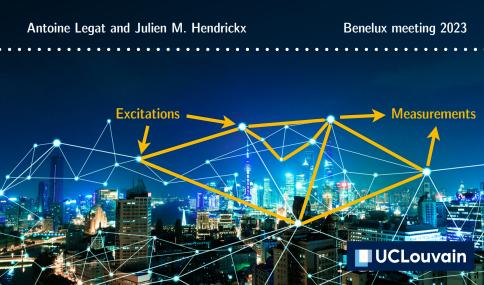
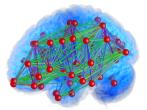
Local network identifiability: Path conditions



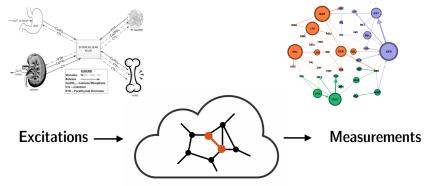
Neuroscience [Chiêm et al. 2021]



Physiological models [Christie et al. 2014]

Power grids

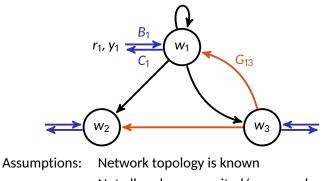
Stock market [Shahzad et al. 2018]



Model

state $\leftarrow w = G w + B r \longrightarrow$ excitation

From given exc/meas, can we recover the unknown transfer fcts? i.e. From *r* at *B* and *y* at *C*, can we recover the unknown *G_{ii}*?



Not all nodes are excited/measured Global transfer matrix $C \underbrace{(I - G)^{-1}}_{T(G)} B$ is known Example

state $\leftarrow w = G w + B r \longrightarrow$ excitation

measure $\leftarrow y = C w$

From given exc/meas, can we recover the unknown transfer fcts?

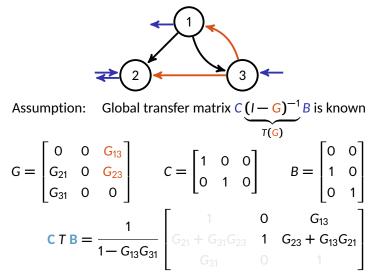
Assumption: Global transfer matrix $C(I - G)^{-1}B$ is known T(G) $G = \begin{bmatrix} 0 & 0 & G_{13} \\ G_{21} & 0 & G_{23} \\ G_{31} & 0 & 0 \end{bmatrix} \qquad C = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \qquad B = \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix}$ $T \triangleq (I-G)^{-1} = \frac{1}{1-G_{13}G_{31}} \begin{vmatrix} 1 & 0 & G_{13} \\ G_{21} + G_{31}G_{23} & 1 & G_{23} + G_{13}G_{21} \\ G_{31} & 0 & 1 \end{vmatrix}$

Example

state $\leftarrow w = G w + B r \longrightarrow$ excitation

measure $\leftarrow y = C w$

From given exc/meas, can we recover the unknown transfer fcts?



5

Outline

1. Context

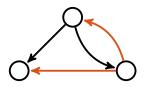
2. Local identifiability

Algebraic condition

3. Decoupled identifiability

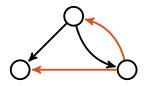
Path-based conditions

4. Future perspectives



Does
$$\underbrace{CTB}_{known} = C (I - G)^{-1} B$$
 admit a unique solution G?

Identifiability is generic



Network *identifiable* if the unknown transfer fcts can be recovered.

Does
$$\underbrace{CTB}_{known} = C (I - G)^{-1} B$$
 admit a unique solution G?

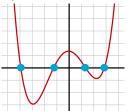
Identifiability is a property of the graph topology.

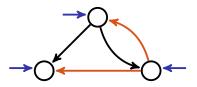
It does almost not depend on parameters G_{ij}.

Identifiability is a generic property. It holds:

- either for almost all parameters G_{ij};
- or for no parameters G_{ij}.

Example: the nonzeroness of a polynomial is generic



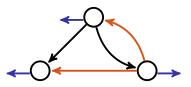


Does
$$\underbrace{CTB}_{known} = C(I-G)^{-1}B$$
 admit a unique solution G?

