
Université catholique de Louvain

Ecole Polytechnique de Louvain

Institute of Information and Communication

Technologies, Electronics and

Applied Mathematics

Algorithms for community and role detection
in networks

Arnaud Browet

Thesis submitted in partial fulfillment of the
requirements for the Ph.D. Degree in Engineering

Sciences

Thesis Committee

Advisors: Paul Van Dooren, UCL
Pierre-Antoine Absil, UCL

Jury: Mauricio Barahona, Imperial College
Renaud Lambiotte, University of Namur
Christophe De Vleeschouwer, UCL

Chairman: Raphaël Jungers, UCL

Louvain-la-Neuve, September 30, 2014.

Acknowledgment

Doing a Ph.D. has certainly been the biggest professional challenge that
I have faced so far. But when I came back from the private sector to
academia, I certainly did not expect to live such a great experience.

First of all, I would like to thank my advisors Paul Van Dooren and
Pierre-Antoine Absil. They have offered me the opportunity to follow
my own research interests and have always been of sound advice. I will
always keep excellent memories of the time spent together, whether it was
for science or pleasure.

I am grateful to all the members of my thesis committee - Raphaël
Jungers, Mauricio Barahona, Renaud Lambiotte and Christophe De Vlees-
chouwer - and to the additional members of my advisory committee -
Benoit Macq and Marc Van Barel - for their time and commitment. Your
constructive comments and remarks have greatly improved the quality of
my thesis.

During my thesis, I was funded as a teaching assistant at the Pole of
Mathematical engineering of the Institute of Information and Commu-
nication Technologies, Electronics and Applied Mathematics at the Uni-
versité catholique de Louvain. I would like to express my gratitude for
the administrative and financial support of the university. In particular, I
warmly acknowledge the amazing assistance of the secretaries of the de-
partment - Isabelle Hisette and Nathalie Ponet. I am also thankful to the
Belgian Network DYSCO (Dynamical Systems, Control, and Optimiza-
tion), funded by the Interuniversity Attraction Poles Programme, initiated
by the Belgian State, Science Policy Office.

I have had the chance to meet and collaborate with talented researchers
within our Large Graphs and Networks research group - Vincent Blon-
del, Yurii Nesterov, Jean-Charles Delvenne and Julien Hendricks. But
my fellow Ph.D. students (and office mates) have also contributed a lot
to enrich this amazing experience - Vincent Traag, Pierre Borckmans,
Nicolas Boumal, Romain Hollanders, Francois-Xavier Orban, Adeline De
Cuyper,... I simply can not name them all but none will be forgotten. I also
deeply enjoyed the time spent in the Euler building, at the coffee breaks

4

or around a drink, in company of Etienne Huens, Robert "Bob" David and
Nicolas Hudon.

Finally, I would never have been able to achieve my thesis without the
encouragements and patience of my family. In particular, my father who
has always been there for me and constantly helped me to reach my goals.
You are the best dad ever. Last but definitely not least, I can not find words
strong enough to express my feelings about my life partner. Sophie, those
last few years have been filled of emotions, pain or happiness, doubts and
joys, and you have always been my first and best support. I am blessed to
live with you and you gave me the best baby girl I could ever dream of. I
will always love you.

Contents

Acknowledgment 3

Symbols and Notations 7

1 Introduction 11

2 Elements of Graph Theory 17
2.1 Fundamentals 17
2.2 Graph structures 21
2.3 Random graphs 24
2.4 Graph partitioning 28

3 Community detection 31
3.1 Communities in networks 32
3.2 Quality functions 35

3.2.1 Reichardt & Bornholdt: energy of a partition 36
3.2.2 Newman & Girvan: Modularity 41
3.2.3 Resolution limit free models 47
3.2.4 The Map equation 49
3.2.5 Surprise 55
3.2.6 Summary 56

3.3 Algorithms for Community Detection 58
3.3.1 Spectral optimization 59
3.3.2 Simulated Annealing 61
3.3.3 Newman 64
3.3.4 Schuetz & Caflisch 67
3.3.5 Label propagation 68
3.3.6 Louvain Method 70
3.3.7 Infomap 74

3.4 Fast community extraction 75
3.4.1 Definition of communities 77
3.4.2 Positive correction 81
3.4.3 Storage of communities 83

6 Contents

3.4.4 Maximal correction 90
3.4.5 Convergence 93
3.4.6 Concluding remarks 96

4 Performance of algorithms and applications 99
4.1 LFR benchmark model 100

4.1.1 Weighted networks 108
4.1.2 Unweighted networks 124
4.1.3 Analysis of the probability parameter 126

4.2 Image Processing 126
4.2.1 Picture graph 128
4.2.2 Windowed configuration null model 131
4.2.3 Video tracking and 3D Segmentation 136
4.2.4 Boundary of inclusion in microstructure 139

5 Extraction of role structure 143
5.1 Role model in network 144
5.2 Quality function: Reichardt & White 147
5.3 Pairwise node similarity measures 150

5.3.1 Blondel et al. 150
5.3.2 Cooper & Barahona 154
5.3.3 Leicht, Holme & Newman 155

5.4 Neighborhood patterns based similarity 157
5.5 Low-rank similarity approximation 164

6 Applications to role extraction problems 175
6.1 Benchmark graphs 176

6.1.1 Erdős-Rényi graphs 176
6.1.2 Guimera et al. model 186
6.1.3 LFR model 190

6.2 Florida bay food web 192
6.3 Great Barrier Reef network 196
6.4 Part-of-speech tagging 197

7 Conclusion 205

Bibliography 209

Symbols and Notations

A adjacency matrix (p. 17)

B adjacency matrix of the reduced graph (p. 145)

Cn cycle graph (p. 20)

D diagonal matrix of degree (p. 29)

E set of edges (p. 17)

G(V, E) graph associated with its vertices and edges (p. 17)

H(σ) energy of a partition (p. 37)

I identity matrix (p. 155)

Kn complete graph (p. 21)

Kn1,n2 complete bipartite graph (p. 22)

L Laplacian matrix (p. 29)

Nij null model (p. 38)

P(.) probability distribution (p. 25)

Qw modularity function (p. 43)

S similarity matrix (p. 151)

V set of vertices (p. 17)

W weighted adjacency matrix (p. 19)

∆H
(
c1 → i→ c2

)
variation of energy switching i from c1 to c2 (p. 63)

∆H
(

σ(1), σ(2)
)

difference of energy between partitions (p. 61)

∆H
(
c→

{
c1, c2

})
variation of energy splitting c (p. 63)

