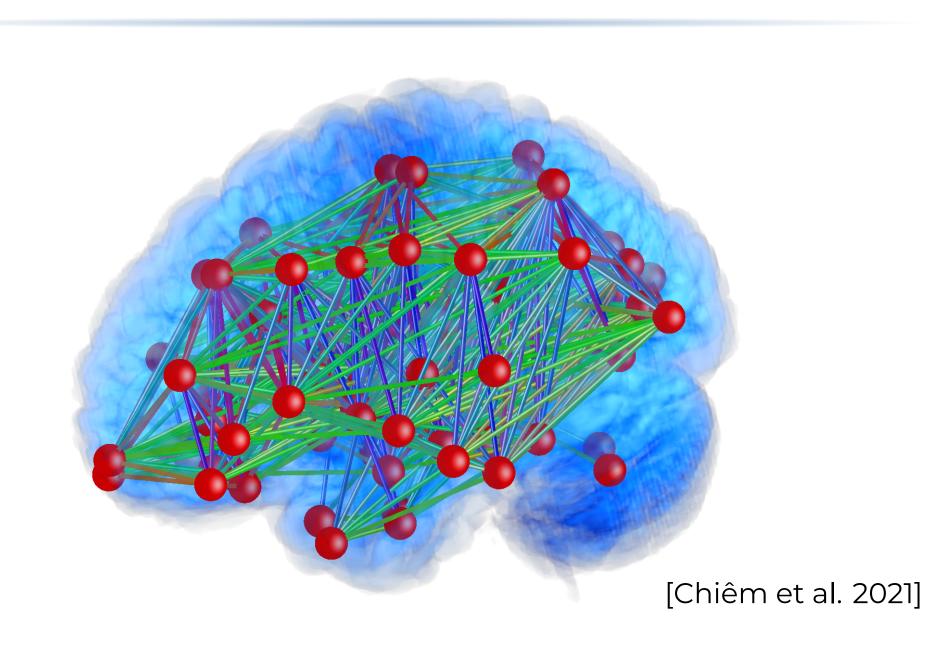


Institute of Information and Communication Technologies, Electronics and Applied Mathematics

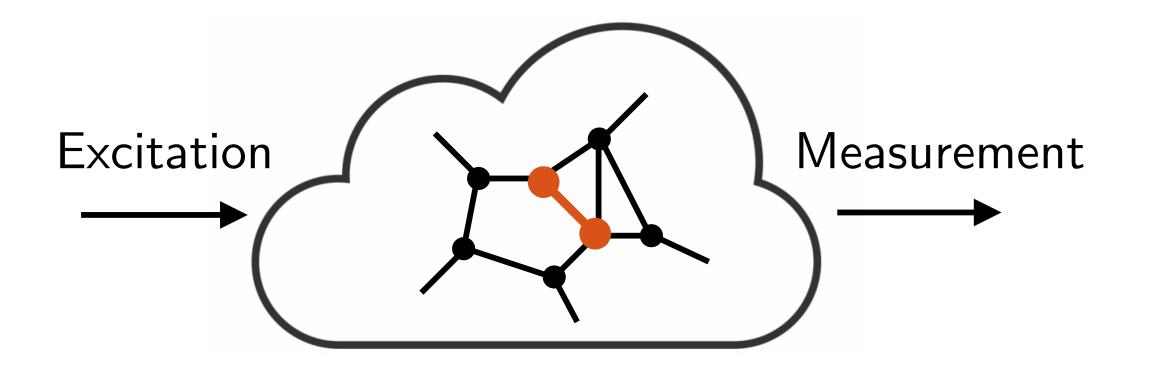
Conditions for Local Network Identifiability

Antoine Legat, Julien M. Hendrickx ICTEAM (UCLouvain)

Motivation



- Neuroscience
- Social networks
- Smart grid
- ...

