Local Network Identifiability with Partial Excitation and Measurement

Antoine Legat and Julien M. Hendrickx

Model

state
$$\leftarrow w = G w + B r \longrightarrow$$
 excitation
measure $\leftarrow y = C w$

From the given exc/meas, which transfer functions can be recovered? i.e. From r at B and y at C, which G_{ij} can be recovered?

Known: exc. & measures *B*, *C*, data $T = (I - G)^{-1}$, topology To find: transfer functions *G* Does $CTB = C(I - G)^{-1}B$ admit a unique solution *G*?

Full excitation:

[Hendrickx, Gevers, Bazanella 2017]

$$B = I \rightarrow CT(I - G) = C \rightarrow rank CT \rightarrow paths to Meas.$$

Theorem

Identifiable IFF # outneighbours = # vertex-disjoint paths to Meas.

Known: exc. & measures *B*, *C*, data $T = (I - G)^{-1}$, topology To find: transfer functions *G*

Does $CTB = C(I - G)^{-1}B$ admit a unique solution G?

Full excitation:

Algo allocating measurements

[Cheng, Shi, Van den Hof 2019]

Full measurement:

• $C = I \longrightarrow$ Dual results

Partial excitation and measurement:

- Particular topologies [Bazanella, Gevers, Hendrickx CDC 2019]
- But arbitrary topology: simplifications KO

→ Novel approach needed

Known: exc. & measures *B*, *C*, data $T = (I - G)^{-1}$, topology To find: transfer functions *G*

Does $CTB = C(I - G)^{-1}B$ admit a unique solution G?

Full excitation:

Algo allocating measurements

[Cheng, Shi, Van den Hof 2019]

Full measurement:

• $C = I \longrightarrow$ Dual results

Partial excitation and measurement:

This paper

- Particular topologies
 [Bazanella, Gevers, Hendrickx CDC 2019]
- But arbitrary topology : simplifications KO

Novel approach needed

Contribution

- 1. Definition of local identifiability (necessary)
- 2. Algebraic necessary and sufficient condition
- 3. Probability-1 algorithm

From the definition of identifiability...

Known: exc. & measures *B*, *C*, data $T = (I - G)^{-1}$, topology To find: transfer functions *G*

Does $CTB = C(I - G)^{-1}B$ admit a unique solution G?

Definition: G generically identifiable if

$$CTB = C\tilde{T}B \Rightarrow G = \tilde{G}$$

... we introduce *local* identifiability

Known: exc. & measures *B*, *C*, data $T = (I - G)^{-1}$, topology To find: transfer functions *G*

Does $CTB = C(I - G)^{-1}B$ admit a unique solution G?

Definition: G generically *locally* identifiable if on an ϵ -ball,

$$CTB = C\tilde{T}B \Rightarrow G = \tilde{G}$$

- Necessary for generic identifiability
- No counter-example to sufficiency found yet

Approach: identifiability as injectivity

Definition: G generically *locally* identifiable if on an ϵ -ball,

$$CTB = C\tilde{T}B \Rightarrow G = \tilde{G}$$

Approach: identifiability as injectivity

Definition: G generically *locally* identifiable if on an ϵ -ball,

$$\underbrace{CTB}_{f(G)} = C\tilde{T}B \Rightarrow G = \tilde{G}$$

It can be rewritten as the injectivity of *f*:

$$f(G) = f(G) \Rightarrow G = \tilde{G}$$

Key intuition: Locally, injectivity should rely on ∇f . Right?

Approach: identifiability as injectivity

Definition: G generically *locally* identifiable if on an ϵ -ball,

$$\underbrace{CTB}_{f(G)} = C\widetilde{T}B \Rightarrow G = \widetilde{G}$$

It can be rewritten as the injectivity of *f*:

$$f(G) = f(G) \Rightarrow G = \tilde{G}$$

Key intuition:Locally, injectivity should rely on ∇f . Right?Correctif ∇f has constant rank

Lemma on injectivity of manifolds (cf paper) Proof: involving subimmersion theorem and rank theorem

→ Probability-1 algorithm: randomized, proba 0 of inaccuracy

¹except possibly on a lower-dimensional set

Future work

- Our implementation allows rapidly testing conjectures.
 But a *graph-theoretical* characterization is still to be found.
 Our algebraic condition could pave the way.
- No example identifiable but not locally identifiable found yet. The possible equivalence of the two remains an open question.

Take-home message

- First to tackle *partial* excitation/measure for arbitrary topology
- Introduced generic *local* identifiability, i.e. in an ϵ -ball
 - Necessary for generic identifiability
 - No counter-example to sufficiency yet
- Derived a necessary and sufficient algebraic condition using manifold theory
- Designed a probability-1 algorithm for efficient testing: github.com/alegat/identifiable