8 Symbols and Notations

∆H (c1 ∪ c2) variation of energy merging c1 and c2 (p. 63)

Π(r) best low-rank projector (p. 164)

δ(., .) Kronecker delta (p. 37)

[. | .] horizontal concatenation (p. 151)

〈.〉 expected value (p. 25)

µT topological mixing parameter (p. 101)

µW weight mixing parameter (p. 104)

‖.‖F Frobenius norm (p. 151)

⊗ Kronecker product (p. 152)

ρ(.) spectral radius (p. 152)

σ partition (p. 37)

σi community index of node i (p. 36)

1 vector of all 1 (p. 18)

eint, eext internal and external density (p. 102)

k, kout, kin undirected, outgoing and incoming degree (p. 18)

kint, kext internal and external degree (p. 101)

m number of edges (p. 18)

mw sum of edge weight (p. 43)

n number of nodes (p. 17)

nc number of nodes in community c (p. 45)

s, sout, sin undirected, outgoing and incoming strength (p. 19)

Acronyms

CNM Clauset-Newman-Moore (p. 108)

CPM constant Potts model (p. 113)

ER Erdős-Rényi (p. 102)

Symbols and Notations 9

FCE fast community extraction (p. 108)

LFR Lancichinetti-Fortunato-Radicchi model (p. 99)

LM Louvain method (p. 108)

LP label propagation (p. 108)

MOD modularity (p. 113)

NMI normalized mutual information (p. 107)

SC Schuetz-Caflish (p. 108)

SCC strongly connected component (p. 24)

WCC weakly connected component (p. 24)

Information theory

π stationary node visit frequency (p. 53)

H(X) Shannon entropy of X (p. 50)

H(X, Y) joint entropy (p. 106)

H(X | Y) conditional entropy (p. 106)

I(x) information of event x (p. 50)

I(X, Y) mutual information (p. 107)

p(x) probability to observe x (p. 50)

p(x, y) joint probability (p. 106)

p(x | y) conditional probability (p. 106)

1 Introduction

Back in 1735, Euler was facing a puzzle regarding the seven bridges
of Königsberg. The problem was to find a path through the city that

would cross every bridge exactly once. While this problem had ultimately
no solution, the seminal paper of Euler (1741) laid the foundation of what
we know today as graph theory or network science. Since then, the scien-
tific efforts to comprehend this branch of discrete mathematics have led to
a deep understanding of many complex systems. Indeed, graphs can be
used to represent any type of relation between interacting agents. In com-
puter science, graph theory has been applied to analyze the World Wide
web [Albert, Jeong, and Barabási (1999); Barabási and Albert (1999)], to
evaluate the resilience of peer-to-peer networks [Holme, Kim, Yoon et al.
(2002)] or to rank web pages in search engines [Page, Brin, Motwani et al.
(1999)]. Since the 1930s, graph theoretical tools have also proven to be very
useful in sociology [Wasserman and Faust (1994); Scott (2000); Lazer, Pent-
land, Adamic et al. (2009)]. Researchers have studied human interactions
using e-mail correspondence [Anteneodo, Malmgren, and Chialvo (2010)],
mobility from mobile telecommunication data [Barabási (2005); González
and Barabási (2007); Gonzalez, Hidalgo, and Barabasi (2008)] or the struc-
ture of scientific collaborations [Newman (2001)]. In biology, graphs have
been widely used to model protein-protein interactions [Kim, Krapivsky,
Kahng et al. (2002)], metabolic networks [Guimera and Amaral (2005)] or
food webs [Guimerà, Stouffer, Sales-Pardo et al. (2010)]. The literature
about graph theory applications is prolific and reveals the contemporary
interests in analyzing the structural properties of networks.

This thesis aims at presenting recent progresses on network cluster-
ing, also known as graph partitioning. Those two problems are directly
related although being conceptually slightly different in their objective.
When considering network clustering, one is interested in identifying co-
herent groups of agents in the graph. For example, everybody knows a
married couple who, one day, struggled with the organization of their
wedding seating. In this case, one wants to identify groups of people who
at least know each others, while also satisfying additional constraints, like

12 Chapter 1. Introduction

keeping family members together or potentially keeping divorcee apart
from each others. This can in fact be translated into what is called the k-
coloring problem over the graph of acquaintances, and while everybody
knows how difficult this problem can become in real life, its graph theoret-
ical counterpart has helped to prove that, indeed, it is extremely difficult.
On the other hand, the graph partitioning problem consists in identify-
ing a subset of the interactions between the agents of the graph such that
the removal or the inhibition of those interactions will effectively parti-
tion the graph in a set of disconnected smaller components, while also
ensuring additional constraints like minimizing the number of removed
interactions. For instance, one may consider the problem of a water dis-
tribution network in which the flow at one end would be insufficient to
satisfy the demand. Using graph theory, one can prove that identifying
the minimal set of water pipes that if obstructed would prevent the water
to reach the end of the network and would therefore bisect the graph in 2
disconnected components, allows to determine the bottlenecks of the wa-
ter supply network and to compute the maximal flow one can send over
the network (this is called the min cut/max flow problem). Somehow,
network clustering is more focused on defining coherent groups of agents
while graph partitioning is more focused on identifying weak interactions
between agents. But in the end, both problems are essentially equiva-
lent since removing interactions eventually defines disconnected groups
of agents while defining coherent groups of agents implies that the inter-
actions between the different groups could essentially be removed.

The first network clustering problem that we will analyze is known
as community detection and consists in identifying groups of agents with
many interactions between each other. This structural distribution of the
interactions arises naturally in many systems, social networks being one
perfect example. One will always be more confident in creating inter-
actions with the friend of a friend rather than with a perfect stranger.
Therefore, groups of friends will often have a high density of connections
and only a few connections with the rest of the network, and that defines
a community. The identification of those densely connected groups is a
main concern in many applications that will be presented in Chapter 3.
However, if one could potentially analyze without too much difficulty the
networks of interest a few decades ago, at least for community detection,
modern network science has to deal with millions of agents and billions
of interactions between them. Therefore, network scientists have progres-
sively become computer and data scientists and their main purpose is

13

now to define appropriate algorithms to extract relevant information con-
tained in those large graphs. Many community detection algorithms have
been defined over the years and we will present some of them in what
follows. However, in computer science, it is now common to define par-
allel algorithms, meaning that instead of using a single machine, one can
use multiple processors at the same time which allows to solve much
larger problems than before. Our first contribution has been to define a
fast, parallel and efficient algorithm to extract community structure out of
very large graphs which will be the main topic of Chapter 3.

