Path-Based Conditions

for Local Network Identifiability

Antoine Legat and Julien M. Hendrickx

state $\leftarrow w = G w + B r \longrightarrow$ excitation Model measure $\leftarrow y = C w$

From given exc/meas, can we recover the unknown transfer fcts?

i.e. From r at B and y at C, can we recover the unknown G_{ij}?

Network identifiable if the unknown transfer fcts can be recovered.

Does
$$\underbrace{CTB}_{known} = C (I - G)^{-1} B$$
 admit a unique solution G?

Network *identifiable* if the unknown transfer fcts can be recovered.

Does
$$\underbrace{CTB}_{known} = C(I - G)^{-1}B$$
 admit a unique solution G?

All nodes excitated: Necessary and sufficient path-based condition i.e. *B* = *I* [Hendrickx, Gevers, Bazanella 2017]

Algo allocating measurements in the graph

[Cheng, Shi, Van den Hof 2019]

Network *identifiable* if the unknown transfer fcts can be recovered.

Does
$$\mathcal{L}_{Known}^{TB} = \mathcal{L}(I - G)^{-1} B$$
 admit a unique solution G?

All nodes excitated: Necessary and sufficient path-based condition i.e. *B* = *I* [Hendrickx, Gevers, Bazanella 2017]

Algo allocating measurements in the graph

[Cheng, Shi, Van den Hof 2019]

All nodes measured: Dual results

i.e. C = I

Network *identifiable* if the unknown transfer fcts can be recovered.

Does
$$\underbrace{CTB}_{known} = C(I - G)^{-1} B$$
 admit a unique solution G?

All nodes excitated: Necessary and sufficient path-based condition i.e. *B* = *I* [Hendrickx, Gevers, Bazanella 2017]

Algo allocating measurements in the graph

[Cheng, Shi, Van den Hof 2019]

All nodes measured: Dual results

i.e. C = I

General case: Need to linearize

From the definition of identifiability...

Definition: Network identifiable at G if for all \tilde{G} :

$$C T(\tilde{G}) B = C T(G) B \Rightarrow \tilde{G} = G$$

Network generically identifiable if it holds at almost¹ all G.

¹except possibly on a lower-dimensional set

... we introduce *local* identifiability

Definition: Network *locally* identifiable at G if for all \tilde{G} on an ϵ -ball:

$$C T(\tilde{G}) B = C T(G) B \Rightarrow \tilde{G} = G$$

Network generically locally identifiable if it holds at almost all G.

... we introduce *local* identifiability

Definition: Network *locally* identifiable at G if for all \tilde{G} on an ϵ -ball:

$$C T(\tilde{G}) B = C T(G) B \Rightarrow \tilde{G} = G$$

Network generically locally identifiable if it holds at almost all G.

- Necessary for generic identifiability
- No counter-example to sufficiency known

... we introduce *local* identifiability

Definition: Network *locally* identifiable at G if for all \tilde{G} on an ϵ -ball:

$$C T(\tilde{G}) B = C T(G) B \Rightarrow \tilde{G} = G$$

Network generically locally identifiable if it holds at almost all G.

• No counter-example to sufficiency known

Theorem 1 [Legat, Hendrickx CDC2020]

G generically locally identif \Leftrightarrow

$$CT\Delta TB = 0 \Rightarrow \Delta = 0 \quad \forall \Delta$$

Contribution

- Definition of decoupled identifiability (necessary) Allows a novel approach based on a larger graph
- 2. Ingredients for our path-based condition
- 3. Path-based necessary condition and a sufficient one

From Theorem 1 ...

Generic	Network G	
identifiable	$C\tilde{T}B = CTB \Rightarrow \tilde{G} = G$	
	↓	
local identif	$CT\Delta TB = 0 \Rightarrow \Delta = 0$	
	Exc. Meas.	
	\smile_G	

... we introduce decoupled identifiability

Generic	Network G	
identifiable	$C\tilde{T}B = CTB \Rightarrow \tilde{G} = G$	
	\Downarrow	
local identif	$CT\Delta TB = 0 \Rightarrow \Delta = 0$	
	\Downarrow	
decoupled-	$CT\Delta T'B = 0 \Rightarrow \Delta = 0$	
identif		
	Exc.	
	Meas.	
	G	

... and the decoupled network

Generic	Network G	Decoupled network
identifiable	$C\tilde{T}B = CTB \Rightarrow \tilde{G} = G$	$CT\Delta T'B = 0 \Rightarrow \Delta = 0$
	Ų ↓	
local identif	$CT\Delta TB = 0 \Rightarrow \Delta = 0$	
	Ų ↓	
decoupled-	$CT\Delta T'B = 0 \Rightarrow \Delta = 0$	
identif		
	Exc. G	Exc. G' G

Necessary... and sufficient?

Generic	Network G	
identifiable	$CTB = C\tilde{T}B \Rightarrow G = \tilde{G}$	
	↓ <u>↑</u> ?	No counter-ex known
local identif	$CT\Delta TB = 0 \Rightarrow \Delta = 0$	
	↓ <u></u>	No counter-ex known
decoupled-	$CT\Delta T'B = 0 \Rightarrow \Delta = 0$	(10 ⁶ systematic trials)
identif		
	Exc. Meas.	