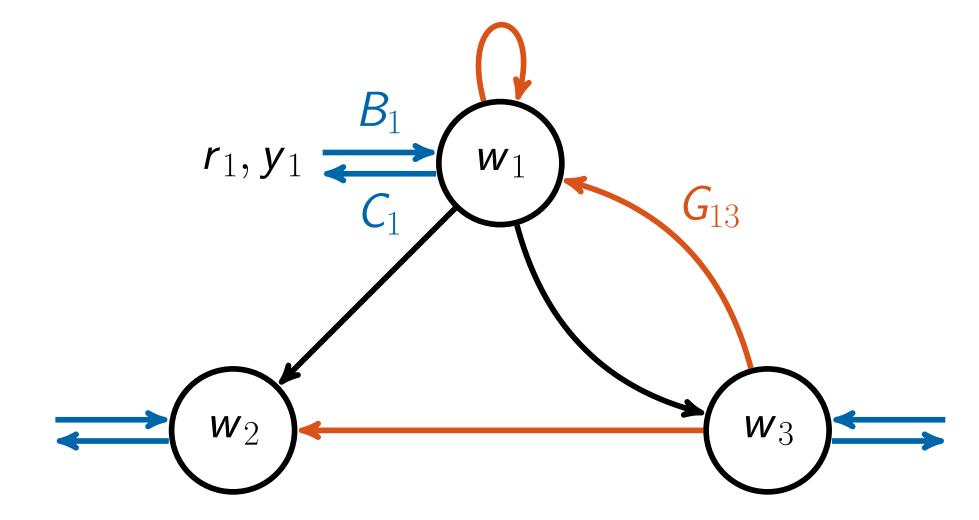


Model

state $\longleftarrow w = G w + B r \longrightarrow \text{excitation}$ measure $\longleftarrow y = C w$

From given excitations/measurements, which unknown transfer functions can be recovered?

i.e. From r at B and y at C, which unknown G_{ij} can be recovered?



Transfer functions that can be recovered are *identifiable*.

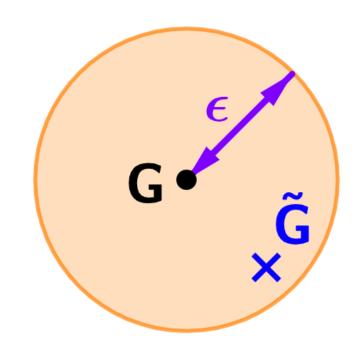
Assumptions:

- Network topology is known
- Global matrix $CT(G)B = C(I G)^{-1}B$ known
- Not all nodes are excited/measured

Local identifiability

Definition: Transfer fct (i,j) *locally* identifiable at G if for all compatible G on an e-ball,

$$\underbrace{CT(G)B}_{f(G)} = CT(\widetilde{G})B \Rightarrow G_{ij} = \widetilde{G}_{ij}$$



Generically if it holds for almost all G.

- Necessary for generic identifiability
- No counter-ex to sufficiency known

Identifiability as the injectivity of f:

