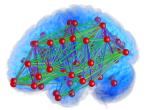
Algebraic and Path-Based Conditions for Local Network Identifiability

Antoine Legat and Julien M. Hendrickx MTNS 2022

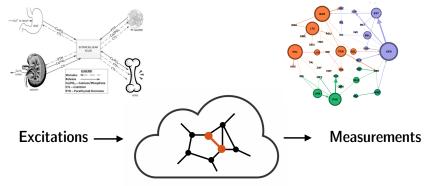
Neuroscience [Chiêm et al. 2021]



Physiological models [Christie et al. 2014]

Power grids

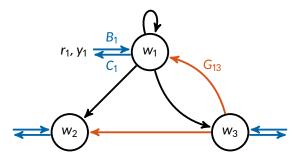
Stock market [Shahzad et al. 2018]



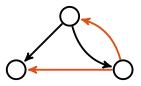
state $\leftarrow w = G w + B r \longrightarrow$ excitation Model measure $\leftarrow y = C w$

From given exc/meas, can we recover the unknown transfer fcts?

i.e. From r at B and y at C, can we recover the unknown G_{ij}?

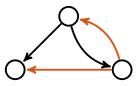


Assumptions: Network topology is known otherwise: [van Waarde et al. 2019] Not all nodes are excited/measured Global transfer matrix $C \underbrace{(I-G)^{-1}}_{T(G)} B$ is known



Network identifiable if the unknown transfer fcts can be recovered.

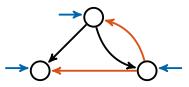
Does
$$\underbrace{CTB}_{known} = C (I - G)^{-1} B$$
 admit a unique solution G?



Network *identifiable* if the unknown transfer fcts can be recovered.

Does
$$\underbrace{CTB}_{known} = C(I-G)^{-1}B$$
 admit a unique solution G?

Identifiability is a property of the *graph topology*. It does *not* depend on the problem parameters.



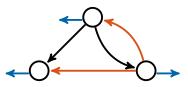
Network *identifiable* if the unknown transfer fcts can be recovered.

Does
$$\underbrace{CTB}_{known} = C(I - G)^{-1}B$$
 admit a unique solution G?

All nodes excitated: Necessary and sufficient path-based condition i.e. *B* = *I* [Hendrickx, Gevers, Bazanella 2017]

Algo allocating measurements in the graph

[Cheng, Shi, Van den Hof 2019]



Network *identifiable* if the unknown transfer fcts can be recovered.

Does
$$\mathcal{L} T B = \mathcal{L} (I - G)^{-1} B$$
 admit a unique solution G?

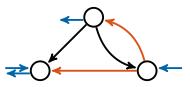
All nodes excitated: Necessary and sufficient path-based condition i.e. *B* = *I* [Hendrickx, Gevers, Bazanella 2017]

Algo allocating measurements in the graph

[Cheng, Shi, Van den Hof 2019]

All nodes measured: Dual results

i.e. C = I



Network *identifiable* if the unknown transfer fcts can be recovered.

Does
$$\underbrace{CTB}_{known} = C(I - G)^{-1} B$$
 admit a unique solution G?

All nodes excitated: Necessary and sufficient path-based condition i.e. *B* = *I* [Hendrickx, Gevers, Bazanella 2017]

Algo allocating measurements in the graph

[Cheng, Shi, Van den Hof 2019]

All nodes measured: Dual results

i.e. C = I

General case: Need to linearize

From the definition of identifiability...

Definition: Network identifiable at G if for all \tilde{G} :

$$C T(\tilde{G}) B = C T(G) B \Rightarrow \tilde{G} = G$$

Network generically identifiable if it holds at almost¹ all G.

¹except possibly on a lower-dimensional set

... we introduce *local* identifiability

Definition: Network *locally* identifiable at G if for all \tilde{G} on an ϵ -ball:

$$C T(\tilde{G}) B = C T(G) B \Rightarrow \tilde{G} = G$$

Network generically locally identifiable if it holds at almost all G.

