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1 Introduction

The goal of this work is to recover the local dynamics from
the global input-output behavior of a networked system and
the knowledge of the network topology.

We consider the identification of a network matrix G(z),
where the network is made up of n nodes, with node
signals {w1(t), . . . ,wn(t)}, and external excitation signals
{r1(t), . . . ,rn(t)}, related to each other by:

w(t) = G(z)w(t)+Br(t)+ v1(t)

y(t) =Cw(t)+ v2(t),
(1)

where matrices B and C are binary selections defining which
nodes are excited and measured, forming the sets B and C
respectively. The vector y(t) contains the measured nodes,
while v1(t) and v2(t) are uncorrelated noise vectors. The
nonzero entries of the network matrix G(z) define the topol-
ogy of the network, and are assumed proper and rational.

We assume that the global relation between the excitations r
and measures y has been identified, and that the structure of
G(z) is known. From this knowledge, we aim at recovering
the nonzero entries of G(z).

A first line of work extends the classical closed-loop identi-
fication techniques to identify a single module, see e.g. [1].
A recent approach employs graph-theoretical tools to derive
identifiability conditions on the graph of the network. Us-
ing this approach, [2] addresses the particular case where all
nodes are excited/measured. In the general case of partial
measurement and excitation, [3] introduces a local version
of identifiability and derives algebraic necessary and suffi-
cient conditions. In this work, we consider local identifi-
ability with partial excitation and measurement. From the
conditions of [3], we derive a graph-theoretical condition
which generalizes the results of [2] when not all nodes are
excited/measured.

2 Problem reformulation

Starting from the definition of a network system in (1), we
first define T (z) , (I −G(z))−1, which is assumed to be
proper and stable. The input-output model of the network
model (1) is then given by

y(t) =CT (z)Br(t)+ v3(t),
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where v3(t) , CT (z)v1(t) + v2(t). We assume that r(t) is
sufficiently rich so that, for any B and C, CT (z)B can be con-
sistently estimated from {y(t),r(t)} data. From the knowl-
edge of CT (z)B, the aim is to identify G(z). This motivates
the following definition, which restricts the usual generic
identifiability from [2] to non-discrete sets of solutions.

Definition 1. The network matrix G is generically locally
identifiable from excitations B and measurements C if there
exists ε > 0 such that for any G̃ consistent with the graph
satisfying ||G̃−G||< ε , there holds

C(I−G(z))−1B =C(I− G̃(z))−1B⇒ G(z) = G̃(z), (2)

for all G except possibly those lying on a zero measure set.

In this definition, a network matrix G(z) is said consistent
with the graph if Gi j(z) is zero when there is no edge (i, j).

3 Results

In [3], a linearization of (2) yields a necessary and suffi-
cient condition for generic local identifiability, based on the
generic rank of a matrix K constructed from B,C and T .

In this work, we show how the generic rank of K relies on the
generic rank of certain particular transfer matrices. Besides,
we know from [2] that the generic rank of a transfer matrix
between two sets of nodes is equal to the number of vertex
disjoint paths1 that can be routed between those two sets.

Combining those results allows to derive a necessary condi-
tion for generic local identifiability in terms of paths in the
network. We believe that such path-based characterization
will pave the way for further developments in the subject.
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1A group of paths is said vertex disjoint if no two paths of this group
contain the same vertex.


