Path-Based Conditions

for Local Network Identifiability

Antoine Legat and Julien M. Hendrickx

$$
\text { state } \longleftarrow w=G w+B r \longrightarrow \text { excitation }
$$

Model measure $\longleftarrow y=C w$
From given exc/meas, can we recover the unknown transfer fcts?
i.e. From r at B and y at C, can we recover the unknown $G_{i j}$?

Assumptions: Network topology is known
Not all nodes are excited/measured
Global transfer matrix $C \underbrace{(I-G)^{-1}}_{T(G)} B$ is known

Identifiability

Network identifiable if the unknown transfer fcts can be recovered.

Does $\underbrace{C T B}=C(I-G)^{-1} B$ admit a unique solution G ? known

Identifiability

Network identifiable if the unknown transfer fcts can be recovered.

Does $\underbrace{C T B}_{\text {known }}=C(I-G)^{-1} B{ }^{\prime}$ admit a unique solution G ?

All nodes excitated: Necessary and sufficient path-based condition

$$
\text { i.e. } B=1
$$

[Hendrickx, Gevers, Bazanella 2017]
Algo allocating measurements in the graph
[Cheng, Shi, Van den Hof 2019]

Identifiability

Network identifiable if the unknown transfer fcts can be recovered.

Does $\underbrace{C} T B=\ell(I-G)^{-1} B$ admit a unique solution G ? known

All nodes excitated: Necessary and sufficient path-based condition

$$
\text { i.e. } B=1
$$

[Hendrickx, Gevers, Bazanella 2017]
Algo allocating measurements in the graph
[Cheng, Shi, Van den Hof 2019]
All nodes measured: Dual results
i.e. $C=1$

Identifiability

Network identifiable if the unknown transfer fcts can be recovered.

Does $\underbrace{C T B}=C(I-G)^{-1} B$ admit a unique solution G ? known

All nodes excitated: Necessary and sufficient path-based condition

$$
\text { i.e. } B=1
$$

[Hendrickx, Gevers, Bazanella 2017]
Algo allocating measurements in the graph
[Cheng, Shi, Van den Hof 2019]
All nodes measured: Dual results
i.e. $C=1$

General case: Need to linearize

From the definition of identifiability...

Definition: Network identifiable at G if for all \tilde{G} :

$$
C T(\tilde{G}) B=C T(G) B \Rightarrow \tilde{G}=G
$$

Network generically identifiable if it holds at almost ${ }^{1}$ all G.

... we introduce local identifiability

Definition: Network locally identifiable at G if for all \tilde{G} on an ϵ-ball:

$$
C T(\tilde{G}) B=C T(G) B \Rightarrow \tilde{G}=G
$$

Network generically locally identifiable if it holds at almost all G.

... we introduce local identifiability

Definition: Network locally identifiable at G if for all \tilde{G} on $a n \epsilon$-ball:

$$
C T(\tilde{G}) B=C T(G) B \Rightarrow \tilde{G}=G
$$

Network generically locally identifiable if it holds at almost all G.

- Necessary for generic identifiability
- No counter-example to sufficiency known

... we introduce local identifiability

Definition: Network locally identifiable at G if for all \tilde{G} on $a n \epsilon$-ball:

$$
C T(\tilde{G}) B=C T(G) B \Rightarrow \tilde{G}=G
$$

Network generically locally identifiable if it holds at almost all G.

- Necessary for generic identifiability
- No counter-example to sufficiency known

Theorem 1 [Legat, Hendrickx CDC2020]

G generically locally identif \Leftrightarrow

$$
\begin{array}{r}
C T \Delta T B=0 \Rightarrow \Delta=0 \quad \forall \Delta \\
\text { almost everywhere }
\end{array}
$$

Contribution

1. Definition of decoupled identifiability (necessary)

Allows a novel approach based on a larger graph
2. Ingredients for our path-based condition
3. Path-based necessary condition and a sufficient one

From Theorem 1 ...

