Local network identifiability: Path conditions

Antoine Legat and Julien M. Hendrickx
Benelux meeting 2023

Neuroscience [Chiêm et al. 2021]
Power grids

Physiological models [Christie et al. 2014]

Excitations \longrightarrow

\longrightarrow Measurements

From given exc/meas, can we recover the unknown transfer fcts?
i.e. From r at B and y at C, can we recover the unknown $G_{i j}$?

Assumptions: Network topology is known
Not all nodes are excited/measured
Global transfer matrix $C \underbrace{(I-G)^{-1}}_{T(G)} B$ is known

From given exc/meas, can we recover the unknown transfer fcts?

Assumption: Global transfer matrix $C \underbrace{(I-G)^{-1}}_{T(G)} B$ is known

$$
\begin{gathered}
G=\left[\begin{array}{ccc}
0 & 0 & G_{13} \\
G_{21} & 0 & G_{23} \\
G_{31} & 0 & 0
\end{array}\right] \quad C=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right] \quad B=\left[\begin{array}{ll}
0 & 0 \\
1 & 0 \\
0 & 1
\end{array}\right] \\
T \triangleq(I-G)^{-1}=\frac{1}{1-G_{13} G_{31}}\left[\begin{array}{ccc}
1 & 0 & G_{13} \\
G_{21}+G_{31} G_{23} & 1 & G_{23}+G_{13} G_{21} \\
G_{31} & 0 & 1
\end{array}\right]
\end{gathered}
$$

From given exc/meas, can we recover the unknown transfer fcts?

Assumption: Global transfer matrix $C \underbrace{(I-G)^{-1}}_{T(G)} B$ is known

$$
\begin{aligned}
& G= {\left[\begin{array}{ccc}
0 & 0 & G_{13} \\
G_{21} & 0 & G_{23} \\
G_{31} & 0 & 0
\end{array}\right] \quad C=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right] \quad B=\left[\begin{array}{ll}
0 & 0 \\
1 & 0 \\
0 & 1
\end{array}\right] } \\
& C T B=\frac{1}{1-G_{13} G_{31}}\left[\begin{array}{ccc}
1 & 0 & G_{13} \\
G_{21}+G_{21} & 1 & G_{23}+G_{13} G_{21}
\end{array}\right]
\end{aligned}
$$

Outline

1. Context

2. Local identifiability

- Algebraic condition

3. Decoupled identifiability

- Path-based conditions

4. Future perspectives

Identifiability

Network identifiable if the unknown transfer fcts can be recovered.

$$
\text { Does } \underbrace{C T B}_{\text {known }}=C(I-G)^{-1} B \text { admit a unique solution } G \text { ? }
$$

Identifiability is generic

Network identifiable if the unknown transfer fcts can be recovered.

$$
\text { Does } \underbrace{C T B}_{\text {known }}=C(I-G)^{-1} B \text { admit a unique solution } G \text { ? }
$$

Identifiability is a property of the graph topology. It does almost not depend on parameters $G_{i j}$.

Identifiability is a generic property. It holds:

- either for almost all parameters $G_{i j}$;
- or for no parameters $G_{i j}$.

Example: the nonzeroness of a polynomial is generic

State of the Art

Network identifiable if the unknown transfer fcts can be recovered.

$$
\text { Does } \underbrace{C T B}_{\text {known }}=C(I-G)^{-1} B \text { admit a unique solution } G \text { ? }
$$

All nodes excitated: Necessary and sufficient path-based condition i.e. $B=1$
[Hendrickx, Gevers, Bazanella 2017]
Algo allocating measurements in the graph
[Cheng, Shi, Van den Hof 2019]

Network identifiable if the unknown transfer fcts can be recovered.

Does $\underbrace{\ell T B}_{\text {known }}=\ell(I-G)^{-1} B$ admit a unique solution G ?

All nodes excitated: Necessary and sufficient path-based condition
i.e. $B=1$
[Hendrickx, Gevers, Bazanella 2017]
Algo allocating measurements in the graph
[Cheng, Shi, Van den Hof 2019]
All nodes measured: Dual results
i.e. $C=1$

Network identifiable if the unknown transfer fcts can be recovered.

$$
\text { Does } \underbrace{C T B}_{\text {known }}=C(I-G)^{-1} B \text { admit a unique solution } G \text { ? }
$$

All nodes excitated: Necessary and sufficient path-based condition

$$
\text { i.e. } B=I \quad \text { [Hendrickx, Gevers, Bazanella 2017] }
$$

Algo allocating measurements in the graph
[Cheng, Shi, Van den Hof 2019]
All nodes measured: Dual results

$$
\text { i.e. } C=1
$$

General case: Need to linearize

Outline

1. Context
2. Local identifiability

- Algebraic condition

3. Decoupled identifiability

- Path-based conditions

4. Future perspectives

From the definition of global identifiability...