... we introduce *local* identifiability

Definition: Network *locally* identifiable at G if for all \tilde{G} on an ϵ -ball:

$$C T(\tilde{G}) B = C T(G) B \Rightarrow \tilde{G} = G$$

Network generically locally identifiable if it holds at almost all G.

- Necessary for generic identifiability
- No counter-example to sufficiency known

... we introduce *local* identifiability

Definition: Network *locally* identifiable at G if for all \tilde{G} on an ϵ -ball:

$$C T(\tilde{G}) B = C T(G) B \Rightarrow \tilde{G} = G$$

Network generically locally identifiable if it holds at almost all G.

• No counter-example to sufficiency known

Theorem 1

G generically locally identif \Leftrightarrow

$$CT\Delta TB = 0 \Rightarrow \Delta =$$

Outline

- 1. Definition of decoupled identifiability (necessary) Allows a novel approach based on a larger graph
- 2. Ingredients for our path-based condition
- 3. Path-based necessary condition and a sufficient one

From Theorem 1 ...

Generic	Network G	
identifiable	$C\tilde{T}B = CTB \Rightarrow \tilde{G} = G$	
	↓	
local identif	$CT\Delta TB = 0 \Rightarrow \Delta = 0$	
	Exc. Meas.	

... we introduce decoupled identifiability

Generic	Network G	
identifiable	$C\tilde{T}B = CTB \Rightarrow \tilde{G} = G$	
	₩	
local identif	$CT\Delta TB = 0 \Rightarrow \Delta = 0$	
	₩	
decoupled-	$CT\Delta T'B = 0 \Rightarrow \Delta = 0$	
identif		
	Exc.	
	Meas.	
	G	

... and the decoupled network

Generic	Network G	Decoupled network
identifiable	$C\tilde{T}B = CTB \Rightarrow \tilde{G} = G$	$CT\Delta T'B = 0 \Rightarrow \Delta = 0$
	Ų ↓	
local identif	$CT\Delta TB = 0 \Rightarrow \Delta = 0$	
	Ų ↓	
decoupled-	$CT\Delta T'B = 0 \Rightarrow \Delta = 0$	
identif		
	Exc. G	Exc. G' G

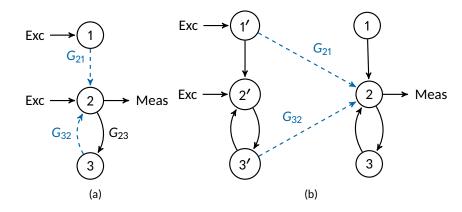
Necessary... and sufficient?

-

Generic	Network G	
identifiable	$CTB = C\tilde{T}B \Rightarrow G = \tilde{G}$	
	↓ <u>↑</u>?	No counter-ex known
local identif	$CT\Delta TB = 0 \Rightarrow \Delta = 0$	
	↓ <u>↑</u> ?	No counter-ex known
decoupled-	$CT\Delta T'B = 0 \Rightarrow \Delta = 0$	(10 ⁶ systematic trials)
identif		
	Exc. Meas.	
		github.com/alegat/identifiable

17

Basic example



- (a): Unknowns in dashed blue
- (b): Decoupled network: unknowns in the middle

Outline

- 1. Definition of decoupled identifiability (necessary) Allows a novel approach based on a larger graph
- 2. Ingredients for our path-based condition
- 3. Path-based necessary condition and a sufficient one

Ingredient 1: assignations

Theorem 1 can be formulated as a determinant, which can be expressed as the sum over all *assignations*:

 σ : unknown edges \rightarrow (excitation, measurement)

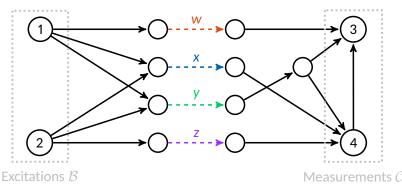
Reminder:

Ingredient 1: assignations

Theorem 1 can be formulated as a determinant, which can be expressed as the sum over all *assignations*:

