Graph-Theoretical Condition for Local Network Identifiability

Antoine Legat and Julien M. Hendrickx Benelux meeting 2021

Model

state
$$\leftarrow w = G w + B r \longrightarrow$$
 excitation
measure $\leftarrow y = C w$

From the given exc/meas, which transfer functions can be recovered? i.e. From r at B and y at C, which G_{ij} can be recovered?

Terminology: TFs that can be recovered are *identifiable*

From the definition of identifiability...

Known: exc. & measures *B*, *C*, data $T = (I - G)^{-1}$, topology To find: transfer functions *G*

Does $CTB = C(I - G)^{-1}B$ admit a unique solution G?

Definition: G generically identifiable if

 $CTB = C\tilde{T}B \Rightarrow G = \tilde{G}$

... we introduce *local* identifiability

Known: exc. & measures *B*, *C*, data $T = (I - G)^{-1}$, topology To find: transfer functions *G*

Does $CTB = C(I - G)^{-1}B$ admit a unique solution G?

Definition: G generically *locally* identifiable if on an ϵ -ball,

$$CTB = C\tilde{T}B \Rightarrow G = \tilde{G}$$

- Necessary for generic identifiability
- No counter-example to sufficiency found yet

Theorem 1 (Legat; Hendrickx 2020)

G generically locally identif \Leftrightarrow

$$CT\Delta TB = 0 \Rightarrow \Delta = 0 \quad \forall \Delta$$

almost everywhere

Contribution

- 1. Definition of decoupled identifiability (necessary)
- 2. Allows a novel approach based on a larger graph
- 3. Graph-theoretical necessary condition and a sufficient one

From Theorem 1 ...

Generic	Network G	
identifiable	$CTB = CT'B \Rightarrow G = G'$	
	₩	
local identif	$CT\Delta TB = 0 \Rightarrow \Delta = 0$	
	Excitations Measures G	

... we introduce decoupled identifiability

_

Generic	Network G	
identifiable	$CTB = CT'B \Rightarrow G = G'$	
	₩	
local identif	$CT\Delta TB = 0 \Rightarrow \Delta = 0$	
	\Downarrow	
decoupled-	$CT\Delta T'B = 0 \Rightarrow \Delta = 0$	
identif		
	Excitations Measures G	

... and the decoupled network

Necessary... and sufficient?

Generic	Network G	
identifiable	$CTB = CT'B \Rightarrow G = G'$	
	↓ <u>↑</u> ?	No counter-ex so far
local identif	$CT\Delta TB = 0 \Rightarrow \Delta = 0$	
	↓ <u></u> <u>↑</u> ?	No counter-ex so far
decoupled-	$CT\Delta T'B = 0 \Rightarrow \Delta = 0$	
identif		
	Excitations Measures G	

Basic example

- (a): Unknowns in dashed blue
- (b): Decoupled network: unknowns in the middle

Ingredients for our graph-theoretical condition

- Theorem 1 (Legat, Hendrickx 2020), which characterizes identifiability in terms of the rank of a matrix
- A square matrix is full-rank iFF its determinant is nonzero
- The determinant can be expressed as the sum over all row-column permutations by the Leibniz formula
- The generic rank of a matrix between two sets A and B equals the maximum number of vertex-disjoint paths from A to B

Theorem

If a network is generically decoupled-identifiable, then there is at least one assignation σ such that:

- (a) $|\mathcal{C}|$ (= 2 here) unknown edges are assigned to each excitation
- (b) $|\mathcal{B}| (= 2 \text{ here})$ unknown edges are assigned to each measure
- (c) σ is connected (e.g. edge a must be assigned to (1,3))
- (d) for each excitation b, there are |C| vertex-disjoint paths between the edges assigned to b and the measures C.
- (e) for each measure c, there are |B| vertex-disjoint paths between the edges assigned to c and the measures B.

A necessary condition and a sufficient one

Theorem

If a network is generically decoupled-identifiable, then there is at least one assignation σ such that:

- (a) |C| unknown edges are assigned to each excitation
- (b) $|\mathcal{B}|$ unknown edges are assigned to each measure
- (c) σ is connected
- (d) for each excitation b, there are |C| vertex-disjoint paths between the edges assigned to b and the measures C.
- (e) for each measure c, there are |B| vertex-disjoint paths between the edges assigned to c and the measures B.

If there is only one such assignation, then this condition is also sufficient for generic decoupled identifiability.

Discussion

- The assignation σ of our theorem is not necessarily bijective: two edges assigned to the same excitation can be assigned to the same measure
- The assignations of condition (a) do not necessarily match the vertex-disjoint paths of condition (e).
- The assignations of condition (b) do not necessarily match the vertex-disjoint paths of condition (d).
- → There could be a stronger version of our theorem
 - Our necessary condition is also necessary for (generic) (local) identifiability
 - No counter-example to sufficiency found so far. The *possible equivalence* between generic: identif, local identif and decoupled-identif *remains an open question*.

Take-home message

- Introduced generic *decoupled*-identifiability,
 - Necessary for (generic) (local) identifiability
 - New: larger graph which decouples excitations and measures
- Derived a *graph-theoretical necessary condition* which applies to (generic) (local) identifiability
- Whether the sufficient condition extends as well remains an open question
- There *could be a stronger version* of our theorem, extending previous results of full excitation/measurement
- Further work: when not all edges are identifiable, obtain a graph-theoretical condition for the recovery of some edges

UCLouvain

15