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Long-term application Case study (my Master’s thesis)

Excitation \ / Measurement




state transfer fct excitation

\ 77

X(z) = G(z) X(z) + B U(z) + noise
Y(z) = C X(z)

measure binary selections

Which nodes to excite/measure to recover the transfer functions?

Theorem: Identifiability is a generic property of network topology.
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Assumption: Topology is known (often the case).



Approach

e Global graph theoretical approach

e Local dynamics from global input-output

Excitation Measurement

Known global MIMO Local dynamics to identify



Motivating example
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Trees
Theorem (Bazanella et al. 2019)

A tree is generically identifiable IFF all fountains are excited, all sinks
are measured and all nodes are either excited or measured.

Definition: Fountains: no incoming edge - Sinks: no outgoing edge



Full excitation/measurement
Theorem (Full excitation - Hendrickx et al. 2018)

All transfer functions leaving node i are generically identifiable IFF
there are |N"| vertex disjoint paths from N to C.

3 v.d. paths

Dual (full measurement): All TFs arriving at node j are generically
identifiable IFF there are |Nj_| vertex disjoint paths from N to B.



Vertex disjoint paths
Theorem (Hendrickx et al. 2018)

® b 4_.c: max number of vertex disjoint paths

o Tc 4(G): restriction of T(G) £ (I— G)™" to nodes C and A

b 4—.c = generic rank (T¢, 4(G))

2 v.d. paths
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Pseudotrees

Theorem (Full measurement - Cheng, Shi, Van den Hof 2019)

The network is generically identifiable IFF there exists a disjoint
pseudotree covering with excited roots (+ dual for full excitation).

r €1

Analogy: Vertex disjoint paths - Pseudotree covering
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Local generic identifiability

Definition
The transfer function G;i(z) is locally generically identifiable from B &

C if, for any parametrization G(P, z), there exists G(z) consistent with
the graph, € > 0 such that ||G(z) — G(P, z)|| < €, and there holds

C(l—G(P,2)) 'B=c(I—G(2)) 'B=G;i(P,2) = Gji(z2) (1)

YV parameters P except possibly those lying on a zero measure set.

One can linearize (1) to obtain
CTATB=0=> Aj,‘ =0,

where T £ (I— G(z))~" and A is consistent with the graph.
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Whole network
For the whole network, it becomes
CTATB=O=A/-/=O,
which can be reformulated as a linear system
K6=0=6=0,

where K is the restriction of B'T" ® CT to the columns corresponding
to actual edges, 5 € RIEl, and |E| denotes the number of edges.

Theorem

G is locally generically identifiable IFF generic rank K = |E|.
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Specific edge

Otherwise, ker K # # — inspect ker K to find problematic edges
The linearization

CTATB=0=> Aj,’ =0
can be reformulated as
K§=0=6,=0,

where e corresponds to edge (ji).

Theorem

The transfer function e is locally generically identifiable IFF for each
6 € ker K, there holds 6, = O.
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Symbolic run

v Excited

A Measured

¥ Excited & measured
—— |dentifiable
—— Non-identifiable

v3

*1



Stochastic run (probability 1)
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Conclusion

Introduced local generic identifiability

By a linearization, obtained necessary and sufficient conditions
for recovering (i) the whole network (ii) a specific edge

Algorithm: symbolic and exact, or stochastic and efficient

Future work

- Characterize our results in graph-theoretical terms

- Extend our results to nonlocal generic identifiability
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