 σ : unknown edges \rightarrow (excitation, measurement)

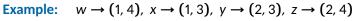
Example:

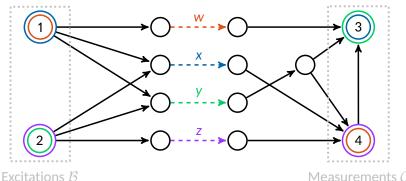


Ingredient 1: assignations

Theorem 1 can be formulated as a determinant, which can be expressed as the sum over all *assignations*:

 σ : unknown edges \rightarrow (excitation, measurement)



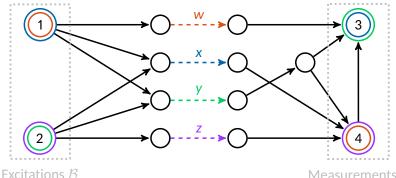


Ingredient 2: connected assignations

 σ : unknown edges \rightarrow (excitation, measurement)

 σ is *connected* if for each unknown edge, there is a path from its assigned exc. to its assigned meas., including the unknown edge.

Example: $w \to (1, 4), x \to (1, 3), y \to (2, 3), z \to (2, 4)$



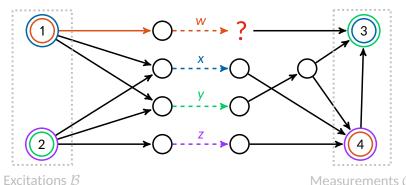
Measurements C_{23}

Ingredient 2: connected assignations

 σ : unknown edges \rightarrow (excitation, measurement)

 σ is *connected* if for each unknown edge, there is a path from its assigned exc. to its assigned meas., including the unknown edge.

Example: $w \rightarrow (1, 4), x \rightarrow (1, 3), y \rightarrow (2, 3), z \rightarrow (2, 4)$ KO

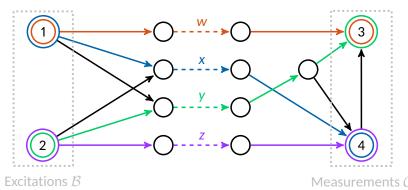


Ingredient 2: connected assignations

 σ : unknown edges \rightarrow (excitation, measurement)

 σ is *connected* if for each unknown edge, there is a path from its assigned exc. to its assigned meas., including the unknown edge.

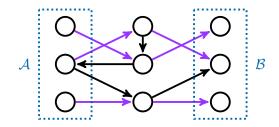
Example: $w \to (1, 3), x \to (1, 4), y \to (2, 3), z \to (2, 4)$ OK



Ingredient 3: vertex-disjoint paths

Theorem 1 can be formulated in terms of generic rank of T.

The generic rank of a matrix *T* between two sets A and B equals the max number of vertex-disjoint paths from A to B.



3 v-d paths

Outline

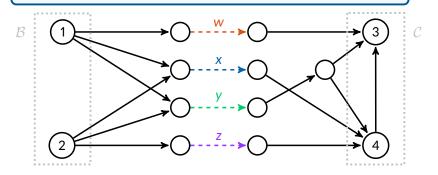
- 1. Definition of decoupled identifiability (necessary) Allows a novel approach based on a larger graph
- 2. Ingredients for our path-based condition
- 3. Path-based necessary condition and a sufficient one

If a network is generically decoupled-identifiable, then there is at least one connected assignation σ such that:

- For each excitation b,
 - (a) |C| unknown edges are assigned to b

(b) there are |C| vertex-disjoint paths between the edges assigned to b and the measurements C.

• For each measurement, dual of (a) and (b) with \mathcal{B} .

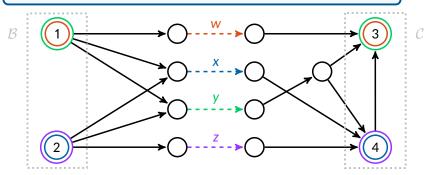


If a network is generically decoupled-identifiable, then there is at least one connected assignation σ such that:

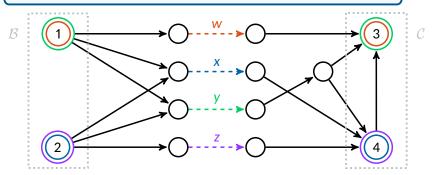
- For each excitation b,
 - (a) |C| unknown edges are assigned to b

(b) there are |C| vertex-disjoint paths between the edges assigned to b and the measurements C.