All nodes excitated: Necessary and sufficient path-based condition i.e. *B* = *I* [Hendrickx, Gevers, Bazanella 2017]

Algo allocating measurements in the graph

[Cheng, Shi, Van den Hof 2019]



Does
$$\underbrace{\mathcal{C} T B}_{\text{known}} = \mathcal{C} (I - G)^{-1} B$$
 admit a unique solution G?

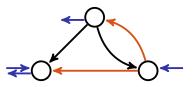
All nodes excitated: Necessary and sufficient path-based condition i.e. B = I [Hendrickx, Gevers, Bazanella 2017]

Algo allocating measurements in the graph

[Cheng, Shi, Van den Hof 2019]

All nodes measured: Dual results

i.e. C = I



Does
$$\underbrace{CTB}_{known} = C (I - G)^{-1} B$$
 admit a unique solution G?

All nodes excitated: Necessary and sufficient path-based condition i.e. B = I [Hendrickx, Gevers, Bazanella 2017]

Algo allocating measurements in the graph

[Cheng, Shi, Van den Hof 2019]

All nodes measured: Dual results

i.e. C = I

General case: Need to linearize

Outline

- 1. Context
- 2. Local identifiability

Algebraic condition

3. Decoupled identifiability

Path-based conditions

4. Future perspectives

From the definition of global identifiability...

Definition: Network globally identifiable at G if for all \tilde{G} :

$$C T(\tilde{G}) B = C T(G) B \Rightarrow \tilde{G} = G$$

... we introduce *local* identifiability

Definition: Network *locally* identifiable at G if for all \tilde{G} on an ϵ -ball:

$$C T(\tilde{G}) B = C T(G) B \Rightarrow \tilde{G} = G$$

Local identifiability is necessary

Definition: Network *locally* identifiable at G if for all \tilde{G} on an ϵ -ball:

 $C T(\tilde{G}) B = C T(G) B \Rightarrow \tilde{G} = G$

- Necessary for global identifiability
- No counter-example to sufficiency known

Algebraic condition

Definition: Network *locally* identifiable at G if for all \tilde{G} on an ϵ -ball:

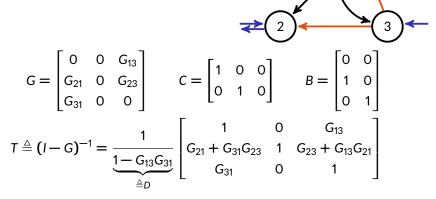
 $C T(\tilde{G}) B = C T(G) B \Rightarrow \tilde{G} = G$

- Necessary for global identifiability
- No counter-example to sufficiency known

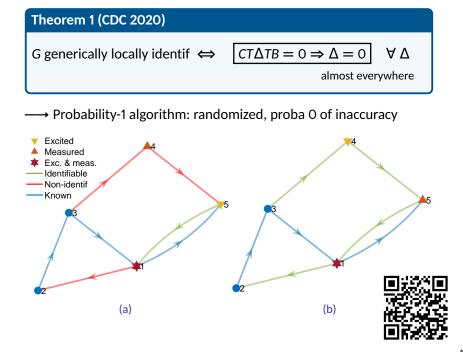
Theorem 1 (CDC 2020)G generically locally identif $CT\Delta TB = 0 \Rightarrow \Delta = 0$

almost everywhere

Example



Theorem 1 (CDC 2020)G generically locally identif $\Box T \Delta TB = 0 \Rightarrow \Delta = 0$ $\forall \Delta$
almost everywhere



Outline

- 1. Context
- 2. Local identifiability
 - Algebraic condition
- 3. Decoupled identifiability
 - Path-based conditions
- 4. Future perspectives

What we have so far

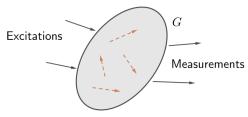
Global identifiability $C\tilde{T}B = CTB \Rightarrow \tilde{G} = G$

∜

Local identifiability

 $CT\Delta TB = 0 \Rightarrow \Delta = 0$

 \rightarrow Graph interpretation?



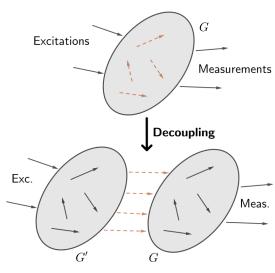
Interpretation on a larger network

Global identifiability $C\tilde{T}B = CTB \Rightarrow \tilde{G} = G$ $\downarrow \downarrow$

Local identifiability

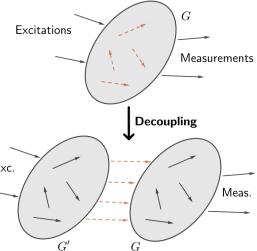
 $CT\Delta TB = 0 \Rightarrow \Delta = 0$

Left graph = right graph?



