Combinatorial Characterization for Global Identifiability of Separable Networks with Partial Excitation and Measurement

Neuroscience [Chiêm et al. 2021]

Physiological models [Christie et al. 2014]

Power grids

Stock market [Shahzad et al. 2018]

Model

state
$$\leftarrow w = G w + B r \longrightarrow$$
 excitation
measure $\leftarrow y = C w$

From given excitations *r* at *B* and measurements *y* at *C*, can we recover the unknown transfer fcts *G_{ij}* ?

state
$$\leftarrow w = G w + B r \longrightarrow$$
 excitation
measure $\leftarrow y = C w$

From given excitations r at B and measurements y at C,

can we recover the unknown transfer fcts G_{ij}?

Framework: Not all nodes are excited/measured Handle known transfer functions No use of noise. But reformulation at [Shi, Cheng, Van den Hof 2019] Single frequency – scalar case Assumptions: Network topology is known Global transfer matrix $C(I-G)^{-1}B$ is known state $\leftarrow w = G w + B r \longrightarrow excitation$

measure $\leftarrow y = C w$

Example

From given excitations *r* at *B* and measurements *y* at *C*, can we recover the unknown transfer fcts *G_{ij}* ?

$$G = \begin{bmatrix} 0 & 0 & G_{13} \\ G_{21} & 0 & G_{23} \\ G_{31} & 0 & 0 \end{bmatrix} \qquad C = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \qquad B = \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix}$$
$$T \triangleq (I-G)^{-1} = \frac{1}{1-G_{13}G_{31}} \begin{bmatrix} 1 & 0 & G_{13} \\ G_{21}+G_{31}G_{23} & 1 & G_{23}+G_{13}G_{21} \\ G_{31} & 0 & 1 \end{bmatrix}$$

Example

state $\leftarrow w = G w + B r \longrightarrow$ excitation

measure $\leftarrow y = C w$

From given excitations *r* at *B* and measurements *y* at *C*, can we recover the unknown transfer fcts *G_{ij}* ?

$$G = \begin{bmatrix} 0 & 0 & G_{13} \\ G_{21} & 0 & G_{23} \\ G_{31} & 0 & 0 \end{bmatrix} \qquad C = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \qquad B = \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix}$$
$$C T B = \frac{1}{1 - G_{13}G_{31}} \begin{bmatrix} 1 & 0 & G_{13} \\ G_{21} + G_{31}G_{23} & 1 & G_{23} + G_{13}G_{21} \\ G_{31} & 0 & 1 \end{bmatrix}$$

Example

The question is:

From **C** *T* **B** =
$$\frac{1}{1 - G_{13}G_{31}} \begin{bmatrix} 1 & 0 & G_{13} \\ G_{21} + G_{31}G_{23} & 1 & G_{23} + G_{13}G_{21} \\ G_{31} & 0 & 1 \end{bmatrix}$$
,

can we uniquely recover G_{13} and G_{23} ?

Outline

- 1. Introduction
- 2. Model
- 3. Identifiability
- 4. Algebraic characterization
 - Local identifiability
 - Decoupled identifiability
 - Separable networks
- 5. Combinatorial characterization
- 6. Conclusion

Does
$$\underbrace{CTB}_{known} = C(I - G)^{-1}B$$
 admit a unique solution G?

Does
$$\underbrace{CTB}_{known} = C(I-G)^{-1}B$$
 admit a unique solution G?

All nodes excitated: Necessary and sufficient path-based condition i.e. *B* = *I* [Hendrickx, Gevers, Bazanella 2017]

Algo allocating measurements in the graph

[Cheng, Shi, Van den Hof 2019]

Does
$$\mathcal{L}_{Known}^{TB} = \mathcal{L}(I - G)^{-1} B$$
 admit a unique solution G?

All nodes excitated: Necessary and sufficient path-based condition i.e. B = I [Hendrickx, Gevers, Bazanella 2017] Algo allocating measurements in the graph

[Cheng, Shi, Van den Hof 2019]

All nodes measured: Dual results

i.e. C = I

Does
$$\underbrace{CTB}_{known} = C (I - G)^{-1} B$$
 admit a unique solution G?