$$f(G) = f(\tilde{G}) \Rightarrow G_{ij} = \tilde{G}_{ij}$$

Algebraic edge condition

Intuition Local injectivity should rely on ∇f

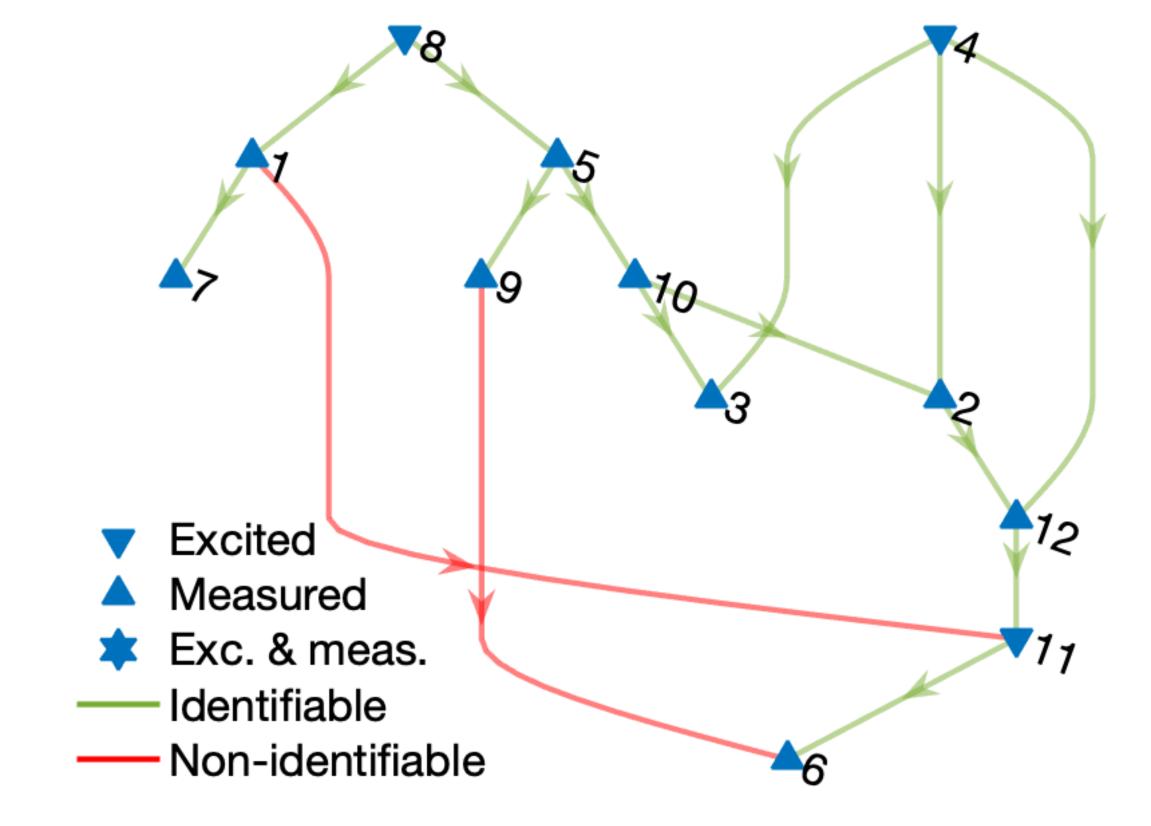
Correct if ∇f has constant rank, which is the case generically.

Theorem [1]

 G_{ij} generically locally identif

 $\ker \nabla f \perp \mathbf{e}_{ij}$ for almost all G \updownarrow $CT\Delta TB = 0 \Rightarrow \Delta = 0$ for almost all G

