Necessary Graph Condition for Local Network Identifiability

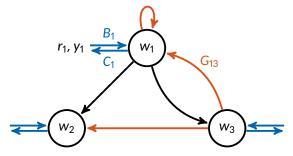
Antoine Legat and Julien M. Hendrickx

ERNSI 2021

Model

state
$$\leftarrow w = G w + B r \longrightarrow$$
 excitation
measure $\leftarrow y = C w$

From given exc/meas, can we recover unknown transfer functions? i.e. From *r* at *B* and *y* at *C*, can we recover unknown G_{ij}?



Assumption: Network topology is known & partial exc/meas Terminology: Unknown TFs that can be recovered: *identifiable* From the definition of identifiability...

Definition: G generically identifiable if

 $CTB = C\tilde{T}B \Rightarrow G = \tilde{G}$

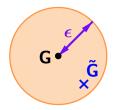
where $T \triangleq (I - G)^{-1}$.

... we introduce *local* identifiability

Definition: G generically *locally* identifiable if on an ϵ -ball,

$$CTB = C\tilde{T}B \Rightarrow G = \tilde{G}$$

- Necessary for generic identifiability
- No counter-example to sufficiency found yet



Theorem 1 (Legat; Hendrickx 2020)G generically locally identif
$$CT\Delta TB = 0 \Rightarrow \Delta = 0$$
 $\forall \Delta$
almost everywhere

From Theorem 1 ...

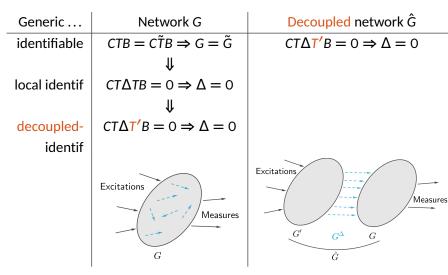
Generic	Network G	
identifiable	$CTB = C\tilde{T}B \Rightarrow G = \tilde{G}$	
	↓ ↓	
local identif	$CT\Delta TB = 0 \Rightarrow \Delta = 0$	
	Excitations Measures G	

... we introduce decoupled identifiability

_

Generic	Network G	
identifiable	$CTB = C\tilde{T}B \Rightarrow G = \tilde{G}$	
	\Downarrow	
local identif	$CT\Delta TB = 0 \Rightarrow \Delta = 0$	
	\Downarrow	
decoupled-	$CT\Delta T'B = 0 \Rightarrow \Delta = 0$	
identif		
	Excitations Measures G	

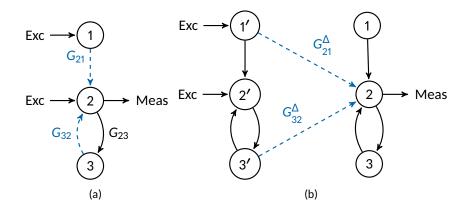
... and the decoupled network



Necessary... and sufficient?

Generic	Network G	
identifiable	$CTB = C\tilde{T}B \Rightarrow G = \tilde{G}$	
	↓ <u>↑</u> ?	No counter-ex so far
local identif	$CT\Delta TB = 0 \Rightarrow \Delta = 0$	
	↓ <u></u> <u>↑</u> ?	No counter-ex so far
decoupled-	$CT\Delta T'B = 0 \Rightarrow \Delta = 0$	
identif		
	Excitations Measures G	

Basic example

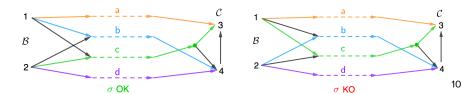


- (a): Unknowns in dashed blue
- (b): Decoupled network: unknowns in the middle

Theorem

If a network is generically decoupled-identifiable, then there is at least one assignation σ : edge \rightarrow (excitation, measure) s.t.:

- (a) $|\mathcal{C}|$ (= 2 here) unknown edges are assigned to each excitation
- (b) $|\mathcal{B}| (= 2 \text{ here})$ unknown edges are assigned to each measure
- (c) σ is connected (e.g. edge a must be assigned to (1,3))
- (d) for each excitation b, there are |C| vertex-disjoint paths between the edges assigned to b and the measures C.
- (e) for each measure c, there are |B| vertex-disjoint paths between the edges assigned to c and the measures B.



A necessary condition and a sufficient one

Theorem

If a network is generically decoupled-identifiable, then there is at least one assignation σ such that:

- (a) |C| unknown edges are assigned to each excitation
- (b) $|\mathcal{B}|$ unknown edges are assigned to each measure
- (c) σ is connected
- (d) for each excitation b, there are |C| vertex-disjoint paths between the edges assigned to b and the measures C.
- (e) for each measure c, there are |B| vertex-disjoint paths between the edges assigned to c and the measures B.

If there is only one such assignation, then this condition is also sufficient for generic decoupled identifiability.

Take-home message

- Introduced generic *decoupled*-identifiability,
 - Necessary for (generic) (local) identifiability
 - New: larger graph which decouples excitations and measures
- Derived a *graph-theoretical necessary condition* which applies to (generic) (local) identifiability
- Whether the sufficient condition extends as well remains an open question
- There *could be a stronger version* of our theorem, extending previous results of full excitation/measurement
- Further work: when not all edges are identifiable, obtain a graph-theoretical condition for the recovery of some edges

UCLouvain

12