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Neuroscience [Chiêm et al. 2021] Power grids

MeasurementsExcitations

Physiological models [Christie et al. 2014] Stock market [Shahzad et al. 2018]
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Model

state←− w = G w + B r −→ excitation

measure←− y = C w

From given excitations r at B and measurements y at C,
can we recover the unknown transfer fcts Gij ?

w2

w1

w3

r1, y1
G13C1

B1
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state←− w = G w + B r −→ excitation

measure←− y = C w

From given excitations r at B and measurements y at C,
can we recover the unknown transfer fcts Gij ?

1

2 3

Framework: Not all nodes are excited/measured
Handle known transfer functions
No use of noise. But reformulation at [Shi, Cheng, Van den Hof 2019]

Single frequency – scalar case
Assumptions: Network topology is known

Global transfer matrix C (I− G)−1⏟  ⏞  
T(G)

B is known
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Example state←− w = G w + B r −→ excitation

measure←− y = C w

From given excitations r at B and measurements y at C,
can we recover the unknown transfer fcts Gij ?

1

2 3

G =

⎡⎢⎣ 0 0 G13

G21 0 G23

G31 0 0

⎤⎥⎦ C =

[︃
1 0 0
0 1 0

]︃
B =

⎡⎢⎣0 0
1 0
0 1

⎤⎥⎦
T ≜ (I− G)−1 =

1

1− G13G31

⎡⎢⎣ 1 0 G13

G21 + G31G23 1 G23 + G13G21

G31 0 1

⎤⎥⎦
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Example state←− w = G w + B r −→ excitation

measure←− y = C w

From given excitations r at B and measurements y at C,
can we recover the unknown transfer fcts Gij ?

1

2 3

G =

⎡⎢⎣ 0 0 G13

G21 0 G23

G31 0 0

⎤⎥⎦ C =

[︃
1 0 0
0 1 0

]︃
B =

⎡⎢⎣0 0
1 0
0 1

⎤⎥⎦
C T B =

1

1− G13G31

⎡⎢⎣ 1 0 G13

G21 + G31G23 1 G23 + G13G21

G31 0 1

⎤⎥⎦
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Example

1

2 3

The question is:

From C T B =
1

1− G13G31

⎡⎢⎣ 1 0 G13

G21 + G31G23 1 G23 + G13G21

G31 0 1

⎤⎥⎦ ,
can we uniquely recover G13 and G23?
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Outline
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3. Identifiability
4. Algebraic characterization

▶ Local identifiability
▶ Decoupled identifiability
▶ Separable networks

5. Combinatorial characterization

6. Conclusion
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Identifiability

Network identifiable if the unknown transfer fcts can be recovered.

Does C T B⏟ ⏞ 
known

= C (I− G)−1 B admit a unique solution G ?
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State of the Art

Network identifiable if the unknown transfer fcts can be recovered.

Does C T �B⏟ ⏞ 
known

= C (I− G)−1 �B admit a unique solution G ?

All nodes excitated: Necessary and sufficient path-based condition
i.e. B = I [Hendrickx, Gevers, Bazanella 2017]

Algo allocating measurements in the graph
[Cheng, Shi, Van den Hof 2019]
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Network identifiable if the unknown transfer fcts can be recovered.

Does�C T B⏟ ⏞ 
known

= �C (I− G)−1 B admit a unique solution G ?

All nodes excitated: Necessary and sufficient path-based condition
i.e. B = I [Hendrickx, Gevers, Bazanella 2017]

Algo allocating measurements in the graph
[Cheng, Shi, Van den Hof 2019]

All nodes measured: Dual results
i.e. C = I
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Network identifiable if the unknown transfer fcts can be recovered.

Does C T B⏟ ⏞ 
known

= C (I− G)−1 B admit a unique solution G ?

All nodes excitated: Necessary and sufficient path-based condition
i.e. B = I [Hendrickx, Gevers, Bazanella 2017]

Algo allocating measurements in the graph
[Cheng, Shi, Van den Hof 2019]

All nodes measured: Dual results
i.e. C = I

General case: Our approach: we linearize
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From the definition of global identifiability...

