rightarrow$ small linear program $NLDS_{t,k}$ for each t, k

The value function $\tilde{V}_t(x)$ is piecewise linear affine, question is how to ‘discover’ it
Describing Uncertainty in a Lattice

• A lattice is a graphical description of **Markovian** uncertainty:
 • Nodes: realization of uncertainty \(h_t(\omega_t) \)
 • Arcs: transition probability \(\mathbb{P}[\omega_t | \omega_{t-1}] \)

• **Serial independence**: specific class of lattices where \(h_t(\omega_t) \) is distributed independently of history: \(\mathbb{P}[\omega_t | \omega_{t-1}] = \mathbb{P}[\omega_t], \forall \omega_{t-1}, \forall t \)

Serial independence \(\Rightarrow \) value functions are shared across lattice nodes
Stochastic Dual Dynamic Programming Algorithm

- **Forward pass**
 - Generates trial decisions
 - Determines **probabilistic** upper bound
 - Determines lower bound

- **Backward pass**
 - Generates optimality cuts that approximate cost-to-go $\tilde{V}_t(x)$

- **MATLAB open-source implementation:**
 https://web.stanford.edu/~lcambier/fast/
 - User-defined decomposition subproblem
 - User-defined input lattice
Stochastic Multi-Period Dispatch of Pumped-Hydro Resources
Renewable Supply Model

- Multiplicative model of forecast error/renewable production ratio:
 - Capture heteroscedasticity of data
 - Capture inter-temporal dependence of forecast error
 - Compatible with SDDP format (serial independence)

\[y_{t+1} = (c + \phi \cdot y_t) \cdot \eta_t \]
\[p_t = RF_t \cdot y_t \]

Serial independence (\(\Rightarrow \) value functions are shared across lattice nodes)
Stochastic Multi-Period Economic Dispatch

- Objective: minimize load shedding and fuel cost
- Coupling constraint: power balance
- l_{sn}: load shedding
- c_g: fuel cost
- D_l: load
- pd_g: pumping demand
- pp_g: pumping production
- p_g: power production
- RF_g: renewable forecast
- y_g: renewable forecast / realization ratio
- f_k: power flow over line

$$\min \frac{1}{4}(\sum_{n \in N} (VOLL \cdot l_{sn}) + \sum_{g \in G} c_g)$$

$$\sum_{l \in L_n} D_l + \sum_{l \in L_n} pd_g + \sum_{k \in (\cdot, n)} f_k = \sum_{g \in G} p_g +$$

$$\sum_{g \in PH_n} pp_g + \sum_{g \in GR_n} RF_g y_g + l_{sn} + \sum_{k \in (\cdot, n)} f_k, n \in N$$
Stochastic Multi-Period Economic Dispatch (II): Conventional Generators

• Piecewise affine fuel cost
• Technical minimum/maximum
• Ramp rate limits
• U_g: Unit commitment (on/off) decision
• $A_{g,m}, B_{g,m}$: cost function parameters
• RU_g, RD_g: ramp up/down limit
• c_g: fuel cost
• p_g: power production

\[
c_g \geq F_g(A_{g,m}U_g + B_{g,m}p_g), g \in G, m = 1, \ldots, 3
\]

\[
PMin_g U_g \leq p_g \leq PMax_g U_g, g \in G
\]

\[
p_g - p_{g,t-1} \leq RU_g U_g + MTL_g (1 - U_{g,t-1}), g \in G
\]

\[
p_{g,t-1} - p_g \leq RD_g U_g + MTL_g (1 - U_{g,t-1}), g \in G
\]

Unit commitment is fixed to the solution of a day-ahead unit commitment model
Stochastic Multi-Period Economic Dispatch (III): Pumped Hydro Units

- Storage dynamics
- Pumped hydro consumption limits
- Pumped hydro production limits
- s_g: stored energy
- $\eta_{g,m}$: pumped hydro unit efficiency
- $DMax_g$: power consumption limit
- $PMax_g$: power production limit

$s_g = s_{g,t-1} + 0.25(\eta_gpd_g - pp_g), g \in PH$

$pd_g \leq DMax_g, g \in PH$

$pp_g \leq PMax_g, g \in PH$
Stochastic Multi-Period Economic Dispatch (IV): Power Flow