It is easy to show that an algorithm can be run in parallel because
one just needs to show that it is designed mostly with independent op-
erations. It is also easy to claim that an algorithm is fast by measuring
the time it requires to extract a solution to a dedicated problem. How-
ever, it is more difficult to assess the accuracy of a community detection
algorithm because the quality of a partition often depends on the partic-
ular application it is used for. Therefore, it is now common to compare
the efficiency of different algorithms by applying them to computer gen-
erated benchmarks for which the exact solution can not be argued. This
will be addressed in Chapter 4, where we will compare the efficiency of
our algorithm with other popular methods, and we will also present some
practical applications in which it was successfully applied.

Community detection is not the only way to handle network partition-
ing and indeed, some networks do not exhibit a community structure,
while being still strongly structured. This situation may arise when the
similarity between agents is somehow hidden in the graph. For instance,
the internet topology consists in different routers that redirect the web
queries, using specific protocols, to the correct servers. However, the in-
ternet topology is organized in different layers: the data layer which is
the final destination of the query, a local layer which is controlled by the
internet service providers (ISP), a regional layer which connects different
ISP local networks and then a continental layer which in turn connects
different regional layers, and so on. In this case, one does not expect
to find many connections between similar kind of routers that are in the
same layer. Instead, most of the links are indeed connecting different
types of routers in a sort of top-to-bottom architecture. But one may be
interested in identifying those similar types of routers which somehow
serve the same purpose in the graph. In this context, we speak about role
identification which will be the main concern of Chapter 5.

To extract a role structure, we will show that, in general, one needs

14 Chapter 1. Introduction

to define a similarity measure between each pair of agents in the graph.
We will introduce some of the existing similarity measures and define a
new robust similarity measure, based on the connectivity patterns of the
agents, that presents interesting properties. Unfortunately, computing the
exact similarity between every pair of agents can be computationally chal-
lenging in large graphs, so we will also propose a low-rank approximation
of our similarity measure. In Chapter 6, we will compare our similarity
measure with its low-rank approximation on benchmark graphs and show
that the low-rank approximation achieves similar accuracy than the orig-
inal measure. We will also apply our similarity measure to some real
graphs and show that the extracted role structures are in general relevant
to represent the underlying structure of the graphs.

Selected publications

Most of the work presented in the thesis has been submitted or published
in journals and conference proceedings. We hereafter detail our main
contributions.

Our first contribution was a fast and highly parallelizable algorithm
for community detection, which allows to analyze massive networks. The
content of this paper is the main focus of Chapter 3, and more precisely
Section 3.4, and covers the definition of the algorithm, its convergence
proof and a comparison of accuracy with other methods as presented in
Chapter 4. The paper has been submitted to Physical Review E and is
currently in revision before resubmission.

• Browet, Absil, and Van Dooren (2013) - Fast community detection
using local neighborhood search - arXiv:1308.6276.

Our second contribution was to apply our community detection algo-
rithm to the specific problems of image segmentation and video tracking.
We showed that, even using a simple quality function, our method can
extract coherent regions in an input picture and that it could be easily
extended to track the evolution of the position of different objects simul-
taneously. This has been presented in 2 conferences and published in their
proceedings

• Browet, Absil, and Van Dooren (2011) - Community Detection for
Hierarchical Image Segmentation - 14th International Workshop on
Combinatorial Image.

15

• Browet (2011) - Community detection applied to video tracking -
10th International Symposium on Iterative Methods in Scientific Com-
puting.

The publication of those papers has attracted the attention of a re-
search group working on mathematical characterization of materials, and
opened a collaboration to apply our segmentation algorithm to images of
microstructures in order to model the deformation of the material under
stress constraints. This paper is currently in preparation for submission

• Dancette, Willemet, Browet, Martin and Delannay - Image-based
meshing procedure to compute the mechanical response of mate-
rials - In preparation.

Our last important contribution is related to the role extraction prob-
lem discussed in Chapter 5. In this paper, we introduced our pairwise
node similarity measure and its low-rank approximation, we demonstrated
that both measures have similar accuracy on benchmark graphs and we
analyzed the evolution of the low-rank similarity matrix for increasing
value of the rank, which reveals the number of roles in the network. This
paper has been accepted for publication in the peer-reviewed conference
proceedings of the MTNS 2014

• Browet and Van Dooren (2013) - Low-rank Similarity Measure for
Role Model Extraction - to appear in the proceedings of the 14th

International symposium on Mathematical Theory of Networks and
Systems.

Finally, we also worked on a completely different topic that is the anal-
ysis of mobile phone telecommunication data which is not covered in the
thesis. In a first paper, we analyzed different features of mobile phone
users and proposed a model to identify their frequent positions. The pa-
per has been published in Physica A. In a second paper, we developed a
framework to detect unexpected events, like riots, based on mobile phone
data. This paper has been published in the proceedings of the IEEE Third
International Conference on Social Computing.

• Csáji, Browet, Traag et al. (2013) - Exploring the mobility of mobile
phone users - Physica A: Statistical Mechanics and its Applications

16 Chapter 1. Introduction

• Traag, Browet, Calabrese et al. (2011) - Social Event Detection in
Massive Mobile Phone Data Using Probabilistic Location Inference -
SocialCom 2011

2 Elements of Graph Theory

Network theory and applications have attracted scientists from many
different research areas. The available literature is abundant and

goes far beyond the scope of this thesis. Without being exhaustive, this
preliminary chapter introduces some fundamentals of graph theory that
will be used throughout the thesis, as well as our notations which fol-
low the formalism of [West (2001); Newman (2003)]. We refer the reader
to [Newman (2010); Albert and Barabási (2002); Kolaczyk (2009); Diestel
(2005)] for additional resources regarding the topic.

In Section 2.1, we will introduce different notations and give some ba-
sic definitions used to characterize graph properties. Then, in Section 2.2,
we will present some specific structural properties of graphs. In Section
2.3, we will describe the notion of random graphs which allow to mea-
sure how much representative is a particular feature of a graph based on
what is observed on average. Finally, in Section 2.4, we will formalize the
problem of graph partitioning, which is the main interest of this thesis,
and present some early developments in this field.

2.1 Fundamentals

A graph G(V, E) is a mathematical representation of the pairwise interac-
tions between n ∈ R individual agents and is defined by a set of vertices
(or nodes) V = {1, . . . , n} and a set of edges (or links) E = {(i, j) | i, j ∈ V}.
A pair (i, j) belongs to E if there is an interaction between the agents i and
j and the cardinality of the set E, i.e. the number of edges in the graph, is
denoted by |E| = m. An edge (i, j) is called incident to both the nodes i
and j which, in this case, are termed neighbors.