— Randomized probability-lalgorithm: github.com/alegat/identifiable



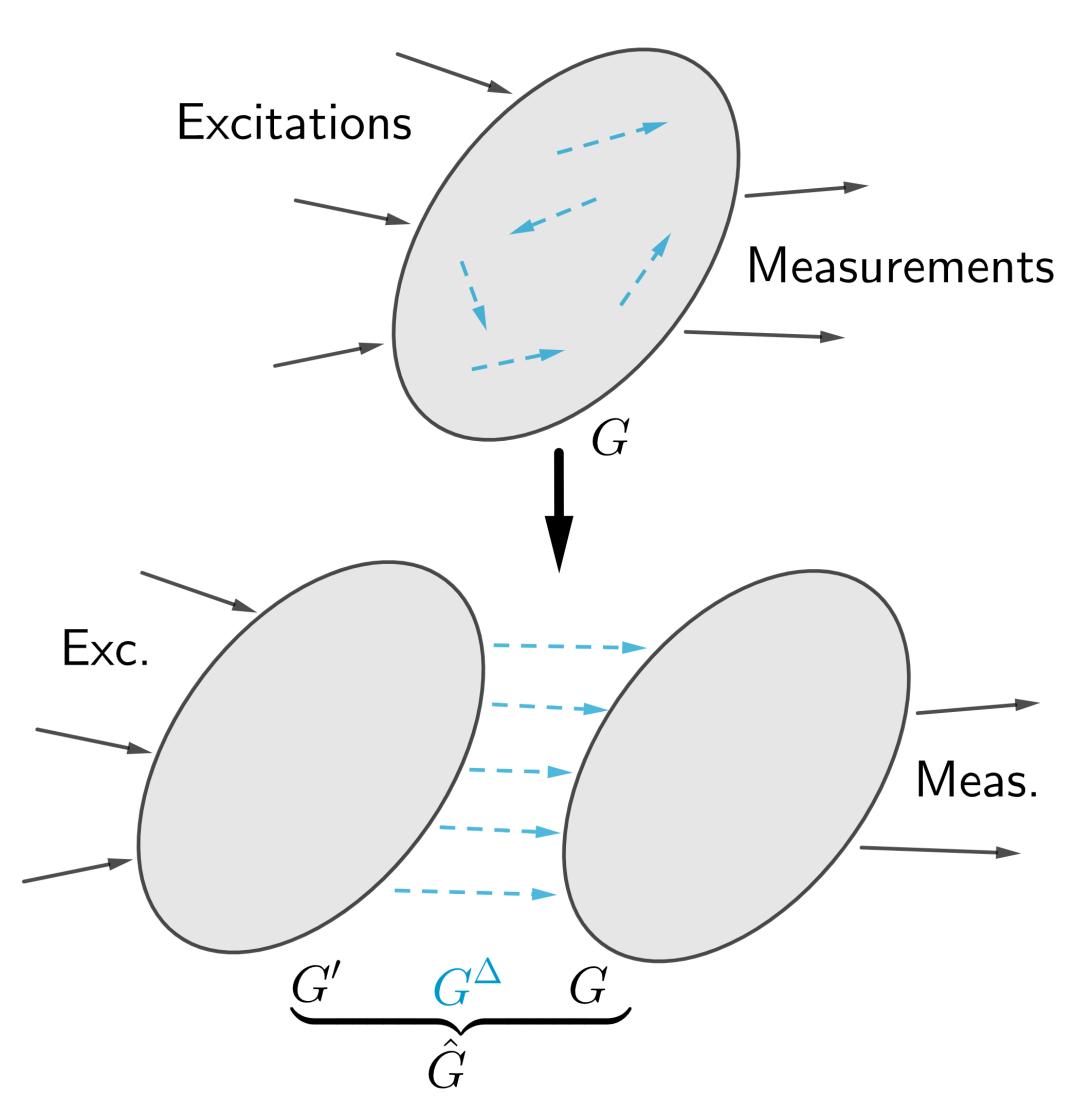
References

- [1] Antoine Legat and Julien M Hendrickx. "Local network identifiability with partial excitation and measurement". In: 2020 59th IEEE CDC.
- [2] Antoine Legat and Julien M Hendrickx. "Pathbased conditions for local network identifiability". In: 2021 60th IEEE CDC.

Decoupled identifiability

Definition: Network decoupled-identifiable at (G,G') if for all compatible Δ ,

$$CT\Delta T'B = 0 \Rightarrow \Delta = 0$$



Generic decoupled-identifiability is:

- Necessary for generic (local) identif.
- No counter-ex to sufficiency known
- Equivalent to generic identifiability of decoupled network \hat{G}

Graph network condition

An assignation σ assigns to each unknown edge an (excitation, measurement) pair.

Theorem [2]

If G is generic decoupled-identifiable, there is at least one assignation σ s.t:

- $|\mathcal{C}|$ edges assigned to each excitation
- $|\mathcal{B}|$ edges assigned to each measure
- σ is connected
- for each excitation b, there are $|\mathcal{C}|$ vertex-disjoint paths between the edges assigned to b and measures \mathcal{C}
- 5 for each measure c, there are $|\mathcal{B}|$ vertex-disjoint paths between the edges assigned to c and measures \mathcal{B}

If there is only one such assignation, then this condition is also sufficient.

