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1 Introduction
We consider the identifiability of a network matrix G(q),

where the network is made up of n node signals stacked in
the vector w(t) = [w1(t) w2(t) · · · wn(t)]⊤, known exter-
nal excitation signals r(t), measured node signals y(t) and
unmeasured noise v(t) related to each other by:

w(t) = G(q)w(t)+Br(t)+ v(t)

y(t) =Cw(t),
(1)

where matrices B and C are binary selections indicating re-
spectively the nB excited nodes and nC measured nodes,
forming sets B and C respectively.

The nonzero entries of the transfer matrix G(q) define the
network topology: Gi j(q) is the transfer function from node
j to node i, represented by an edge ( j, i) in the graph. Some
of those transfer functions are known and collected in ma-
trix G•(q), and the others are unknown, collected in matrix
G◦(q), such that G(q) = G•(q)+G◦(q).

We assume that the input-output relations between the ex-
citations r and measurements y have been identified, and
that the network topology is known. From this knowledge,
we aim at recovering an entry of G◦(q), or a subset of them.
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G13 and G23 are identifiable.

A first line of work extends the classical closed-loop iden-
tification techniques to identify a single module, see e.g. [1].
A recent approach employs graph-theoretical tools to derive
identifiability conditions on the graph of the network. Us-
ing this approach, [2] addresses the particular case where all
nodes are excited/measured. In the general case of partial
measurement and excitation, [3] introduces a local version
of identifiability and derives algebraic necessary and suffi-
cient conditions. In this work, we consider local identifiabil-
ity with partial excitation and measurement. From the con-
ditions of [3], we derive a path conditions which generalize
the results of [2] when not all nodes are excited/measured.
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2 Problem reformulation
Starting from the definition of a network system in (1),

we first define T (q)≜ (I−G(q))−1, which is assumed to be
proper and stable. The input-output model of (1) is:

y(t) =C T (q) B r(t)+ ṽ(t),

where ṽ(t) ≜ C T (q)v(t). We assume that r(t) is suffi-
ciently rich so that, for any B and C, C T (q)B can be consis-
tently estimated from {y(t),r(t)} data. From the knowledge
of C T (q)B, the aim is to identify G◦(q). This motivates the
following definition, which restricts the usual generic iden-
tifiability from [2] to non-discrete sets of solutions.

Definition 1. The module Gi j is locally identifiable at G
from excitations B and measurements C if there exists ε > 0
such that for any G̃ with same zero and known entries G• as
G satisfying ||G̃−G||< ε , there holds

C T̃ (q)B =C T (q)B ⇒ G̃i j = Gi j, (2)

where T̃ (q) = (I − G̃)−1. Gi j is generically locally identifi-
able if it is locally identifiable at almost all G.

3 Results
In [3], a linearization of (2) yields a necessary and suffi-

cient condition for generic local identifiability, based on the
generic rank of a matrix K constructed from B,C and T .

In this work, we show how the generic rank of K relies
on the generic rank of certain particular transfer matrices.
Besides, we know from [2] that the generic rank of a transfer
matrix can be characterized as paths in the network graph.

Combining those results allows to derive a necessary con-
dition and a sufficient one for generic local identifiability in
terms of paths in the network, which will pave the way for
further developments in the subject.
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