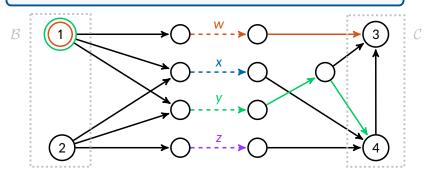
• For each measurement, dual of (a) and (b) with \mathcal{B} .



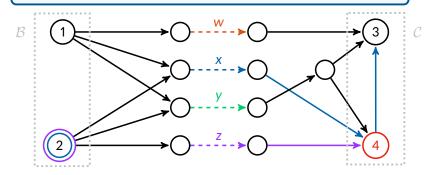
- For each excitation b,
 - (a) $|\mathcal{C}|$ unknown edges are assigned to $b \longrightarrow OK$
 - (b) there are |C| vertex-disjoint paths between the edges assigned to b and the measurements C.
- For each measurement, dual of (a) and (b) with \mathcal{B} .



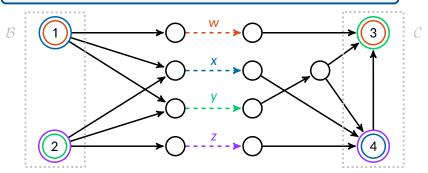
- For each excitation b,
 - (a) $|\mathcal{C}|$ unknown edges are assigned to $b \longrightarrow OK$
 - (b) there are |C| vertex-disjoint paths between the edges assigned to b and the measurements C.
- For each measurement, dual of (a) and (b) with \mathcal{B} .



- For each excitation b,
 - (a) $|\mathcal{C}|$ unknown edges are assigned to $b \longrightarrow OK$
 - (b) there are |C| vertex-disjoint paths between the edges assigned to *b* and the measurements $C \longrightarrow KO$
- For each measurement, dual of (a) and (b) with \mathcal{B} .



- For each excitation b,
 - (a) $|\mathcal{C}|$ unknown edges are assigned to $b \longrightarrow OK$
 - (b) there are |C| vertex-disjoint paths between the edges assigned to *b* and the measurements $C \longrightarrow OK$
- For each measurement, dual of (a) and (b) with $\mathcal{B} \longrightarrow \mathsf{OK}$



If a network is generically decoupled-identifiable, then there is at least one connected assignation σ such that:

- For each excitation b,
 - (a) |C| unknown edges are assigned to b
 - (b) there are |C| vertex-disjoint paths between the edges assigned to b and the measurements C
- For each measurement, dual of (a) and (b) with ${\cal B}$

This condition is also *necessary* for generic (*local*) *identifiability* since:

Generic identif \Rightarrow Generic local identif \Rightarrow Generic decoupled-identif

A necessary condition and a sufficient one

Theorem 2

If a network is generically decoupled-identifiable, then there is at least one connected assignation σ such that:

- For each excitation b,
 - (a) |C| unknown edges are assigned to b
 - (b) there are |C| vertex-disjoint paths between the edges assigned to b and the measurements C
- For each measurement, dual of (a) and (b) with $\ensuremath{\mathcal{B}}$

If there is only one such assignation, then this condition is also sufficient for generic decoupled identifiability.

If a network is generically decoupled-identifiable, then there is at least one connected assignation σ such that:

- For each excitation b,
 - (a) |C| unknown edges are assigned to b
 - (b) there are |C| vertex-disjoint paths between the edges assigned to b and the measurements C
- For each measurement, dual of (a) and (b) with $\ensuremath{\mathcal{B}}$

If there is only one such assignation, then this condition is also sufficient for generic decoupled identifiability.