Definition: Network globally identifiable at G if for all G̃:

C T(G̃) B = C T(G) B⇒ G̃ = G
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... we introduce local identifiability

Definition: Network locally identifiable at G if for all G̃ on an ε−ball:

C T(G̃) B = C T(G) B⇒ G̃ = G
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Local identifiability is necessary

Definition: Network locally identifiable at G if for all G̃ on an ε−ball:

C T(G̃) B = C T(G) B⇒ G̃ = G

▶ Necessary for global identifiability
▶ No counter-example to sufficiency known
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Local identifiability is generic

Proposition 1 (CDC 2020)

Local identifiability is a generic property. It holds:
▶ either for almost all parameters Gij;
▶ or for no parameters Gij.

Unformally, it does almost only depend on the graph topology.

Example: the nonzeroness of a polynomial is generic

When all nodes are excited/measured, global identifiability is also a
generic property.
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Algebraic characterization

Definition: Network locally identifiable at G if for all G̃ on an ε−ball:

C T(G̃) B = C T(G) B⇒ G̃ = G

▶ Necessary for global identifiability
▶ No counter-example to sufficiency known

Theorem 1 (CDC 2020)

G generically ⇔ CTΔTB = 0⇒ Δ = 0 ⇔ K is full-rank

locally identif ∀ Δ, generically generically

where K ≜ (B⊤T⊤ ⊗ CT)IGΔ IGΔ selects the columns corresponding to unknown transfer functions
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Example 1

2 3

G =

⎡⎢⎣ 0 0 G13

G21 0 G23

G31 0 0

⎤⎥⎦ C =

[︃
1 0 0
0 1 0

]︃
B =

⎡⎢⎣0 0
1 0
0 1

⎤⎥⎦
T ≜ (I− G)−1 =

1

1− G13G31⏟  ⏞  
≜D

⎡⎢⎣ 1 0 G13

G21 + G31G23 1 G23 + G13G21

G31 0 1

⎤⎥⎦
Theorem 1 (CDC 2020)

G generically ⇔ CTΔTB = 0⇒ Δ = 0 ⇔ K is full-rank

locally identif ∀ Δ, generically generically
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1

2 3

K ≜ (B⊤T⊤ ⊗ CT)IGΔ =
1
D2

G13 G23

2→ 1 0 0
2→ 2 0 0
3→ 1 1 0
3→ 2 G21 + G23G31 1

Theorem 1 (CDC 2020)

G generically ⇔ CTΔTB = 0⇒ Δ = 0 ⇔ K is full-rank

locally identif ∀ Δ, generically generically
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Theorem 1 (CDC 2020)

G generically ⇔ CTΔTB = 0⇒ Δ = 0 ⇔ K is full-rank

locally identif ∀ Δ, generically generically

−→ Probability-1 algorithm: randomized, proba 0 of inaccuracyExample journald - Local identifiability - 1000 samples

1

2

3

4

5

Excited
Measured
Exc. & meas.
Identifiable
Non-identif
Known

(a)

Example journal - Local identifiability - 1000 samples

1

2

3

4

5

(b)

21



Outline

1. Introduction

2. Model

3. Identifiability
4. Algebraic characterization

▶ Local identifiability
▶ Decoupled identifiability
▶ Separable networks

5. Combinatorial characterization

6. Conclusion

22



What we have so far

Global identifiability

CT̃B = CTB⇒ G̃ = G

⇓

Local identifiability

CTΔTB = 0⇒ Δ = 0

→ Graph interpretation?
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Interpretation on a larger network

Global identifiability

CT̃B = CTB⇒ G̃ = G

⇓

Local identifiability

CTΔTB = 0⇒ Δ = 0
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Global identifiability
CT̃B = CTB⇒ G̃ = G