- Fix reference bus angle
- Linearized DC power flow
- Line flow limits
- θ_m: bus angle
- B_k: line susceptance
- f_k: line power flow
- TC_k: line flow limit

\begin{align*}
\theta_{hub} &= 0 \\
f_k &= B_k (\theta_m - \theta_n), \quad k = (m, n) \in K \\
-TC_k \leq f_k \leq TC_k, \quad k \in K
\end{align*}
A Case Study of Germany
German System

- Two-step simulation of German market:
 - Weekly clearing of reserve + energy exchange: unit commitment model with weekly horizon (September 22-28, 2014)
 - Real-time balancing: economic dispatch model for Thursday, with a horizon of 24 hours and a time step of 15 minutes
- Lattice: 96 stages, 10 nodes per stage
- 292 generators, 228 buses, 312 lines
- Assume fast-start resources at every node with marginal cost of 100 – 500 €/MWh
Convergence

• Run time for obtaining a **policy**: 4.3 hours
• Run time for obtaining a decision, given a history of uncertainty: sub-second
Policy Comparison

<table>
<thead>
<tr>
<th></th>
<th>Slow unit cost (10^3 €)</th>
<th>Fast-start cost (10^3 €)</th>
<th>Total cost (10^3 €)</th>
<th>σ total cost (10^3 €)</th>
<th>Fast-start energy (MWh)</th>
<th>Excess energy (MWh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perfect foresight</td>
<td>17380</td>
<td>850</td>
<td>18231</td>
<td>291</td>
<td>7204</td>
<td>1809</td>
</tr>
<tr>
<td>Stochastic programming</td>
<td>17423</td>
<td>955</td>
<td>18378</td>
<td>305</td>
<td>7511</td>
<td>1855</td>
</tr>
<tr>
<td>Deterministic</td>
<td>17373</td>
<td>1221</td>
<td>18594</td>
<td>350</td>
<td>8688</td>
<td>1879</td>
</tr>
</tbody>
</table>

- Deterministic dispatch: fixed pumped hydro schedule to day-ahead solution
- Benefits of perfect foresight relative to stochastic programming: 0.8%
- Benefits of stochastic programming relative to deterministic dispatch: 1.2%
Adaptiveness of Stochastic Programming Dispatch
Effects of Transmission and Ramping

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Total cost (10^3 €)</th>
<th>σ total cost (10^2 €)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perfect foresight (no transmission)</td>
<td>14797</td>
<td>97</td>
</tr>
<tr>
<td>Stochastic programming (no transmission)</td>
<td>14828</td>
<td>100</td>
</tr>
<tr>
<td>Deterministic (no transmission)</td>
<td>14867</td>
<td>105</td>
</tr>
<tr>
<td>Lookahead 1-step (no transmission)</td>
<td>14865</td>
<td>105</td>
</tr>
<tr>
<td>SP hydro-only (no transmission)</td>
<td>14830</td>
<td>101</td>
</tr>
<tr>
<td>Perfect foresight (no ramp / transmission)</td>
<td>14796</td>
<td>97</td>
</tr>
<tr>
<td>Stochastic programming (no ramp / transmission)</td>
<td>14828</td>
<td>100</td>
</tr>
<tr>
<td>Deterministic (no ramp / transmission)</td>
<td>14856</td>
<td>105</td>
</tr>
</tbody>
</table>
Some Observations

• Transmission constraints have major impact on results: in the absence of transmission constraints, all three policies attain very similar performance

• Incremental cost of ramp constraints is negligible => are flexible ramp products all that important?

• Incremental benefit of look-ahead is minimal => are short-term lookaheads in real-time markets as important as controlling pumped hydro optimally?

• Performance of ‘SP hydro-only’ very close to stochastic programming optimal => are short-term lookaheads in real-time markets as important as controlling pumped hydro optimally?
Price Behavior

• Tendency of pumped hydro storage to level out prices over time periods and realizations
Thank you

For more information

• anthony.papavasiliou@uclouvain.be