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Neuroscience [Chiêm et al. 2021] Power grids

MeasurementsExcitations

Physiological models [Christie et al. 2014] Stock market [Shahzad et al. 2018]
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Model state←− w = G w + B r −→ excitation

measure←− y = C w

From given exc/meas, can we recover the unknown transfer fcts?
i.e. From r at B and y at C, can we recover the unknown Gij?

w2

w1

w3

r1, y1
G13C1

B1

Assumptions: Network topology is known
Not all nodes are excited/measured
Global transfer matrix C (I− G)−1⏟  ⏞  

T(G)

B is known
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Example state←− w = G w + B r −→ excitation

measure←− y = C w

From given exc/meas, can we recover the unknown transfer fcts?

1

2 3

Assumption: Global transfer matrix C (I− G)−1⏟  ⏞  
T(G)

B is known

G =

⎡⎢⎣ 0 0 G13

G21 0 G23

G31 0 0

⎤⎥⎦ C =

[︃
1 0 0
0 1 0

]︃
B =

⎡⎢⎣0 0
1 0
0 1

⎤⎥⎦
T ≜ (I− G)−1 =

1

1− G13G31

⎡⎢⎣ 1 0 G13

G21 + G31G23 1 G23 + G13G21

G31 0 1

⎤⎥⎦
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Example state←− w = G w + B r −→ excitation

measure←− y = C w

From given exc/meas, can we recover the unknown transfer fcts?

1

2 3

Assumption: Global transfer matrix C (I− G)−1⏟  ⏞  
T(G)

B is known

G =

⎡⎢⎣ 0 0 G13

G21 0 G23

G31 0 0

⎤⎥⎦ C =

[︃
1 0 0
0 1 0

]︃
B =

⎡⎢⎣0 0
1 0
0 1

⎤⎥⎦
C T B =

1

1− G13G31

⎡⎢⎣ 1 0 G13

G21 + G31G23 1 G23 + G13G21

G31 0 1

⎤⎥⎦
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Outline

1. Context
2. Local identifiability

▶ Algebraic condition

3. Decoupled identifiability
▶ Path-based conditions

4. Future perspectives
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Identifiability

Network identifiable if the unknown transfer fcts can be recovered.

Does C T B⏟ ⏞ 
known

= C (I− G)−1 B admit a unique solution G ?
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Identifiability is generic

Network identifiable if the unknown transfer fcts can be recovered.

Does C T B⏟ ⏞ 
known

= C (I− G)−1 B admit a unique solution G ?

Identifiability is a property of the graph topology.
It does almost not depend on parameters Gij.

Identifiability is a generic property. It holds:
▶ either for almost all parameters Gij;
▶ or for no parameters Gij.

Example: the nonzeroness of a polynomial is generic
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State of the Art

Network identifiable if the unknown transfer fcts can be recovered.

Does C T �B⏟ ⏞ 
known

= C (I− G)−1 �B admit a unique solution G ?

All nodes excitated: Necessary and sufficient path-based condition
i.e. B = I [Hendrickx, Gevers, Bazanella 2017]

Algo allocating measurements in the graph
[Cheng, Shi, Van den Hof 2019]
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Network identifiable if the unknown transfer fcts can be recovered.

Does�C T B⏟ ⏞ 
known

= �C (I− G)−1 B admit a unique solution G ?

All nodes excitated: Necessary and sufficient path-based condition
i.e. B = I [Hendrickx, Gevers, Bazanella 2017]

Algo allocating measurements in the graph
[Cheng, Shi, Van den Hof 2019]

All nodes measured: Dual results
i.e. C = I

10



Network identifiable if the unknown transfer fcts can be recovered.

Does C T B⏟ ⏞ 
known

= C (I− G)−1 B admit a unique solution G ?

All nodes excitated: Necessary and sufficient path-based condition
i.e. B = I [Hendrickx, Gevers, Bazanella 2017]

Algo allocating measurements in the graph
[Cheng, Shi, Van den Hof 2019]

All nodes measured: Dual results
i.e. C = I

General case: Need to linearize
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Outline

1. Context
2. Local identifiability

▶ Algebraic condition

3. Decoupled identifiability
▶ Path-based conditions

4. Future perspectives
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From the definition of global identifiability...