... we introduce decoupled identifiability

Generic \ldots	Network G
identifiable	$C \tilde{T} B=C T B \Rightarrow \tilde{G}=G$
	\Downarrow
local identif	
CT $\Delta T B=0 \Rightarrow \Delta=0$	
decoupled-	
identif	

... and the decoupled network

Necessary... and sufficient?

Basic example

(a)

(b)
(a): Unknowns in dashed blue
(b): Decoupled network: unknowns in the middle

Contribution

1. Definition of decoupled identifiability (necessary) Allows a novel approach based on a larger graph
2. Ingredients for our path-based condition
3. Path-based necessary condition and a sufficient one

Ingredients for our path-based condition - 1

Theorem 1 can be formulated as a determinant, which can be expressed as the sum over all assignations:
$\sigma:$ unknown edges \rightarrow (excitation, measurement)

Example:

Ingredients for our path-based condition - 1

Theorem 1 can be formulated as a determinant, which can be expressed as the sum over all assignations:
$\sigma:$ unknown edges \rightarrow (excitation, measurement)

Example: $\quad w \rightarrow(1,4), x \rightarrow(1,3), y \rightarrow(2,3), z \rightarrow(2,4)$

Ingredients for our path-based condition - 1

$$
\sigma: \text { unknown edges } \rightarrow \text { (excitation, measurement) }
$$

σ is connected if for each unknown edge, there is a path from its assigned exc. to its assigned meas., including the unknown edge.
Example: $\quad w \rightarrow(1,4), x \rightarrow(1,3), y \rightarrow(2,3), z \rightarrow(2,4)$

Ingredients for our path-based condition - 1

$$
\sigma: \text { unknown edges } \rightarrow \text { (excitation, measurement) }
$$

σ is connected if for each unknown edge, there is a path from its assigned exc. to its assigned meas., including the unknown edge. Example: $\quad w \rightarrow(1,4), x \rightarrow(1,3), y \rightarrow(2,3), z \rightarrow(2,4) \mathrm{KO}$

Ingredients for our path-based condition - 1

$$
\sigma: \text { unknown edges } \rightarrow \text { (excitation, measurement) }
$$

σ is connected if for each unknown edge, there is a path from its assigned exc. to its assigned meas., including the unknown edge. Example: $\quad w \rightarrow(1,3), x \rightarrow(1,4), y \rightarrow(2,3), z \rightarrow(2,4)$ OK

Ingredients for our path-based condition - 2

Theorem 1 can be formulated in terms of generic rank of T.

The generic rank of a matrix T between two sets \mathcal{A} and \mathcal{B} equals the max number of vertex-disjoint paths from \mathcal{A} to \mathcal{B}.

3 v -d paths

Contribution

1. Definition of decoupled identifiability (necessary) Allows a novel approach based on a larger graph
2. Ingredients for our path-based condition
3. Path-based necessary condition and a sufficient one

Theorem 2

If a network is generically decoupled-identifiable, then there is at least one connected assignation σ such that:

- For each excitation b,
(a) $|\mathcal{C}|$ unknown edges are assigned to b
(b) there are $|\mathcal{C}|$ vertex-disjoint paths between the edges assigned to b and the measures \mathcal{C}.
- For each measurement, dual of (a) and (b) with \mathcal{B}.

Theorem 2

If a network is generically decoupled-identifiable, then there is at least one connected assignation σ such that:

- For each excitation b,
(a) $|\mathcal{C}|$ unknown edges are assigned to b
(b) there are $|\mathcal{C}|$ vertex-disjoint paths between the edges assigned to b and the measures \mathcal{C}.
- For each measurement, dual of (a) and (b) with \mathcal{B}.