A graph can be univocally represented by its adjacency matrix A ∈
{0, 1}n×n such that

A(i, j) =
{

1 if (i, j) ∈ E,
0 otherwise.

The matrix representation of a graph is particularly useful because it al-
lows to analyze the graph using matrix theory and linear algebra. This

18 Chapter 2. Elements of Graph Theory

is known as algebraic graph theory or spectral graph theory. In this the-
sis, we will only consider graphs with non-negative adjacency matrices, i.e.
A(i, j) ≥ 0 ∀i, j. However, there exist graphs with negative links, called
signed graphs, see [Zaslavsky (1982); Traag, Van Dooren, and De Leenheer
(2013)].

A graph is called undirected if the edges have no orientation, i.e. each
pair (i, j) ∈ E is considered unordered and (i, j) = (j, i), such as in friend-
ship networks (where each relationship is considered reciprocal). The
adjacency matrix associated to an undirected graph is symmetric, A = AT .
If the orientation of the edges matters, the graph is called directed and an
edge (i, j) has a source i and a destination j. Telecommunication networks
are a good example of directed network where one makes a distinction
between the caller and the callee. In the remainder of the thesis, unless
specifically stated otherwise, we will always consider graphs to be di-
rected and assume that if the graph is undirected both (i, j) and (j, i) will
belong to E. In directed graphs, a neighbor j of a node i is called a child
when (i, j) ∈ E and a parent when (j, i) ∈ E. Note that a neighbor can be
both a child and a parent at the same time. An edge that connects a node
to itself, (i, i) ∈ E, is called a self-loop.

The number of neighbors of a node i, or equivalently the number of
its incident edges, is called the degree and is denoted by ki. In directed
networks, it is natural to make a distinction between the in-degree kin

i and
the out-degree kout

i as the number of parents and the number of children,
respectively. Using the adjacency matrix, the vectors of out and in-degrees
can be computed as

kout = A 1 , kin = AT 1,

where 1 is the vector of all 1’s of appropriate dimension. A graph is called
regular if all its nodes have the same degree, ki = k ∀i, and therefore the
number of edges is given by

m = ∑
i

∑
j

A(i, j) = ∑
i

ki = n k.

For a directed graph, being regular implies that the in-degree and the out-
degree are constant, which in turn forces the in-degree and the out-degree

2.1. Fundamentals 19

1 2 3

4

1.2
0.8

1.1

1.3
0.9

0.6 W =

1.2 0.8
1.1

1.3 0.9
0.6

Fig. 2.1 A weighted directed graph and its weighted adjacency matrix.

to be equal since

n kout = ∑
i

kout
i = m = ∑

i
kin

i = n kin,

so kout = kin = k.
In addition to its orientation, one can associate a weight to each edge

representing the intensity of the interaction between the incident nodes,
i.e. (i, j, wij), and the graph is then called weighted. In what follows, we will
always consider graphs to be weighted. Indeed, if a graph is unweighted,
one can consider that all its edges carry an equal unitary weight (i, j, 1).
Weighted graphs are univocally represented by their weighted adjacency
matrix W ∈ Rn×n such that W(i, j) 6= 0 if and only if A(i, j) = 1. Similarly
to the degree, we define the strength si of node i as the sum of the weights
of its incident edges, and, when the graph is directed, we distinguish
between the in-strength and the out-strength as the sum of the weights of
the incoming and outgoing edges, respectively. The in-strength and out-
strength vectors can be computed as

sin = WT 1 , sout = W 1.

A small example of weighted directed graph is presented in Fig. 2.1
along with its weighted adjacency matrix. One can see that, for instance,
the node labeled 2 has an in-degree kin

2 = 3, an out-degree kout
2 = 1, an

in-strength sin
2 = 2.7 and out-strength sout

2 = 1.1. Let us mention that even
if a graph is undirected, i.e. A = AT , its weighted adjacency matrix is not
necessarily symmetric since one can have that w(i, j) 6= w(j, i).

The density of a graph is defined as the ratio between the actual number
of edges in the graph and the maximal number of possible edges, i.e.
m
n2 for a directed graph with self-loops. A graph is termed sparse if its

20 Chapter 2. Elements of Graph Theory

density is low, which implies that its adjacency matrix is also sparse. The
maximum number of edges being quadratic in the number of nodes in the
graph, it is generally assumed that the number of edges in sparse graphs
should grow linearly with the number of nodes, m = O(n), or in other
words, that the average degree, defined by

k =
1
n

n

∑
i=1

ki,

should be much smaller than the number of nodes k� n.

In the following, we will only consider constant graphs, i.e. graphs that
do not evolve through time neither in terms of their nodes, nor their edges.
However, in some practical applications, the temporality of the connec-
tions is of main importance, for example when analyzing the spread of
infectious diseases. We recommend [Nowak (2006); Clauset and Eagle
(2007)] for readers interested in evolving graphs. Furthermore, we will
only consider finite graphs, i.e. when the set of nodes V and the set of
edges E are finite. The study of infinite graphs has shed light on inter-
esting asymptotic behaviors of random graphs but is beyond the scope
of this thesis. The reader will find interesting results and references in
[Newman, Strogatz, and Watts (2001); Rath (2010)].

Let us conclude this section by defining some notions of distance on
graphs. We define a path p(i, j), also called a walk, between two nodes i
and j as a sequence of edges

p(i, j) = {(i, v1); (v1, v2); . . . ; (vk−1, vk); (vk, j)} ,

such that the destination of each edge in the sequence (except for the last
one) is always the source of the following edge. Note that there might
exist multiple paths between a pair of nodes (i, j). A simple path is a
path in which each edge is used at most once and a cycle is a simple
path where the origin and the destination of the path are identical. We
will sometimes refer to cycle graphs, denoted as Cn, which are graphs
composed of exactly one cycle connecting n nodes as depicted in Fig.
2.2a. The length of a path is defined as the number of edges used in the
path and the number of paths of length l between two nodes i and j can
be computed as Al(i, j), where Al is the l-th power of A. The distance
d(i, j) between two nodes i and j is defined as the length of the shortest

2.2. Graph structures 21

(a) Cycle graph C5 (b) Complete graph K5 (c) Complete bipartite K3,2

Fig. 2.2 Example of structured graphs.

path between them,

d(i, j) = min
{

l | Al(i, j) 6= 0
}

.