Decoupled identifiability

Global identifiability $C\tilde{T}B = CTB \Rightarrow \tilde{G} = G$ ╢ Local identifiability $CT\Delta TB = 0 \Rightarrow \Delta = 0$ ╢ Exc. **Decoupled** identifiability $CT\Delta T'B = 0 \Rightarrow \Delta = 0$

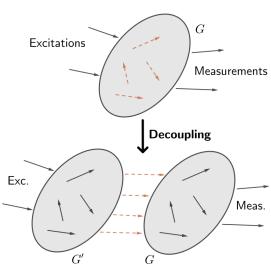


Necessary... and sufficient?

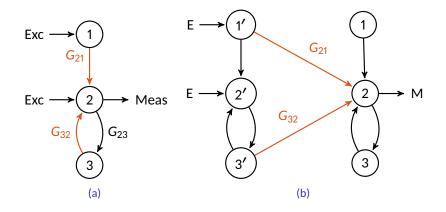
Global identifiability $C\tilde{T}B = CTB \Rightarrow \tilde{G} = G$ ∜ Local identifiability $CT\Delta TB = 0 \Rightarrow \Delta = 0$ ∜ **Decoupled** identifiability $CT\Delta T'B = 0 \Rightarrow \Delta = 0$

No counter-example known

github.com/alegat/identifiable



Basic example



(b) is the decoupled network of (a)

Outline

- 1. Context
- 2. Local identifiability
 - Algebraic condition
- 3. Decoupled identifiability
 - Path-based conditions
- 4. Future perspectives

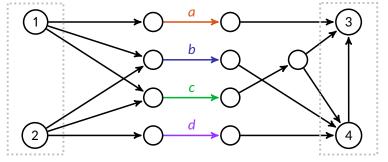
Theorem 1 - CDC 2020

G generically locally identif \Leftrightarrow

$$CT\Delta TB = 0 \Rightarrow \Delta = 0 \quad \forall \Delta$$

almost everywhere

Example:



Excitations \mathcal{B}

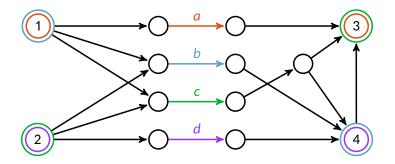
Measurements \mathcal{C}

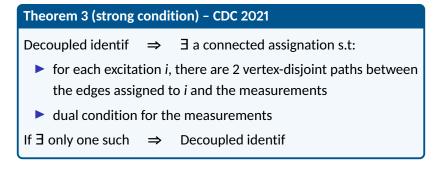
Theorem 2 (weak condition) - CDC 2021

Decoupled identif $\Rightarrow \exists$ a connected bijective assignation \exists only one connected bijective assignation \Rightarrow Decoupled identif

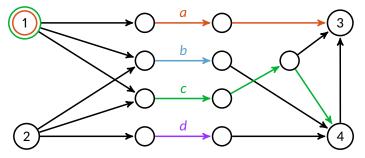
Example of assignation:

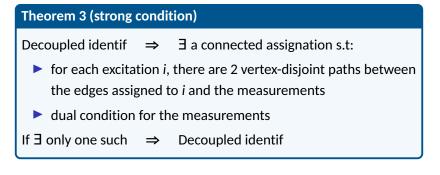
$$a \rightarrow (1, 4), b \rightarrow (1, 3), c \rightarrow (2, 3), d \rightarrow (2, 4)$$



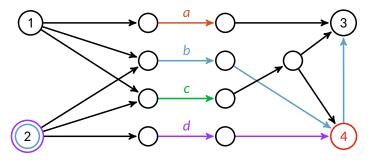


Example: Excitation 1 : OK





Example: Excitation 2 : KO



Theorem 2 (weak condition)

Decoupled identif \Rightarrow \exists a connected *bijective* assignation

 \exists only one connected *bijective* assignation \Rightarrow Decoupled identif

Theorem 3 (strong condition)