Definition: Network globally identifiable at G if for all \tilde{G} :

$$
C T(\tilde{G}) B=C T(G) B \Rightarrow \tilde{G}=G
$$

... we introduce local identifiability
Definition: Network locally identifiable at G if for all \tilde{G} on an ϵ-ball:

$$
C T(\tilde{G}) B=C T(G) B \Rightarrow \tilde{G}=G
$$

Local identifiability is necessary

Definition: Network locally identifiable at G if for all \tilde{G} on an ϵ-ball:

$$
C T(\tilde{G}) B=C T(G) B \Rightarrow \tilde{G}=G
$$

- Necessary for global identifiability

- No counter-example to sufficiency known

Algebraic condition

Definition: Network locally identifiable at G if for all \tilde{G} on an ϵ-ball:

$$
C T(\tilde{G}) B=C T(G) B \Rightarrow \tilde{G}=G
$$

- Necessary for global identifiability

- No counter-example to sufficiency known

Theorem 1 (CDC 2020)

G generically locally identif \Leftrightarrow| $C T \Delta T B=0 \Rightarrow \Delta=0$ |
| ---: |$\forall \Delta$

Example

$$
\begin{gathered}
G=\left[\begin{array}{ccc}
0 & 0 & G_{13} \\
G_{21} & 0 & G_{23} \\
G_{31} & 0 & 0
\end{array}\right] \quad C=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right] \quad B=\left[\begin{array}{ll}
0 & 0 \\
1 & 0 \\
0 & 1
\end{array}\right] \\
T \triangleq(I-G)^{-1}=\underbrace{\frac{1}{1-G_{13} G_{31}}}_{\triangleq D}\left[\begin{array}{ccc}
1 & 0 & G_{13} \\
G_{21}+G_{31} G_{23} & 1 & G_{23}+G_{13} G_{21} \\
G_{31} & 0 & 1
\end{array}\right]
\end{gathered}
$$

Theorem 1 (CDC 2020)

G generically locally identif \Leftrightarrow| $C T \Delta T B=0 \Rightarrow \Delta=0$ |
| ---: |$\forall \Delta$

Theorem 1 (CDC 2020)

> G generically locally identif $\Leftrightarrow \quad$| > $C T \Delta T B=0 \Rightarrow \Delta=0$ > |
| :---: |$\forall \Delta$

\longrightarrow Probability-1 algorithm: randomized, proba 0 of inaccuracy

Outline

1. Context
2. Local identifiability

- Algebraic condition

3. Decoupled identifiability

- Path-based conditions

4. Future perspectives

What we have so far

Global identifiability
$C \tilde{T} B=C T B \Rightarrow \tilde{G}=G$
\Downarrow
Local identifiability
$C T \Delta T B=0 \Rightarrow \Delta=0$
\rightarrow Graph interpretation?

Interpretation on a larger network

Global identifiability
$C \tilde{T} B=C T B \Rightarrow \tilde{G}=G$
\Downarrow
Local identifiability
$C T \Delta T B=0 \Rightarrow \Delta=0$

Left graph = right graph?

Decoupled identifiability

Global identifiability
$C \tilde{T} B=C T B \Rightarrow \tilde{G}=G$
\Downarrow
Local identifiability
CT $\Delta T B=0 \Rightarrow \Delta=0$
\Downarrow
Decoupled identifiability
$C T \Delta T^{\prime} B=0 \Rightarrow \Delta=0$

Necessary... and sufficient?

Global identifiability $C \tilde{T} B=C T B \Rightarrow \tilde{G}=G$ $\Downarrow \quad \Uparrow ?$

Local identifiability $C T \Delta T B=0 \Rightarrow \Delta=0$

$$
\Downarrow \quad \Uparrow ?
$$

Decoupled identifiability
$C T \Delta T^{\prime} B=0 \Rightarrow \Delta=0$

No counter-example known

github.com/alegat/identifiable

Basic example

(b) is the decoupled network of (a)