 All nodes excitated:
 Necessary and sufficient path-based condition

 i.e. B = I
 [Hendrickx, Gevers, Bazanella 2017]

 Algo allocating measurements in the graph

 [Cheng, Shi, Van den Hof 2019]

 All nodes measured:
 Dual results

i.e. C = I

General case: Our approach: we linearize

Outline

- 1. Introduction
- 2. Model
- 3. Identifiability
- 4. Algebraic characterization
 - Local identifiability
 - Decoupled identifiability
 - Separable networks
- 5. Combinatorial characterization
- 6. Conclusion

From the definition of global identifiability...

Definition: Network globally identifiable at G if for all \tilde{G} :

$$C T(\tilde{G}) B = C T(G) B \Rightarrow \tilde{G} = G$$

... we introduce *local* identifiability

Definition: Network *locally* identifiable at G if for all \tilde{G} on an ϵ -ball:

$$C T(\tilde{G}) B = C T(G) B \Rightarrow \tilde{G} = G$$

Local identifiability is necessary

Definition: Network *locally* identifiable at G if for all \tilde{G} on an ϵ -ball:

 $C T(\tilde{G}) B = C T(G) B \Rightarrow \tilde{G} = G$

- Necessary for global identifiability
- No counter-example to sufficiency known

Local identifiability is generic

Unformally, it does almost only depend on the graph topology.

Example: the nonzeroness of a polynomial is generic

When all nodes are excited/measured, **global** identifiability is also a generic property.

Algebraic characterization

Definition: Network *locally* identifiable at G if for all \tilde{G} on an ϵ —ball:

 $C T(\tilde{G}) B = C T(G) B \Rightarrow \tilde{G} = G$

- Necessary for global identifiability
- No counter-example to sufficiency known

where $K \triangleq (B^{\top}T^{\top} \otimes CT)I_{G^{\Delta}}$

Example

$$G = \begin{bmatrix} 0 & 0 & G_{13} \\ G_{21} & 0 & G_{23} \\ G_{31} & 0 & 0 \end{bmatrix} \qquad C = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \qquad B = \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix}$$
$$T \triangleq (I-G)^{-1} = \underbrace{\frac{1}{1-G_{13}G_{31}}}_{\triangleq D} \begin{bmatrix} 1 & 0 & G_{13} \\ G_{21}+G_{31}G_{23} & 1 & G_{23}+G_{13}G_{21} \\ G_{31} & 0 & 1 \end{bmatrix}$$

$$K \triangleq (B^{\top}T^{\top} \otimes CT)I_{G^{\Delta}} = \frac{1}{D^{2}} \begin{array}{ccc} 2 \to 1 & 0 & 0 \\ 2 \to 2 & 0 & 0 \\ 3 \to 1 & 1 & 0 \\ 3 \to 2 & G_{21} + G_{23}G_{31} & 1 \end{array}$$

Theorem 1 (CDC 2020)

 $G \text{ generically} \iff \boxed{CT\Delta TB = 0 \Rightarrow \Delta = 0} \iff K \text{ is full-rank}$ locally identif $\forall \Delta$, generically generically

→ Probability-1 algorithm: randomized, proba 0 of inaccuracy

Outline

- 1. Introduction
- 2. Model
- 3. Identifiability
- 4. Algebraic characterization
 - Local identifiability
 - Decoupled identifiability
 - Separable networks
- 5. Combinatorial characterization
- 6. Conclusion

What we have so far

Global identifiability $C\tilde{T}B = CTB \Rightarrow \tilde{G} = G$

∜

Local identifiability

 $CT\Delta TB = 0 \Rightarrow \Delta = 0$

 \rightarrow Graph interpretation?