⇓

Local identifiability
CTΔTB = 0⇒ Δ = 0

1

2

3

Exc

Exc Meas

G21

G23G32

1

2

3

1

2

3

Exc

Exc Meas

G21

G23G32

G21

G23G32

Δ21

Δ32
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Global identifiability
CT̃B = CTB⇒ G̃ = G

⇓

Local identifiability
CTΔTB = 0⇒ Δ = 0

Same transfer functions
in the two copies

1

2

3

Exc

Exc Meas

G21

G23G32

1

2

3

1

2

3

Exc

Exc Meas

G21

G23G32

G21

G23G32

Δ21

Δ32
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Decoupled identifiability

Global identifiability

CT̃B = CTB⇒ G̃ = G

⇓

Local identifiability

CTΔTB = 0⇒ Δ = 0

⇓

Decoupled identifiability

CTΔT′B = 0⇒ Δ = 0
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Local identifiability
CTΔTB = 0⇒ Δ = 0

⇓

Decoupled identifiability
CTΔT′B = 0⇒ Δ = 0

1

2

3

1

2

3

Exc

Exc Meas

G21

G23G32

G21

G23G32

Δ21

Δ32

1

2

3

1

2

3

Exc

Exc Meas

G′21

G′23G′32

G21

G23G32

Δ21

Δ32
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Decoupled network

Global identifiability

CT̃B = CTB⇒ G̃ = G

⇓

Local identifiability

CTΔTB = 0⇒ Δ = 0

⇓

Decoupled identifiability

CTΔT′B = 0⇒ Δ = 0

⇕

Global identifiability of the decoupled network
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Necessary... and sufficient?

Global identifiability

CT̃B = CTB⇒ G̃ = G

⇓ ⇑?

Local identifiability

CTΔTB = 0⇒ Δ = 0

⇓ ⇑?

Decoupled identifiability

CTΔT′B = 0⇒ Δ = 0

No counter-example known
github.com/alegat/identifiable
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Separable networks
Generalization of the decoupled network:
Excited and measured subgraphs can now have different topologies

Exc

Exc

Meas

Meas

Proposition 2

On separable networks, local identifiability⇔ global identifiability

⇒ Global identifiability can be studied via rank K
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Other network topologies

The decoupled network is a particular case of separable network,
where the excited and measured subgraph have same topology

⇒ Conditions derived for separable networks apply to decoupled
identifiability

Reminder

Global Identifiability⇒ Local Identifiability⇒ Decoupled Identif

⇒ Necessary conditions derived for separable networks apply to
global identifiability of any network topology
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Summary
Global identifiability

CT̃B = CTB⇒ G̃ = G

⇓

Local identifiability

CTΔTB = 0⇒ Δ = 0

⇓

Decoupled identifiability

CTΔT′B = 0⇒ Δ = 0

⇕

Global identifiability ⇐ Separable networks
of the decoupled network (for which global⇔ local)
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Framework

▶ Global identifiability on separable networks
⇒ Applies on decoupled identifiability of all networks

▶ Identifiability of the whole network
▶ We assume: # unknowns = # excitations × # measurements

⇒ Matrix K is now square, and: K full-rank⇔ det K ̸= 0
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Theorem 2

A separable network is globally identifiable ⇔ det K ̸= 0
generically generically

K = (B⊤T⊤⊗ CT)IGΔ =

· · · unknown Gij · · ·
· · · · · · · · · · · ·

exc b →meas c · · · TjbTci · · ·
· · · · · · · · · · · ·

j i

b

c

Exc

Exc

Meas

Meas

Gij

Tjb Tci
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Theorem 2

A separable network is globally identifiable ⇔ det K ̸= 0
generically generically

K = (B⊤T⊤⊗ CT)IGΔ =

· · · unknown Gij · · ·
· · · · · · · · · · · ·

exc b →meas c · · · TjbTci · · ·
· · · · · · · · · · · ·

det K =
∑︁

assignations σ
sign(σ)

∏︁
Gij

TjbTci (Leibniz)
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Lemma 1

The entries of T(G) = (I− G)−1 are

Tji =
∑︁

all paths
i→j

Gj∗ . . . G∗i.