Outline

1. Context
2. Local identifiability

- Algebraic condition

3. Decoupled identifiability

- Path-based conditions

4. Future perspectives

Theorem 1-CDC 2020

$$
\text { G generically locally identif } \Leftrightarrow \begin{array}{|c}
\hline C T \Delta T B=0 \Rightarrow \Delta=0 \\
\text { almost everywhere }
\end{array} \forall \Delta
$$

Example:

Theorem 2 (weak condition) - CDC 2021

Decoupled identif $\Rightarrow \exists$ a connected bijective assignation

\exists only one connected bijective assignation \Rightarrow Decoupled identif

Example of assignation:

$$
a \rightarrow(1,4), b \rightarrow(1,3), c \rightarrow(2,3), d \rightarrow(2,4)
$$

Theorem 3 (strong condition) - CDC 2021

Decoupled identif $\Rightarrow \exists$ a connected assignation s.t:

- for each excitation i, there are 2 vertex-disjoint paths between the edges assigned to i and the measurements
- dual condition for the measurements

If \exists only one such $\quad \Rightarrow$ Decoupled identif

Example: Excitation 1 : OK

Theorem 3 (strong condition)

Decoupled identif $\quad \Rightarrow \quad \exists$ a connected assignation s.t:

- for each excitation i, there are 2 vertex-disjoint paths between the edges assigned to i and the measurements
- dual condition for the measurements

If \exists only one such $\quad \Rightarrow$ Decoupled identif

Example: Excitation 2 : KO

Theorem 2 (weak condition)

Decoupled identif $\Rightarrow \exists$ a connected bijective assignation
\exists only one connected bijective assignation \Rightarrow Decoupled identif

Theorem 3 (strong condition)

Decoupled identif $\Rightarrow \exists$ a connected vertex-disjoint assignation \exists only one connected v-disjoint assignation \Rightarrow Decoupled identif
\longrightarrow There could be a stronger condition combining Theorems $2 \& 3$, extending previous results under full excitation/measurement

Take-home message

- Introduced decoupled identifiability
- Necessary for local and global identifiability
- New: larger graph which decouples excitations and measurements
- Derived path-based necessary conditions which also apply to local and global identifiability
- Whether the sufficient conditions extend as well remains an open question
- There could be a stronger version of our conditions, extending previous results under full excitation/measurement
- Further work: when not all edges are identifiable, obtain a path-based condition for the recovery of some edges

```
antoine.legat@uclouvain.be
perso.uclouvain.be/antoine.legat
```


Back-up slides

Model

state $\longleftarrow w_{i}(t)=\sum G_{i j}(q) w_{j}(t)$ q is the shift operator, i.e. $q^{-1} w(t)=w(t-1)$

$$
\begin{aligned}
\text { state } \longleftarrow w & =G w+B r \longrightarrow \text { excitation } \\
\text { measure } \longleftarrow y & =C w
\end{aligned}
$$

Which nodes to excite/measure to recover the transfer functions?
i.e. how to choose B, C to accurately recover G ?

Transfer functions that can be recovered are identifiable

Network topology is defined by the nonzero entries of G, and is assumed to be known (often the case).

$$
G=\left[\begin{array}{ccc}
G_{11} & 0 & G_{13} \\
G_{21} & 0 & G_{23} \\
G_{31} & 0 & 0
\end{array}\right]
$$

Theorem: Identifiability is a generic property of network topology: it only depends* on the structure of G, but not on its parameters $G_{i j}$.

Genericity

- A generic property holds everywhere except possibly on a lower-dimensional set.
- A lower-dimensional set has Lebesgue-measure zero
$\rightarrow 0$-probability of falling in this set when sampling randomly
Example: The matrix

$$
A=\left[\begin{array}{cc}
x & 0 \\
0 & x-y
\end{array}\right]
$$

has generic rank 2. Its rank drops on $\{x=0\} \cup\{x=y\}$.

Identifiability is generic - example

Global input-output transfer function:

$$
\left.\begin{array}{rl}
C T B & \triangleq(I-G)^{-1} B=\left(\begin{array}{llll}
G_{42} G_{21}+G_{43} G_{31} & G_{42} & G_{43} & 1
\end{array} 0\right. \\
G_{52} G_{21}+G_{53} G_{31} & G_{52} \\
G_{53} & 0
\end{array} 1\right), ~\left(\begin{array}{ll}
G_{42} & G_{43} \\
G_{52} & G_{53}
\end{array}\right)\binom{G_{21}}{G_{31}}=\binom{T_{41}}{T_{51}} .
$$

$\Rightarrow G_{21}, G_{31}$ identifiable except when $G_{42} G_{53}+G_{43} G_{52}=0$.