Interpretation on a larger network

Global identifiability $C\tilde{T}B = CTB \Rightarrow \tilde{G} = G$ $\downarrow \downarrow$ Local identifiability $CT\Delta TB = 0 \Rightarrow \Delta = 0$

Decoupled identifiability

Global identifiability $C\tilde{T}B = CTB \Rightarrow \tilde{G} = G$ 1 Local identifiability $CT\Delta TB = 0 \Rightarrow \Delta = 0$ 1 Exc. **Decoupled** identifiability $CT\Delta T'B = 0 \Rightarrow \Delta = 0$

Decoupled identifiability

∜

 $CT\Delta T'B = 0 \Rightarrow \Delta = 0$

Local identifiability

 $CT\Delta TB = 0 \Rightarrow \Delta = 0$

Decoupled network

Global identifiability of the decoupled network

Necessary... and sufficient?

Global identifiability $C\tilde{T}B = CTB \Rightarrow \tilde{G} = G$ ∜ Local identifiability $CT\Delta TB = 0 \Rightarrow \Delta = 0$ ∜ **Decoupled** identifiability $CT\Delta T'B = 0 \Rightarrow \Delta = 0$

No counter-example known

github.com/alegat/identifiable

Outline

- 1. Introduction
- 2. Model
- 3. Identifiability
- 4. Algebraic characterization
 - Local identifiability
 - Decoupled identifiability
 - Separable networks
- 5. Combinatorial characterization
- 6. Conclusion

Separable networks

Generalization of the decoupled network:

Excited and measured subgraphs can now have different topologies

Proposition 2

On separable networks, local identifiability ⇔ global identifiability

 \Rightarrow Global identifiability can be studied via rank K

Other network topologies

The decoupled network is a particular case of separable network, where the excited and measured subgraph have same topology

⇒ Conditions derived for separable networks apply to decoupled identifiability

Reminder

Global Identifiability \Rightarrow Local Identifiability \Rightarrow Decoupled Identif

⇒ Necessary conditions derived for separable networks apply to global identifiability of any network topology

Summary

Global identifiability $C\tilde{T}B = CTB \Rightarrow \tilde{G} = G$ 11 Local identifiability $CT\Delta TB = 0 \Rightarrow \Delta = 0$ ╢ Decoupled identifiability

 $CT\Delta T'B = 0 \Rightarrow \Delta = 0$

↕

Global identifiability of the decoupled network

Separable networks (for which global \Leftrightarrow local)

⇐

Outline

- 1. Introduction
- 2. Model
- 3. Identifiability
- 4. Algebraic characterization
 - Local identifiability
 - Decoupled identifiability
 - Separable networks
- 5. Combinatorial characterization
- 6. Conclusion

Framework

- Global identifiability on separable networks
 - ⇒ Applies on decoupled identifiability of all networks
- Identifiability of the whole network
- We assume: # unknowns = # excitations × # measurements
 - ⇒ Matrix K is now square, and: K full-rank \Leftrightarrow det K \neq 0

Theorem 2

A separable network is globally identifiable \Leftrightarrow det $K \neq 0$ generically generically

		•••	unknown <mark>G_{ij}</mark>	•••
$K = (B^{\top}T^{\top} \otimes CT)I_{G^{\Delta}} =$	•••	•••	•••	•••
	$\operatorname{exc} b \rightarrow \operatorname{meas} c$	•••	T _{jb} T _{ci}	•••
	•••	•••	•••	•••

37

Theorem 2 det $K \neq 0$ A separable network is globally identifiable \Leftrightarrow generically generically unknown G_{ii} $K = (B^\top T^\top \otimes CT) I_{G^\Delta} =$ \rightarrow meas c \cdots $T_{jb}T_{ci}$ exc b . . . \sum sign(σ) $T_{jb}T_{ci}$ $\det K =$ (Leibniz) assignations σ l d e r

Lemma 1

The entries of $T(G) = (I - G)^{-1}$ are

$$T_{ji} = \sum_{\substack{\text{all paths} \\ i \to j}} G_{j*} \dots G_{*i}.$$

 $T_{51} = G_{54}G_{42}G_{21} + G_{54}G_{41} + G_{53}G_{31}$

Take a collection of paths that link an excitation and a measurement to each unknown edge, bijectively.