Theorem 2

If a network is generically decoupled-identifiable, then there is at least one connected (\rightarrow OK) assignation σ such that:

- For each excitation b,
(a) $|\mathcal{C}|$ unknown edges are assigned to $b \longrightarrow \mathrm{OK}$
(b) there are $|\mathcal{C}|$ vertex-disjoint paths between the edges assigned to b and the measures \mathcal{C}.
- For each measurement, dual of (a) and (b) with \mathcal{B}.

Theorem 2

If a network is generically decoupled-identifiable, then there is at least one connected (\rightarrow OK) assignation σ such that:

- For each excitation b,
(a) $|\mathcal{C}|$ unknown edges are assigned to $b \longrightarrow \mathrm{OK}$
(b) there are $|\mathcal{C}|$ vertex-disjoint paths between the edges assigned to b and the measures \mathcal{C}.
- For each measurement, dual of (a) and (b) with \mathcal{B}.

Theorem 2

If a network is generically decoupled-identifiable, then there is at least one connected (\rightarrow OK) assignation σ such that:

- For each excitation b,
(a) $|\mathcal{C}|$ unknown edges are assigned to $b \longrightarrow \mathrm{OK}$
(b) there are $|\mathcal{C}|$ vertex-disjoint paths between the edges assigned to b and the measures $\mathcal{C} \longrightarrow K O$
- For each measurement, dual of (a) and (b) with \mathcal{B}.

Theorem 2

If a network is generically decoupled-identifiable, then there is at least one connected (\rightarrow OK) assignation σ such that:

- For each excitation b,
(a) $|\mathcal{C}|$ unknown edges are assigned to $b \longrightarrow \mathrm{OK}$
(b) there are $|\mathcal{C}|$ vertex-disjoint paths between the edges assigned to b and the measures $\mathcal{C} \longrightarrow$ OK
- For each measurement, dual of (a) and (b) with $\mathcal{B} \longrightarrow$ OK

Theorem 2

If a network is generically decoupled-identifiable, then there is at least one connected assignation σ such that:

- For each excitation b,
(a) $|\mathcal{C}|$ unknown edges are assigned to b
(b) there are $|\mathcal{C}|$ vertex-disjoint paths between the edges assigned to b and the measures \mathcal{C}
- For each measurement, dual of (a) and (b) with \mathcal{B}

This condition is also necessary for generic (local) identifiability since:
Generic identif \Rightarrow Generic local identif \Rightarrow Generic decoupled-identif

A necessary condition and a sufficient one

Theorem 2

If a network is generically decoupled-identifiable, then there is at least one connected assignation σ such that:

- For each excitation b,
(a) $|\mathcal{C}|$ unknown edges are assigned to b
(b) there are $|\mathcal{C}|$ vertex-disjoint paths between the edges assigned to b and the measures \mathcal{C}
- For each measurement, dual of (a) and (b) with \mathcal{B}

If there is only one such assignation, then this condition is also sufficient for generic decoupled identifiability.

Theorem 2

If a network is generically decoupled-identifiable, then there is at least one connected assignation σ such that:

- For each excitation b,
(a) $|\mathcal{C}|$ unknown edges are assigned to b
(b) there are $|\mathcal{C}|$ vertex-disjoint paths between the edges assigned to b and the measures \mathcal{C}
- For each measurement, dual of (a) and (b) with \mathcal{B}

If there is only one such assignation, then this condition is also sufficient for generic decoupled identifiability.

- σ is not necessarily bijective: two unknown edges can be assigned to the same (excitation, measure) pair
- The vertex-disjoint paths of condition (b) do not necessarily match the assigned measurements.
\longrightarrow There could be a stronger version of Theorem 2.

Take-home message

- Introduced generic decoupled-identifiability,
- Necessary for generic (local) identifiability
- New: larger graph which decouples excitations and measures
- Derived a path-based necessary condition which also applies to generic (local) identifiability
- Whether the sufficient condition extends as well remains an open question
- There could be a stronger version of our theorem, extending previous results under full excitation/measurement
- Further work: when not all edges are identifiable, obtain a path-based condition for the recovery of some edges