- *σ* is *not necessarily bijective*: two unknown edges can be assigned to the same (excitation, measurement) pair
- The vertex-disjoint paths of condition (b) do not necessarily match the assigned measurements.
- \rightarrow There could be a stronger version of Theorem 2.

Take-home message

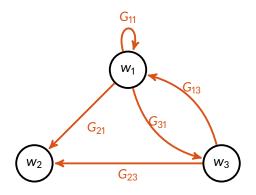
CLouvain

- Introduced generic *decoupled*-identifiability,
 - Necessary for generic (local) identifiability
 - New: larger graph which decouples excitations and measures
- Derived a *path-based necessary condition* which also applies to generic (local) identifiability
- Whether the sufficient condition extends as well remains an open question
- There *could be a stronger version* of our theorem, extending previous results under full excitation/measurement
- Further work: when not all edges are identifiable, obtain a path-based condition for the recovery of some edges

antoine.legat@uclouvain.be

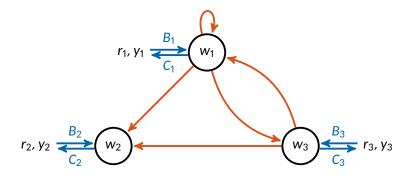
Back-up slides

Model



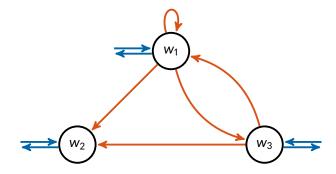
state
$$\leftarrow w_i(t) = \sum_{i=1}^{n} G_{ij}(q) w_j(t) + B_i r_i(t) \longrightarrow excitation$$

measure $\leftarrow y_i(t) = C_i w_i(t)$
 $B_i, C_i \in \{0, 1\}$



state
$$\leftarrow w = G w + B r \longrightarrow$$
 excitation
measure $\leftarrow y = C w$

Which nodes to excite/measure to recover the transfer functions? i.e. how to choose *B*, *C* to accurately recover *G*?

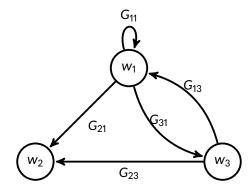


Transfer functions that can be recovered are *identifiable*

Network topology is defined by the nonzero entries of *G*, and is assumed to be known (often the case).

$$G = \begin{bmatrix} G_{11} & 0 & G_{13} \\ G_{21} & 0 & G_{23} \\ G_{31} & 0 & 0 \end{bmatrix}$$

Theorem: *Identifiability* is a generic property of *network topology*: it only depends* on the structure of *G*, but not on its parameters *G*_{ij}.



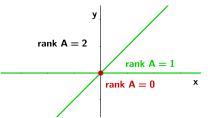
Genericity

- A generic property holds everywhere except possibly on a *lower-dimensional set*.
- A lower-dimensional set has Lebesgue-measure zero
 → 0-probability of falling in this set when sampling randomly

 Example: The matrix

$$A = \begin{bmatrix} x & 0 \\ 0 & x - y \end{bmatrix}$$

has generic rank 2. Its rank drops on $\{x = 0\} \cup \{x = y\}$.



Identifiability is generic - example

Global input-output transfer function:

$$CTB \triangleq C(I-G)^{-1}B = \begin{pmatrix} G_{42}G_{21} + G_{43}G_{31} & G_{42} & G_{43} & 1 & 0 \\ G_{52}G_{21} + G_{53}G_{31} & G_{52} & G_{53} & 0 & 1 \end{pmatrix}$$

$$\Rightarrow G_{42}, G_{43}, G_{52}, G_{53} \text{ identif, and } \begin{pmatrix} G_{42} & G_{43} \\ G_{52} & G_{53} \end{pmatrix} \begin{pmatrix} G_{21} \\ G_{31} \end{pmatrix} = \begin{pmatrix} T_{41} \\ T_{51} \end{pmatrix}$$

 \Rightarrow G₂₁, G₃₁ identifiable except when G₄₂G₅₃ + G₄₃G₅₂ = 0.