Finally, the diameter of a graph is the largest distance between any pair of
nodes in the graph. The diameter of a graph can be computed as

D(G) = min

{
l

∣∣∣∣∣
l

∑
q=1

Aq(i, j) 6= 0, ∀i, j ∈ V

}
,

and is computationally expensive to measure in practice. It is interesting
to note that the diameter of many real networks is very small compared
to the size of the graphs [Watts and Strogatz (1998)]. This is known as
the small world phenomenon. For example, the diameter of the World
Wide Web has been estimated to be between 15 and 20 [Albert, Jeong, and
Barabási (1999); Kang, Tsourakakis, Appel et al. (2008)], even though the
number of web pages indexed by Google in 2010 was approximately 5×
1010∗. This means that a target web page can be reached from any starting
page using at most 20 clicks and only following existing hyperlinks.

2.2 Graph structures

In this section, we will define some structural properties of graphs that
will be extensively used in the following chapters.

A graph is said complete if the set of edges E contains all the possible
edges (potentially excluding self-loops), i.e. if its density is 1. The com-
plete directed graph over n nodes is denoted Kn and contains n(n − 1)
edges (or n2 if one considers self-loops). The complete graph over 5 nodes,

∗http://www.worldwidewebsize.com/

http://www.worldwidewebsize.com/

22 Chapter 2. Elements of Graph Theory

K5, is presented in Fig. 2.2b where each arc represents a bidirectional edge
(arrow heads are not displayed for readability).

Bipartite graphs form another class of structured graphs where the
nodes are distributed among 2 independent sets. An independent set
is a set of nodes such that any edge in the graph is incident to at most one
node in the set, i.e. none of the nodes in an independent set are neighbors.
Therefore, in bipartite networks, every edge is incident to one node within
each of the independent sets. Hence, a graph is bipartite if and only if it
does not contain odd cycles. This kind of graphs is often used to repre-
sent the assignments of different elements to specific tasks. For example,
a bipartite graph is well suited to model the attendance of students to
lectures in a university. One can test if a graph is bipartite in linear time
using breadth-first-search or depth-first-search algorithms. Those algo-
rithms are simply designed to iterate over all the edges of a graph and
to sequentially assign each node to one of the two sets until either all
the edges have been considered and the bipartite nature of the graph has
been discovered, or until an edge is found to connect two nodes within
the same set and the graph is not bipartite. A complete bipartite graph with
two node sets of size n1 and n2 is denoted Kn1,n2 and has 2n1n2 edges. The
complete bipartite graph K3,2 is illustrated in Fig. 2.2c.

In order to apply classical analysis methods, like partitioning that will
be introduced in Section 2.4, bipartite graphs are often projected onto one
of their two independent sets. In the projected graphs, two nodes are con-
nected if they share a common neighbor in the original bipartite graph.
The projections on each of the two node sets of a bipartite graph are pre-
sented in Fig. 2.3. Note that the projection on each node set is unique
(up to the definition of the weight of the edges in the projected graph),
however it is in general not possible to infer the bipartite graph from one
of its projections as depicted in the figure for the projected graph on the
set. Hence, the projections of a bipartite graph may hide some important
features of the network, which will be illustrated in Section 6.1.2. There-
fore, it is of main interest to avoid the projection of bipartite graphs, in
particular when one wants to extract an appropriate partition for such a
graph, which is one of the motivations of our results presented in chapter
5.

Similarly to bipartite networks, we define a N-partite network as a
graph where nodes are organized among N independent sets. The schedul-
ing problem is a typical application of N-partite graph. For example, one
may want to find an optimal schedule for lectures that would minimize

2.2. Graph structures 23

1 2 3 4

1 2 3 4 5

3

2 4

5

1

1 2

34

?
1

2

3

4

Fig. 2.3 Projections of a bipartite graph and backward inference.

the number of conflicts for the attending students; the graph could be
defined as the set of students connected to the lectures they want to at-
tend, themselves connected to the available time slots, with potentially
other sets of nodes like the teachers able to give the lectures or the va-
cant auditoriums. Every graph is trivially n-partite, however, finding the
smallest N such that a graph is N-partite is a NP-hard problem (although
one can check in polynomial time if N = 1 (empty graph) or N = 2 (bi-
partite graph) are valid solutions) known as the minimal vertex coloring
problem. In this context, N is termed the chromatic number of the graph.

A subgraph H(VH , EH) of a graph G(V, E) is a graph whose vertices
are a subset of the vertices of G, VH ⊂ V, and whose edges are a subset of
the edges of G incident only to nodes in VH ,

EH ⊂ {(i, j) | i, j ∈ VH , (i, j) ∈ E} .

A subgraph will be called induced if it contains all the edges incident to
two nodes in VH , EH = {(i, j) | i, j ∈ VH , (i, j) ∈ E}. Lastly, a spanning
graph is a subgraph that has the same node set as the original graph,
V = VH . Hence, there is only one spanning induced subgraph which is
the graph itself.

An undirected graph is said to be connected if there exists a path be-
tween any pair of nodes. If a graph is not connected, then one can divide
it in multiple induced subgraphs Hi(VHi , EHi) such that every subgraph is
connected and all the edges of the original graph are contained in one of
the subgraphs, i.e. there is no edge between any of the induced subgraphs,

V = ∪iVHi , E = ∪iEHi .

24 Chapter 2. Elements of Graph Theory

Each of those induced subgraphs Hi is called a connected component of the
original graph. If the graph is directed, then we differentiate between
two types of connected components. First, we define a strongly connected
component as a maximal set of nodes such that there exists a directed
path between every pair of vertices, maximal meaning that one can not
add any node in the set while keeping the property valid. Strongly con-
nected components are simply connected components in an undirected
graph. We also define a weakly connected component as a maximal set of
nodes such that there exists a path between every pair of vertices in the
associated undirected induced graph. That is to say that there is a path
between every pair of vertices if we do not take into account the direction
of the edges. For example, in Fig. 2.1, the strongly connected component

is defined by SCC =
{

2 , 3 , 4
}

and the weakly connected component

is WCC = SCC ∪
{

1
}

since there is path from 1 to the nodes in the
SCC but not the other way around.

A clique is a complete induced subgraph. In Fig. 2.1, the set
{

2 , 3
}

defines a directed clique of size 2. A clique is called maximal if it can
not be extended by adding additional nodes and maximum if there exists
no larger clique in the graph. Hence, the maximum clique defines the
largest set of fully connected nodes and may sometimes reveal important
properties of the network. For example, this structure may induce some
hierarchy in the organization of the vertices by defining a core and periph-
ery around it which helps to explain some spreading processes over the
network. This will be more detailed in the following chapter. However,
finding the maximum clique in a given network is NP-complete and even
an approximation may be hard to uncover.

