Local Network Identifiability with
 Partial Excitation and Measurement

Antoine Legat and Julien M. Hendrickx

Model

$$
\begin{aligned}
\text { state } \longleftarrow w & =G w+B r \longrightarrow \text { excitation } \\
\text { measure } \longleftarrow y & =C w
\end{aligned}
$$

From the given exc/meas, which transfer functions can be recovered? i.e. From r at B and y at C, which $G_{i j}$ can be recovered?

Assumption: Network topology is known
Terminology: TFs that can be recovered are identifiable

Known: exc. \& measures B, C, data $T=(I-G)^{-1}$, topology
To find: transfer functions G
Does $C T B=C(I-G)^{-1} B$ admit a unique solution G ?

Full excitation:
[Hendrickx, Gevers, Bazanella 2017]
$B=I \quad \rightarrow \quad C T(I-G)=C \quad \rightarrow \quad$ rank $C T \quad \rightarrow \quad$ paths to Meas.

Theorem

Identifiable IFF \# outneighbours = \# vertex-disjoint paths to Meas.

Known: exc. \& measures B, C, data $T=(I-G)^{-1}$, topology
To find: transfer functions G
Does $C T B=C(I-G)^{-1} B$ admit a unique solution G ?

Full excitation:

- Algo allocating measurements [Cheng, Shi, Van den Hof 2019]

Full measurement:

- $C=I \longrightarrow \quad$ Dual results

Partial excitation and measurement:

- Particular topologies [Bazanella, Gevers, Hendrickx CDC 2019]
- But arbitrary topology: simplifications KO
\longrightarrow Novel approach needed

Known: exc. \& measures B, C, data $T=(I-G)^{-1}$, topology
To find: transfer functions G
Does $C T B=C(I-G)^{-1} B$ admit a unique solution G ?

Full excitation:

- Algo allocating measurements [Cheng, Shi, Van den Hof 2019]

Full measurement:

- $C=I \longrightarrow$ Dual results

Partial excitation and measurement:
This paper

- Particular topologies [Bazanella, Gevers, Hendrickx CDC 2019]
- But arbitrary topology : simplifications KO
\longrightarrow Novel approach needed

Contribution

1. Definition of local identifiability (necessary)
2. Algebraic necessary and sufficient condition
3. Probability-1 algorithm

From the definition of identifiability...

Known: exc. \& measures B, C, data $T=(I-G)^{-1}$, topology
To find: transfer functions G

$$
\text { Does } C T B=C(I-G)^{-1} B \text { admit a unique solution } G \text { ? }
$$

Definition: G generically identifiable if

$$
C T B=C \tilde{T} B \Rightarrow G=\tilde{G}
$$

... we introduce local identifiability

Known: exc. \& measures B, C, data $T=(I-G)^{-1}$, topology
To find: transfer functions G

$$
\text { Does } C T B=C(I-G)^{-1} B \text { admit a unique solution } G \text { ? }
$$

Definition: G generically locally identifiable if on an ϵ-ball,

$$
C T B=C \tilde{T} B \Rightarrow G=\tilde{G}
$$

- Necessary for generic identifiability
- No counter-example to sufficiency found yet

Approach: identifiability as injectivity

Definition: G generically locally identifiable if on an ϵ-ball,

$$
C T B=C \tilde{T} B \Rightarrow G=\tilde{G}
$$

Approach: identifiability as injectivity

Definition: G generically locally identifiable if on an ϵ-ball,

$$
\underbrace{C T B}_{f(G)}=C \tilde{T} B \Rightarrow G=\tilde{G}
$$

It can be rewritten as the injectivity of f :

$$
f(G)=f(G) \Rightarrow G=\tilde{G}
$$

Key intuition: Locally, injectivity should rely on ∇f. Right?

Approach: identifiability as injectivity

Definition: G generically locally identifiable if on an ϵ-ball,

$$
\underbrace{C T B}_{f(G)}=C \tilde{T} B \Rightarrow G=\tilde{G}
$$

It can be rewritten as the injectivity of f :

$$
f(G)=f(G) \Rightarrow G=\tilde{G}
$$

Key intuition: Locally, injectivity should rely on ∇f. Right?
Correct if ∇f has constant rank

Lemma on injectivity of manifolds (cf paper)
Proof: involving subimmersion theorem and rank theorem

Theorem

$G_{i j}$ generically locally identif $\Leftrightarrow \operatorname{ker} \nabla f \perp \mathbf{e}_{i j}$ almost ${ }^{1}$ everywhere
\longrightarrow Probability-1 algorithm: randomized, proba 0 of inaccuracy

${ }^{1}$ except possibly on a lower-dimensional set

Future work

- Our implementation allows rapidly testing conjectures. But a graph-theoretical characterization is still to be found. Our algebraic condition could pave the way.
- No example identifiable but not locally identifiable found yet. The possible equivalence of the two remains an open question.

∇ Excited
\triangle Measured
* Exc. \& meas.
- Identifiable
——Non-identifiable

Take-home message

- First to tackle partial excitation/measure for arbitrary topology
- Introduced generic local identifiability, i.e. in an ϵ-ball
- Necessary for generic identifiability
- No counter-example to sufficiency yet
- Derived a necessary and sufficient algebraic condition using manifold theory
- Designed a probability-1 algorithm for efficient testing: github.com/alegat/identifiable