1

2

3

4

5

G21

G31

G41

G42

G53

G54

T51 = G54G42G21 + G54G41 + G53G31
39



Take a collection of paths that link an excitation and a measurement to
each unknown edge, bijectively.
Amonomial μ is the product of all transfer functions of these paths

(where edges taken n times by the paths are to the power n in μ)

μ ≜ G.. . . .G.. · G.. . . .G.. · G.. . . .G.. · G.. . . .G..

1

2

3

4

ℬ 𝒞
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1

2

3

4

Two different collections of paths using the same transfer functions
⇒ Same monomial μ, but different sign in expression of det K

1

2

3

4
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After algebra, we obtain

det K =
∑︁
μ∈M

r(μ) μ

where

μ =
∏︁

all unknown edges α
Gmeasurement,∗ ... G∗,α · Gα,∗ ... G∗,excitation

and the repetition r(μ) accounts for the sign of term μ in the
expression of det K.

Theorem 3

A separable network is generically globally identifiable⇔ there is
at least one monomial μ ∈M such that its repetition r(μ) ̸= 0
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Future perspectives

▶ Path-based condition from our combinatorial characterization
▶ Algorithm for the synthesis problem
▶ Gap between local and global identifiability
▶ Gap between decoupled and local identifiability
▶ Path-based condition for single edge identifiability
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Take-home message
▶ For identifiability: Global⇒ Local⇒ Decoupled
▶ Introduced Separable networks, for which Global⇔ Local

▶ Necessary conditions derived on separable networks apply on
networks of any topology, through the decoupled network

▶ Combinatorial necessary and sufficient characterization
▶ Further work:

▶ Path-based condition from our combinatorial characterization
▶ Algorithm for the synthesis problem

antoine.legat@uclouvain.be
perso.uclouvain.be/antoine.legat 44
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Back-up slides
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Model

state←− wi(t) =
∑︁

Gij(q) wj(t)

q is the shift operator, i.e. q−1w(t) = w(t− 1)

w2

w1

w3

G21
G31

G11

G23

G13
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state←− wi(t) =
∑︁

Gij(q) wj(t) + Bi ri(t) −→ excitation

measure←− yi(t) = Ci wi(t) Bi,Ci ∈ {0, 1}

w2

w1

w3

r1, y1

r2, y2 r3, y3

C1

B1

B3

C3C2

B2
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state←− w = G w + B r −→ excitation

measure←− y = C w

Which nodes to excite/measure to recover the transfer functions?
i.e. how to choose B,C to accurately recover G?

w2

w1

w3

Transfer functions that can be recovered are identifiable
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Network topology is defined by the nonzero entries of G, and is
assumed to be known (often the case).

G =

⎡⎢⎣G11 0 G13

G21 0 G23

G31 0 0

⎤⎥⎦
Theorem: Identifiability is a generic property of network topology:
it only depends* on the structure of G, but not on its parameters Gij.

w2

w1

w3

G21
G31

G11

G23

G13
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Genericity
▶ A generic property holds everywhere except possibly on a

lower-dimensional set.
▶ A lower-dimensional set has Lebesgue-measure zero
→ 0-probability of falling in this set when sampling randomly

Example: The matrix

A =

[︃
x 0
0 x− y

]︃
has generic rank 2. Its rank drops on {x = 0} ∪ {x = y}.
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Identifiability is generic – example
Global input-output transfer function:

CTB ≜ C(I− G)−1B =

(︃
G42G21 + G43G31 G42 G43 1 0
G52G21 + G53G31 G52 G53 0 1

)︃

⇒ G42,G43,G52,G53 identif, and

(︃
G42 G43

G52 G53

)︃(︃
G21

G31

)︃
=

(︃
T41
T51

)︃
⇒ G21,G31 identifiable except when G42G53 + G43G52 = 0.

1

2 3

4 5
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