Finally, let us mention that the complement of a graph G(V, E) is a
graph G⊥(V, E⊥) defined over the same set of nodes but such that E⊥

contains all the edges not existing in G, i.e. E⊥ = {(i, j) | (i, j) 6∈ E}. For
example, the complement of a clique is an independent set and vice versa.

2.3 Random graphs

Throughout the following chapters, we will extensively use random graphs
to assess the quality of algorithms and measures. A graph is called ran-
dom if either its node set, its edge set or both are generated using a ran-
dom process. Random graphs are particularly useful to model typical
properties of networks or to quantify how similar or dissimilar is a given

2.3. Random graphs 25

network from what one would observe on average in networks having
similar properties. We will present some models to build random graphs
in what follows but we refer the reader to [Janson, Luczak, and Kolchin
(2000); Bollobás (2001)] for a thorough analysis on random graphs.

The most common random graph model is due to Erdős and Rényi
(1960). To build such a random network, one starts with a fixed set of
vertices and no edges. Then, every of the n(n − 1) possible edges (ex-
cluding self-loops) is added with a constant probability p ∈ [0, 1]. One
can prove that an Erdős-Rényi graph is asymptotically almost surely con-
nected when p > O

(log n
n
)
.

Since the probability to have an edge between any pair of nodes is p,
the expected number of edges in an undirected Erdős-Rényi graph is

〈m〉 =
(

n
2

)
p

where (n
2) denotes the binomial coefficient, i.e. the number of possible

ways to select 2 nodes out of a set of n nodes, or equivalently the number
of pairs of nodes in the network, (n

2) = n(n−1)
2 . The expected number of

edges is simply multiplied by 2 for directed Erdős-Rényi graphs.

The degree distribution of a network is the probability distribution
of the degree of the nodes in the network. More precisely, the degree
distribution P(k) is the probability that a node taken at random has a
degree k and is given by the expected proportion of nodes of degree k in
a random network

P(k) =
〈|{i | ki = k}|〉

n
.

In Erdős-Rényi graphs, the degree distribution is binomial

P(k) =
(

n− 1
k

)
pk (1− p)n−1−k ,

which can be well approximated by a Poisson distribution for large n and
small p,

P(k) ≈ (np)k e−np

k!
.

The Erdős-Rényi model has been widely used to create random graphs
because the construction of the network is fairly easy and the model can be
easily generalized to include additional properties. For example, we will

26 Chapter 2. Elements of Graph Theory

present in Section 6.1.1 a model inspired from the Erdős-Rényi model but
with 2 distinct probability parameters p1 and p2 which allow to impose a
structural distribution for the nodes. Erdős-Rényi graphs are known to be
small-world networks [Watts and Strogatz (1998)], i.e. the diameter of the
graph is small compared to the number of nodes and D(G) ≈ O

(
log n

)
,

which has been often observed for real networks. However, many real
networks do not have uniformly distributed edges and nodes tend to form
clusters. This can be measured by the clustering coefficient which computes
for each node the ratio between the actual number of triangles and the
maximum possible number of triangles in the graph

Ci =
|{(j, k) | (i, j) ∈ E , (i, k) ∈ E}|

ki(ki − 1)
.

In many real networks, the average clustering coefficient is high and un-
fortunately, this is not the case for Erdős-Rényi graphs. Therefore, Watts
& Strogatz have proposed another model to better fit this property of real
networks.

The random model of Watts & Strogatz starts from a fixed number of
nodes n and an average degree k supposed to be even. Then, the network
is built on a regular cycle such that every node is labeled from 1 to n and
a node i is connected to its k closer neighbors in terms of labels, i.e. k/2 on
the left of the cycle and k/2 on the right (node 1 is connected to node n to
close the cycle). Then, every edge is selected exactly once and is rewired
with a probability α ∈ [0, 1] to any other node in the network, avoiding
self-loops and multiple edges.

The regular cycle induces a high average clustering coefficient while
the rewiring probability reduces the diameter of the graph. One can easily
prove that when α tends to 1, a random graph created using this procedure
tends to an Erdős-Rényi graph with p = nk

(n
2)

, however the graphs are very
different for small value of α.

The expected degree distribution of random graphs created using the
model of Watts & Strogatz is much more complicated to derive, how-
ever it has been shown to be relatively similar to the degree distribution
of Erdős-Rényi graphs, i.e. the distribution peaks at the average degree
k and decays exponentially for smaller or larger degrees. This model is
more closely representing some real networks with a high clustering coef-
ficient, however many real networks, while being small-world, have been
observed to be also scale-free which means that their degree distribution

2.3. Random graphs 27

follows a power-law [Clauset, Shalizi, and Newman (2009)], P(k) ∼ k−γ,
with γ often observed between 2 and 3. This means that the degree distri-
bution is highly heterogeneous in the sense that very high and very low
degree nodes coexist in the network.

For this reason, another model of random graphs has been introduced
by Barabási and Albert (1999) based on the preferential attachment hypothe-
sis. This mechanism of preferential attachment mimics what has been ob-
served in social networks, in the internet topology or in citation networks.
All those networks tend to grow with time and as a new node joins the
network, there is a high probability that it creates links with other highly
connected nodes already present in the network. For example, a scientist
writing a paper will often cite other well known papers in the topic which
are already often cited, or a newcomer in a social network will tend to
follow famous people, rather than unknowns, which are already followed
by many.

A random network created using the Barabasi-Albert model starts with
a small set of n0 connected nodes with uniform degree k ≥ n0. Then, new
nodes are added to the network and connected to some of the already
existing nodes. More precisely, a new node will create a link with a node
i with probability

p(i) =
ki

∑j k j
.

Therefore, a node with a high degree has a higher chance to keep in-
creasing its degree for each new node joining the network. This will nat-
urally create a network with very high and very low degree nodes and
indeed the expected degree distribution follows a power-law with γ = 3.
The expected diameter of such a network is small and tends to grow as
D(G) ∼ O

(
log n/ log log n

)
.

The Barabasi-Albert model successfully reproduces some typical prop-
erties of real networks. However, it has often been observed that while
nodes tend to be locally and densely clustered, as represented by a high
clustering coefficient, they also tend to be sparsely connected with the
rest of the network. This means that often, one will observe many dense
clusters of nodes, only sparsely connected with one another. This struc-
tural distribution of nodes in a network is called a community structure
and will be the main focus of Chapter 3 and 4. Unfortunately, the ran-
dom models described in this section have been shown to be free of any
structural distribution of their nodes, however they introduced the ba-

28 Chapter 2. Elements of Graph Theory

sic requirements to build a more advanced model of small-world and
scale-free networks containing community structure that will be detailed
in Section 4.1.

