UCLouvain

Institute of Information and Communication Technologies, Electronics and Applied Mathematics

Conditions for Local Network Identifiability

Antoine Legat, Julien M. Hendrickx

ICTEAM (UCLouvain)

Motivation	Local identifiability	Decoupled identifiability	
	Definition: Transfer fct (i,j) <i>locally</i> identifi- able at <i>G</i> if for all compatible \tilde{G} on an ϵ -ball,	Definition: Network decoupled-identif- iable at (G,G') if for all compatible Δ ,	

 $CT(G) B = CT(\tilde{G}) B \Rightarrow G_{ii} = \tilde{G}_{ii}$

NeuroscienceSocial networks

Smart grid...

Generically if it holds for almost all G.

- Necessary for generic identifiability
- No counter-ex to sufficiency known

Identifiability as the injectivity of f: $f(G) = f(\tilde{G}) \Rightarrow G_{ij} = \tilde{G}_{ij}$

Algebraic edge condition

Intuition Local injectivity should rely on ∇f

$CT\Delta T'B = 0 \Rightarrow \Delta = 0$

Model

state $\leftarrow w = G w + B r \longrightarrow$ excitation measure $\leftarrow y = C w$

From given excitations/measurements, which unknown transfer functions can be recovered?

i.e. From r at B and y at C, which unknown G_{ij} can be recovered?

orrect	if ∇f has constant rank,
	which is the case generically.

Theorem [1]		
G _{ij} generically ocally identif	\Leftrightarrow	$ker \nabla f \perp \mathbf{e}_{ij}$ for almost all <i>G</i> $\qquad \qquad $

—> Randomized probability-1 algorithm: github.com/alegat/identifiable

Generic decoupled-identifiability is:

- Necessary for generic (local) identif.
- No counter-ex to sufficiency known
- Equivalent to generic identifiability of decoupled network \hat{G}

Graph network condition

An assignation σ assigns to each unknown edge an (excitation, measurement) pair.

Theorem [2]

If G is generic decoupled-identifiable, there is at least one assignation σ s.t:

- $|\mathcal{C}|$ edges assigned to each excitation
- $|\mathcal{B}|$ edges assigned to each measure
- σ is connected
- 4 for each excitation *b*, there are $|\mathcal{C}|$

Transfer functions that can be recovered are *identifiable*.

Assumptions:

- Network topology is known
- Global matrix $T(G) = C(I G)^{-1}B$ known
- Not all nodes are excited/measured

References

- [1] Antoine Legat and Julien M Hendrickx. "Local network identifiability with partial excitation and measurement". In: 2020 59th IEEE CDC.
- [2] Antoine Legat and Julien M Hendrickx. "Pathbased conditions for local network identifiability". In: 2021 60th IEEE CDC.

vertex-disjoint paths between the edges assigned to *b* and measures *C*for each measure *c*, there are |*B*| vertex-disjoint paths between the edges assigned to *c* and measures *B*

If there is only one such assignation, then this condition is also sufficient.