Basic example

- (a): Unknowns in dashed blue
- (b): Decoupled network: unknowns in the middle

Contribution

- 1. Definition of decoupled identifiability (necessary) Allows a novel approach based on a larger graph
- 2. Ingredients for our path-based condition
- 3. Path-based necessary condition and a sufficient one

Theorem 1 can be formulated as a determinant, which can be expressed as the sum over all *assignations*:

 σ : unknown edges \rightarrow (excitation, measurement)

Example:

Theorem 1 can be formulated as a determinant, which can be expressed as the sum over all assignations:

 σ : unknown edges \rightarrow (excitation, measurement)

 $w \to (1, 4), x \to (1, 3), y \to (2, 3), z \to (2, 4)$ Example:

 σ : unknown edges \rightarrow (excitation, measurement)

 σ is *connected* if for each unknown edge, there is a path from its assigned exc. to its assigned meas., including the unknown edge.

Example: $w \to (1, 4), x \to (1, 3), y \to (2, 3), z \to (2, 4)$

20

 σ : unknown edges \rightarrow (excitation, measurement)

 σ is *connected* if for each unknown edge, there is a path from its assigned exc. to its assigned meas., including the unknown edge.

Example: $w \rightarrow (1, 4), x \rightarrow (1, 3), y \rightarrow (2, 3), z \rightarrow (2, 4)$ KO

Excitations \mathcal{B}

 σ : unknown edges \rightarrow (excitation, measurement)

 σ is connected if for each unknown edge, there is a path from its assigned exc. to its assigned meas., including the unknown edge.

Example: $w \to (1, 3), x \to (1, 4), y \to (2, 3), z \to (2, 4)$ OK

Theorem 1 can be formulated in terms of generic rank of T.

The generic rank of a matrix *T* between two sets A and B equals the max number of vertex-disjoint paths from A to B.

3 v-d paths

Contribution

- 1. Definition of decoupled identifiability (necessary) Allows a novel approach based on a larger graph
- 2. Ingredients for our path-based condition
- 3. Path-based necessary condition and a sufficient one

- For each excitation b,
 - (a) |C| unknown edges are assigned to b
 - (b) there are |C| vertex-disjoint paths between the edges assigned to b and the measures C.
- For each measurement, dual of (a) and (b) with \mathcal{B} .

- For each excitation b,
 - (a) |C| unknown edges are assigned to b
 - (b) there are |C| vertex-disjoint paths between the edges assigned to b and the measures C.
- For each measurement, dual of (a) and (b) with \mathcal{B} .

- For each excitation b,
 - (a) $|\mathcal{C}|$ unknown edges are assigned to $b \longrightarrow OK$
 - (b) there are |C| vertex-disjoint paths between the edges assigned to b and the measures C.
- For each measurement, dual of (a) and (b) with \mathcal{B} .

- For each excitation b,
 - (a) $|\mathcal{C}|$ unknown edges are assigned to $b \longrightarrow OK$
 - (b) there are |C| vertex-disjoint paths between the edges assigned to b and the measures C.
- For each measurement, dual of (a) and (b) with \mathcal{B} .

- For each excitation b,
 - (a) |C| unknown edges are assigned to $b \longrightarrow OK$
 - (b) there are |C| vertex-disjoint paths between the edges assigned to *b* and the measures $C \longrightarrow KO$
- For each measurement, dual of (a) and (b) with \mathcal{B} .

- For each excitation b,
 - (a) $|\mathcal{C}|$ unknown edges are assigned to $b \longrightarrow OK$
 - (b) there are |C| vertex-disjoint paths between the edges assigned to *b* and the measures $C \longrightarrow OK$
- For each measurement, dual of (a) and (b) with $\mathcal{B} \longrightarrow \mathsf{OK}$

If a network is generically decoupled-identifiable, then there is at least one connected assignation σ such that:

- For each excitation b,
 - (a) |C| unknown edges are assigned to b
 - (b) there are |C| vertex-disjoint paths between the edges assigned to b and the measures C
- For each measurement, dual of (a) and (b) with ${\cal B}$

This condition is also *necessary* for generic (*local*) *identifiability* since:

Generic identif \Rightarrow Generic local identif \Rightarrow Generic decoupled-identif

A necessary condition and a sufficient one

Theorem 2

If a network is generically decoupled-identifiable, then there is at least one connected assignation σ such that:

- For each excitation b,
 - (a) |C| unknown edges are assigned to b
 - (b) there are |C| vertex-disjoint paths between the edges assigned to b and the measures C
- For each measurement, dual of (a) and (b) with $\ensuremath{\mathcal{B}}$

If there is only one such assignation, then this condition is also sufficient for generic decoupled identifiability.

If a network is generically decoupled-identifiable, then there is at least one connected assignation σ such that:

- For each excitation b,
 - (a) |C| unknown edges are assigned to b
 - (b) there are |C| vertex-disjoint paths between the edges assigned to b and the measures C
- For each measurement, dual of (a) and (b) with $\ensuremath{\mathcal{B}}$

If there is only one such assignation, then this condition is also sufficient for generic decoupled identifiability.

- *σ* is *not necessarily bijective*: two unknown edges can be assigned to the same (excitation, measure) pair
- The vertex-disjoint paths of condition (b) do not necessarily match the assigned measurements.
- → There could be a stronger version of Theorem 2.

Take-home message

- Introduced generic *decoupled*-identifiability,
 - Necessary for generic (local) identifiability
 - New: larger graph which decouples excitations and measures
- Derived a *path-based necessary condition* which also applies to generic (local) identifiability
- Whether the sufficient condition extends as well remains an open question
- There *could be a stronger version* of our theorem, extending previous results under full excitation/measurement
- Further work: when not all edges are identifiable, obtain a path-based condition for the recovery of some edges

UCLouvain