2.4 Graph partitioning

Graph partitioning, or equivalently clustering, is the main topic of the
thesis and, while it can be defined in different ways, as we will show in
the following chapters, the basic principle is always the same and consists
in identifying coherent groups of nodes that are on average more similar
one with each other than with the rest of the network. Therefore, graph
partitioning is always tied to a fitness measure or a cost function to opti-
mize. Let us here introduce the fundamentals of graph partitioning while
we will refine them later.

We already presented some applications of graph partitioning in the
introduction, with the wedding seating problem or the water distribution
network and the identification of its bottlenecks, but the scope of applica-
tions is extremely wide and goes from load balancing problems to image
segmentation or from the mobile phone physical networks design to par-
allel jobs scheduling. Therefore, a common and general framework to
analyze those problems should be defined.

The elementary formulation of the partitioning problem is to define a
cut, i.e. a subset of the edges such that removing those edges creates 2
disconnected components in the graph. However, as we mentioned, one
is interested in optimizing an objective criterion to define an appropriate
cut. The objective function allows to discriminate the quality of different
cuts. The first type of cut is the minimum cut and consists in identify-
ing the minimal set of edges that bisects the graph. The minimum cut
problem is equivalent to the maximum flow problem, i.e. by identifying
the minimum cut, one can compute the maximum possible flow that can
be sent through the network. Unfortunately, the minimum cut criterion
tends to produce an unbalanced partition, i.e. for unweighted network,
the optimal solution consists in identifying the node of minimum degree
and to select its incident edges as the cut set. Other types of cuts have
been defined like the maximal cut, which consists in finding the maximal
set of edges that bisects the graph, or the sparsest cut which consist in
identifying the cut that minimizes the ratio between the number of edges
in the cut and the number of nodes in the smallest of the disconnected
components.

2.4. Graph partitioning 29

However, unlike the minimum cut which can be solved in polynomial
time, many cut problems like the maximum cut and the sparsest cut are
NP-hard. In practice, one needs therefore to somehow find an approxima-
tion of the optimal cut. One possible way to define such an approximation
is to use spectral partitioning which consists in defining a cut based on
the eigenvectors and eigenvalues of an appropriate matrix. For example,
let us define the Laplacian matrix as L = D− A where D is the diagonal
matrix of the degrees, D = diag(ki) and let us consider the ratio cut which
is the ratio between the number of edges in the cut and the product of the
size of the partitioned components. Note that λ = 0 is an eigenvalue of
the Laplacian matrix, associated to the eigenvector v = 1, and since L is
positive semidefinite, it is the minimal eigenvalue. In fact, one can prove
that the algebraic multiplicity of the eigenvalue λ = 0 gives the number of
connected components in the graph [Fiedler (1973)]. Moreover, the second
smallest eigenvalue of the Laplacian gives a lower bound on the minimal
value of the ratio cut [Hagen and Kahng (1992)] and the associated eigen-
vector v2 can be used to partition the graph. Let us define a partitioning
vector x ∈ {−1, 1}n such that nodes i and j are in the same partition if
x(i) = x(j). An approximation of the optimal ratio cut is given by the
partitioning vector defined as

x(i) =
{

1 if v2(i) > κ,
−1 otherwise.

with κ ∈ [min(v2), max(v2)]. In practice, one needs to scan for different
values of κ and select the one that produces the best value of the ratio
cut. Different matrices should be used for other types of cuts although
the principle is exactly the same.

Another approach to define graph partitioning is to somehow measure
how central are each node or each edge in the network. This follows
the idea of the works of [Granovetter (1983)] on “the strength of weak
ties”. It has been observed that most of the edges with large weight (the
strong ties) are often lying in the middle of densely connected clusters of
nodes and that it is in fact the edges with small weight (the weak ties) that
maintain the global connectivity of the network and allow the exchange of
information between clusters. Following this principle, different measures
of centrality have been defined [Newman and Girvan (2004); Klein (2010)]
like the edge betweenness centrality which is, for each edge, the number of
pairs of nodes (i, j) such that at least one of the shortest path between them

30 Chapter 2. Elements of Graph Theory

contains the edge. One would expect that the weak ties, which are the
edges that should define the cut, have a high betweenness centrality since
they will often be involved in the shortest paths between nodes of different
clusters. Therefore one can define a partition by sequentially removing the
edge with the higher betweenness centrality until an appropriate number
of clusters has been found.

Unfortunately, those formulations have a major drawback which is that
one should estimate beforehand the number of clusters to compute. For
spectral partitioning, one needs to recursively bisect the network and it is
not clear how many of such bisections should be performed. For central-
ity measure, one would need to choose the number of edges to remove,
and again, it is not clear how to decide this number. Therefore, other algo-
rithms and measures which can somehow derive an appropriate number
of clusters have been developed and we will present them in the following
chapters.

3 Community detection

Over the years, the evolution of information and communication tech-
nology in science and industry has had a significant impact on how

collected data are being used to understand and analyze complex phe-
nomena [Halevy, Norvig, and Pereira (2009)]. With the increase in stor-
age capacity and computational power, the amount of collected data has
grown tremendously. Clever analysis of those so-called Big Data are at
the core of many successful projects and suitable algorithms must be de-
veloped to deal with such data [Torralba, Fergus, and Freeman (2008);
Skillicorn and Talia (2012)]. Indeed, contemporary networks contain mil-
lions or even billions of nodes and are too large to comprehend without
appropriate tools. Even a simple visualization of the network is often
virtually impossible.

As already mentioned, to establish some behavioral properties of the
objects of interest represented in a graph, a popular technique is to clus-
ter together highly similar nodes [Simon and Ando (1961)]. When the
pairwise node similarity is encoded in the weight of the edges, this task is
known in graph theory as community detection which has become widely
popular after a publication by Girvan and Newman (2002). In this chapter,
we will first introduce in Section 3.1 the problem of community detection
and present different applications where the extraction of communities
had proven to be of main interest. We will then present in Section 3.2 a
general framework to quantify how representative is a community parti-
tion in a given network and derive different quality functions to infer the
communities. Then, in Section 3.3, we will introduce some of the many
existing algorithms and heuristics used for the extraction of community
structures. Those first sections serve as an outline of the literature but
we recommend [Porter, Onnela, and Mucha (2009); Fortunato (2010)] for
in-depth reviews of community detection in graph. Finally, in Section 3.4,
we will describe a new algorithm for community detection specifically
designed to analyze very large networks.