Definition: Network globally identifiable at G if for all G̃:

C T(G̃) B = C T(G) B⇒ G̃ = G
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... we introduce local identifiability

Definition: Network locally identifiable at G if for all G̃ on an ε−ball:

C T(G̃) B = C T(G) B⇒ G̃ = G
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Local identifiability is necessary

Definition: Network locally identifiable at G if for all G̃ on an ε−ball:

C T(G̃) B = C T(G) B⇒ G̃ = G

▶ Necessary for global identifiability
▶ No counter-example to sufficiency known
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Algebraic condition

Definition: Network locally identifiable at G if for all G̃ on an ε−ball:

C T(G̃) B = C T(G) B⇒ G̃ = G

▶ Necessary for global identifiability
▶ No counter-example to sufficiency known

Theorem 1 (CDC 2020)

G generically locally identif ⇔ CTΔTB = 0⇒ Δ = 0 ∀ Δ
almost everywhere
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Example 1

2 3

G =

⎡⎢⎣ 0 0 G13

G21 0 G23

G31 0 0

⎤⎥⎦ C =

[︃
1 0 0
0 1 0

]︃
B =

⎡⎢⎣0 0
1 0
0 1

⎤⎥⎦
T ≜ (I− G)−1 =

1

1− G13G31⏟  ⏞  
≜D

⎡⎢⎣ 1 0 G13

G21 + G31G23 1 G23 + G13G21

G31 0 1

⎤⎥⎦
Theorem 1 (CDC 2020)

G generically locally identif ⇔ CTΔTB = 0⇒ Δ = 0 ∀ Δ
almost everywhere
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Theorem 1 (CDC 2020)

G generically locally identif ⇔ CTΔTB = 0⇒ Δ = 0 ∀ Δ
almost everywhere

−→ Probability-1 algorithm: randomized, proba 0 of inaccuracyExample journald - Local identifiability - 1000 samples

1

2

3

4

5

Excited
Measured
Exc. & meas.
Identifiable
Non-identif
Known

(a)

Example journal - Local identifiability - 1000 samples

1

2

3

4

5

(b)
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Outline

1. Context
2. Local identifiability

▶ Algebraic condition

3. Decoupled identifiability
▶ Path-based conditions

4. Future perspectives
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What we have so far

Global identifiability

CT̃B = CTB⇒ G̃ = G

⇓

Local identifiability

CTΔTB = 0⇒ Δ = 0

→ Graph interpretation?
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Interpretation on a larger network

Global identifiability

CT̃B = CTB⇒ G̃ = G

⇓

Local identifiability

CTΔTB = 0⇒ Δ = 0

Left graph = right graph?
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Decoupled identifiability

Global identifiability

CT̃B = CTB⇒ G̃ = G

⇓

Local identifiability

CTΔTB = 0⇒ Δ = 0

⇓

Decoupled identifiability

CTΔT′B = 0⇒ Δ = 0
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Necessary... and sufficient?

Global identifiability

CT̃B = CTB⇒ G̃ = G

⇓ ⇑?

Local identifiability

CTΔTB = 0⇒ Δ = 0

⇓ ⇑?

Decoupled identifiability

CTΔT′B = 0⇒ Δ = 0

No counter-example known
github.com/alegat/identifiable
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Basic example

1

2

3

Exc

Exc Meas

G21

G23G32

(a)

1′

2′

3′

1

2

3

E

E M

G21

G32

(b)

(b) is the decoupled network of (a)
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Outline

1. Context
2. Local identifiability

▶ Algebraic condition

3. Decoupled identifiability
▶ Path-based conditions

4. Future perspectives
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Theorem 1 - CDC 2020

G generically locally identif ⇔ CTΔTB = 0⇒ Δ = 0 ∀ Δ
almost everywhere

Example:

1

2

3

4

a

b

c

d

Excitations ℬ Measurements 𝒞
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Theorem 2 (weak condition) – CDC 2021