A monomial μ is the product of all transfer functions of these paths

(where edges taken n times by the paths are to the power n in μ)

$$\mu \triangleq \mathbf{G}_{\dots} \cdot \mathbf{G}_$$

Two different collections of paths using the same transfer functions

 \Rightarrow Same monomial μ , but different sign in expression of det K

After algebra, we obtain

$$\det \mathsf{K} = \sum_{\mu \in \mathsf{M}} \mathsf{r}(\mu) \, \mu$$

where

$$\mu = \prod_{\text{all unknown edges } \alpha} G_{\text{measurement, *}} \dots G_{*,\alpha} \cdot G_{\alpha,*} \dots G_{*,\text{excitation}}$$

and the repetition $r(\mu)$ accounts for the sign of term μ in the expression of det *K*.

Theorem 3

A separable network is generically globally identifiable \Leftrightarrow there is at least one monomial $\mu \in M$ such that its repetition $r(\mu) \neq 0$

Future perspectives

- Path-based condition from our combinatorial characterization
- Algorithm for the synthesis problem
- Gap between local and global identifiability
- Gap between decoupled and local identifiability
- Path-based condition for single edge identifiability

Take-home message

- For identifiability: Global \Rightarrow Local \Rightarrow Decoupled
- Introduced Separable networks, for which Global \Leftrightarrow Local

- Necessary conditions derived on separable networks apply on networks of any topology, through the decoupled network
- Combinatorial necessary and sufficient characterization
- Further work:
 - Path-based condition from our combinatorial characterization
 - Algorithm for the synthesis problem

JCLouvain antoine.legat@uclouvain.be perso.uclouvain.be/antoine.legat

Back-up slides

Model

state $\leftarrow w_i(t) = \sum_{i=1}^{n} G_{ij}(q) w_j(t)$ q is the shift operator, i.e. $q^{-1}w(t) = w(t-1)$

state
$$\leftarrow w_i(t) = \sum_{i} G_{ij}(q) w_j(t) + B_i r_i(t) \longrightarrow excitation$$

measure $\leftarrow y_i(t) = C_i w_i(t)$ $B_i, C_i \in \{0, 1\}$

state
$$\leftarrow w = G w + B r \longrightarrow$$
 excitation
measure $\leftarrow y = C w$

Which nodes to excite/measure to recover the transfer functions? i.e. how to choose *B*, *C* to accurately recover *G*?

Transfer functions that can be recovered are identifiable

Network topology is defined by the nonzero entries of *G*, and is assumed to be known (often the case).

$$G = \begin{bmatrix} G_{11} & 0 & G_{13} \\ G_{21} & 0 & G_{23} \\ G_{31} & 0 & 0 \end{bmatrix}$$

Theorem: *Identifiability* is a generic property of *network topology*: it only depends^{*} on the structure of *G*, but not on its parameters *G*_{ij}.

Genericity

- A generic property holds everywhere except possibly on a lower-dimensional set.
- A lower-dimensional set has <u>Lebesgue-measure zero</u>

 \rightarrow 0-probability of falling in this set when sampling randomly **Example:** The matrix

$$A = \begin{bmatrix} x & 0 \\ 0 & x - y \end{bmatrix}$$

has generic rank 2. Its rank drops on $\{x = 0\} \cup \{x = y\}$.

Identifiability is generic – example

Global input-output transfer function:

$$CTB \triangleq C(I-G)^{-1}B = \begin{pmatrix} G_{42}G_{21} + G_{43}G_{31} & G_{42} & G_{43} & 1 & 0 \\ G_{52}G_{21} + G_{53}G_{31} & G_{52} & G_{53} & 0 & 1 \end{pmatrix}$$
$$\Rightarrow G_{42}, G_{43}, G_{52}, G_{53} \text{ identif, and } \begin{pmatrix} G_{42} & G_{43} \\ G_{52} & G_{53} \end{pmatrix} \begin{pmatrix} G_{21} \\ G_{31} \end{pmatrix} = \begin{pmatrix} T_{41} \\ T_{51} \end{pmatrix}$$

 \Rightarrow G₂₁, G₃₁ identifiable except when G₄₂G₅₃ + G₄₃G₅₂ = 0.