Decoupled identif $\Rightarrow \exists$ a connected vertex-disjoint assignation \exists only one connected v-disjoint assignation \Rightarrow Decoupled identif

→ There could be a stronger condition combining Theorems 2 & 3, extending previous results under full excitation/measurement

[Hendrickx, Gevers, Bazanella 2017]

Take-home message

UCLouvain

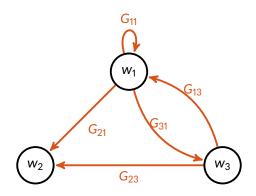
- Introduced decoupled identifiability
 - Necessary for local and global identifiability
 - New: larger graph which decouples excitations and measurements
- Derived path-based necessary conditions which also apply to local and global identifiability
- Whether the sufficient conditions extend as well remains an open question
- There could be a stronger version of our conditions, extending previous results under full excitation/measurement
- Further work: when not all edges are identifiable, obtain a path-based condition for the recovery of some edges

antoine.legat@uclouvain.be
perso.uclouvain.be/antoine.legat

Back-up slides

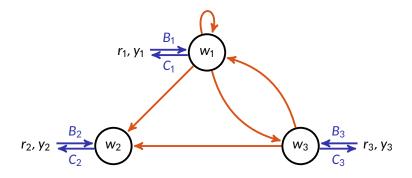
Model

state $\leftarrow w_i(t) = \sum G_{ij}(q) w_j(t)$ q is the shift operator, i.e. $q^{-1}w(t) = w(t-1)$



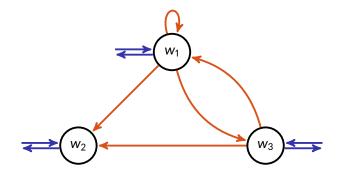
state
$$\leftarrow w_i(t) = \sum_{i} G_{ij}(q) w_j(t) + B_i r_i(t) \longrightarrow excitation$$

measure $\leftarrow y_i(t) = C_i w_i(t)$ $B_i, C_i \in \{0, 1\}$



state
$$\leftarrow w = G w + B r \longrightarrow$$
 excitation
measure $\leftarrow y = C w$

Which nodes to excite/measure to recover the transfer functions? i.e. how to choose *B*, *C* to accurately recover *G*?

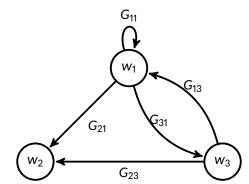


Transfer functions that can be recovered are identifiable

Network topology is defined by the nonzero entries of *G*, and is assumed to be known (often the case).

$$G = \begin{bmatrix} G_{11} & 0 & G_{13} \\ G_{21} & 0 & G_{23} \\ G_{31} & 0 & 0 \end{bmatrix}$$

Theorem: *Identifiability* is a generic property of *network topology*: it only depends^{*} on the structure of *G*, but not on its parameters *G*_{ij}.



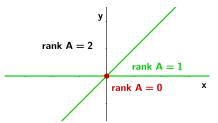
Genericity

- A generic property holds everywhere except possibly on a lower-dimensional set.
- A lower-dimensional set has <u>Lebesgue-measure zero</u>

 \rightarrow 0-probability of falling in this set when sampling randomly **Example:** The matrix

$$A = \begin{bmatrix} x & 0 \\ 0 & x - y \end{bmatrix}$$

has generic rank 2. Its rank drops on $\{x = 0\} \cup \{x = y\}$.



Identifiability is generic – example

Global input-output transfer function:

$$CTB \triangleq C(I-G)^{-1}B = \begin{pmatrix} G_{42}G_{21} + G_{43}G_{31} & G_{42} & G_{43} & 1 & 0 \\ G_{52}G_{21} + G_{53}G_{31} & G_{52} & G_{53} & 0 & 1 \end{pmatrix}$$
$$\Rightarrow G_{42}, G_{43}, G_{52}, G_{53} \text{ identif, and } \begin{pmatrix} G_{42} & G_{43} \\ G_{52} & G_{53} \end{pmatrix} \begin{pmatrix} G_{21} \\ G_{31} \end{pmatrix} = \begin{pmatrix} T_{41} \\ T_{51} \end{pmatrix}$$

 \Rightarrow G₂₁, G₃₁ identifiable except when G₄₂G₅₃ + G₄₃G₅₂ = 0.