Decoupled identif ⇒ ∃ a connected bijective assignation
∃ only one connected bijective assignation⇒ Decoupled identif

Example of assignation:

a→ (1, 4), b→ (1, 3), c→ (2, 3), d→ (2, 4)

1

2

3

4

a

b

c

d
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Theorem 3 (strong condition) – CDC 2021

Decoupled identif ⇒ ∃ a connected assignation s.t:
▶ for each excitation i, there are 2 vertex-disjoint paths between

the edges assigned to i and the measurements
▶ dual condition for the measurements

If ∃ only one such ⇒ Decoupled identif

Example: Excitation 1 :OK

1

2

3

4

a

b

c

d
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Theorem 3 (strong condition)

Decoupled identif ⇒ ∃ a connected assignation s.t:
▶ for each excitation i, there are 2 vertex-disjoint paths between

the edges assigned to i and the measurements
▶ dual condition for the measurements

If ∃ only one such ⇒ Decoupled identif

Example: Excitation 2 : KO

1

2

3

4

a

b

c

d
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Theorem 2 (weak condition)

Decoupled identif ⇒ ∃ a connected bijective assignation
∃ only one connected bijective assignation⇒ Decoupled identif

Theorem 3 (strong condition)

Decoupled identif ⇒ ∃ a connected vertex-disjoint assignation
∃ only one connected v-disjoint assignation⇒ Decoupled identif

−→ There could be a stronger condition combining Theorems 2 & 3,
extending previous results under full excitation/measurement

[Hendrickx, Gevers, Bazanella 2017]
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Take-home message

▶ Introduced decoupled identifiability
▶ Necessary for local and global identifiability
▶ New: larger graph which decouples excitations and measurements

▶ Derived path-based necessary conditions which also apply to
local and global identifiability

▶ Whether the sufficient conditions extend as well remains an open
question

▶ There could be a stronger version of our conditions, extending
previous results under full excitation/measurement

▶ Further work: when not all edges are identifiable, obtain a
path-based condition for the recovery of some edges

antoine.legat@uclouvain.be
perso.uclouvain.be/antoine.legat 31
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Back-up slides
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Model

state←− wi(t) =
∑︁

Gij(q) wj(t)

q is the shift operator, i.e. q−1w(t) = w(t− 1)

w2

w1

w3

G21
G31

G11

G23

G13
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state←− wi(t) =
∑︁

Gij(q) wj(t) + Bi ri(t) −→ excitation

measure←− yi(t) = Ci wi(t) Bi,Ci ∈ {0, 1}

w2

w1

w3

r1, y1

r2, y2 r3, y3

C1

B1

B3

C3C2

B2
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state←− w = G w + B r −→ excitation

measure←− y = C w

Which nodes to excite/measure to recover the transfer functions?
i.e. how to choose B,C to accurately recover G?

w2

w1

w3

Transfer functions that can be recovered are identifiable
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Network topology is defined by the nonzero entries of G, and is
assumed to be known (often the case).

G =

⎡⎢⎣G11 0 G13

G21 0 G23

G31 0 0

⎤⎥⎦
Theorem: Identifiability is a generic property of network topology:
it only depends* on the structure of G, but not on its parameters Gij.

w2

w1

w3

G21
G31

G11

G23

G13
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Genericity
▶ A generic property holds everywhere except possibly on a

lower-dimensional set.
▶ A lower-dimensional set has Lebesgue-measure zero
→ 0-probability of falling in this set when sampling randomly

Example: The matrix

A =

[︃
x 0
0 x− y

]︃
has generic rank 2. Its rank drops on {x = 0} ∪ {x = y}.
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Identifiability is generic – example
Global input-output transfer function:

CTB ≜ C(I− G)−1B =

(︃
G42G21 + G43G31 G42 G43 1 0
G52G21 + G53G31 G52 G53 0 1

)︃

⇒ G42,G43,G52,G53 identif, and

(︃
G42 G43

G52 G53

)︃(︃
G21

G31

)︃
=

(︃
T41
T51

)︃
⇒ G21,G31 identifiable except when G42G53 + G43G52 = 0.

1

2 3

4 5
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