32 Chapter 3. Community detection

Fig. 3.1 Communities in a graph.

3.1 Communities in networks

Real graphs are undoubtedly not homogeneous and largely differ from
uniform random graphs like in the Erdős-Rényi model for example. The
degree distribution in real networks often follows a power law, with a
fat-tail, rather than a binomial or a Poissonian distribution. This implies
that nodes with very high and very low degree coexist in real networks.
Vertices do not only differ globally in their degree distribution but also
locally in their edges distribution. Indeed, it has often been observed
that the local concentration of edges in specific group of nodes is much
higher than the global density of the network. These groups of nodes
found in real networks are known as community structures [Girvan and
Newman (2002)] also termed nodes clusters. An example of community
structure is illustrated in Fig. 3.1 on a computer generated graph using
the LFR benchmark model that will be detailed in Section 4.1. One can
see that each community, represented by a specific color, forms a cohesive
group of highly interconnected nodes. Communities play a crucial role
in understanding a network: the nodes within these dense clusters are
expected to share many common properties or to fill a similar purpose
in the graph. Furthermore, extracting communities can also reveal some
behavioral or structural properties of the nodes. In social and metabolic
networks, a core/periphery structure is often encountered within the dif-
ferent communities [Granovetter (1973); Burt (1976); Jeong, Tombor, Al-

3.1. Communities in networks 33

bert et al. (2000); Guimera and Amaral (2005)]. The core nodes provide
the stability of the clusters and are the most internally connected vertices.
If such nodes are removed or inhibited, the community ceases to exist as a
cohesive group. On the other hand, the peripheral nodes act as mediators
between the different communities and allow the exchange of informa-
tion. This fundamental distinction between the roles of the nodes in a
community has been particularly studied in epidemiology. It has been
shown that the community structures may largely decrease the spread of
infectious diseases because only the peripheral nodes can disseminate the
infection between clusters [Balcan, Colizza, Gonçalves et al. (2009)]. Fur-
thermore, it is crucial to identify the core nodes as the target individuals
for vaccination policies [Shaw and Tunc (2012); Tizzoni, Bajardi, Decuyper
et al. (2013)].

Communities arise naturally in most, if not all, kinds of social net-
works where people form spontaneously groups sharing common char-
acteristics depending on different types of interactions like family, fiends,
work, sports and so on. The extraction of relevant clusters in large social
networks is a real challenge but provides accurate insights about the influ-
ence of individuals and spread of information [Wu and Liu (2008); Liu and
Hu (2005)]. It has been shown that the latter has similar dynamics than
the spread of infectious diseases and highly interests advertisement com-
panies: the term viral marketing has not been chosen at random [Leskovec,
Adamic, and Huberman (2006)]. Communities can also reveal unexpected
behaviors. For instance, Belgium is known to be mainly separated in 2
distinct regions using different languages, either french or dutch. How-
ever, the extraction of communities in a mobile telecommunication net-
work has highlighted the essential role of the capital, Brussels, for the
communication between the 2 large communities [Blondel, Krings, and
Thomas (2010)]. Surprising results have also been obtained in the analysis
of mobile telecommunication networks of France and Great-Britain [Blon-
del, Deville, Morlot et al. (2011); Ratti, Sobolevsky, Calabrese et al. (2010)]
where the geographical borders of the departments can be recovered as
the boundary of communities, even though the creation of those geo-
graphical borders goes back to several decades and should not influence
how people interact nowadays. Other types of social interactions have
been studied using community detection. Institutional and geographical
constraints have proven to control the patterns of scientific collaborations
[Evans, Lambiotte, and Panzarasa (2011)], criminal networks have been
studied to reveal the structure of large organizations of offenders [Krings,

34 Chapter 3. Community detection

Dabin, and Blondel (2011)] and a network of bottlenose dolphins has been
investigated to uncover their social strata [Arenas, Fernández, and Gómez
(2008)].

Furthermore, the potential applications of community detection go far
beyond the analysis of social behaviors. Scientists have given evidence,
using a goods exchange network, that trading communities reduce the
probability of international conflicts [Lupu and Traag (2012)]. The world-
wide air transportation network has been investigated to explain some
anomalies in the airports connectivity, i.e. the most connected cities are
not the most central ones, which reveals that geopolitical considerations
have to be taken into account to understand the airports connectivity
[Guimerà, Mossa, Turtschi et al. (2005)]. Community detection has also
yielded functional cartographic representations of the different roles of
nodes in metabolic networks, known to be extremely difficult to study
[Guimera and Amaral (2005)]. It has been used to better understand the
dispersal of coral larvae in the Great Barrier reef which is essential to
prescribe better management and control policies of the coral reef water
[Thomas, Lambrechts, Wolanski et al. (2014)]. Community extraction has
also been applied in image processing to reveal the contour of objects and
to track moving bodies in video [Hu, Ronhovde, and Nussinov (2012)]
which will be illustrated in Section 4.2.

In the following sections, we will explain how communities can be al-
gorithmically extracted from a given network and we will present in Sec-
tion 3.4 a new fast algorithm to unfold hierarchical community structures.
In many complex systems, the hierarchical nature of the communities is
evident, one of the best examples being the human body where atoms
form molecules, multiple molecules compose the cells, which in turn form
tissues that constitute the different organs, etc. We believe that it is essen-
tial to provide potentially different hierarchical levels of clustering when
identifying community structures. This allows to analyze the network
at various resolution levels depending on the application. In some cir-
cumstances, it might also be relevant to consider overlapping communities
which entails that each node may have multiple community assignments.
For instance, in a word association graph constructed based on a dictio-
nary, a word like “bright” may belong to communities of words associated
to either Intelligence, Astronomy, Light or Colors. Dedicated algorithms have
been developed to disclose overlapping communities like the clique per-
colation method [Palla, Derényi, Farkas et al. (2005)], the Order Statistics
Local Optimization Method (OSLOM) [Lancichinetti, Radicchi, Ramasco

3.2. Quality functions 35

et al. (2011)] or the link communities (rather than node communities) in-
troduced by [Ahn, Bagrow, and Lehmann (2010)]. However, in this work,
we will not consider the problem of overlapping communities, which of-
ten require an ad hoc definition, and we recommend [Farkas, Ábel, Palla
et al. (2007); Kumpula, Kivelä, Kaski et al. (2008)] for additional sources.

3.2 Quality functions

There is no universally accepted definition of communities. As men-
tioned previously, communities are informally defined as sets of nodes
with a high internal density, either in the number of internal edges or
their weight, and a low external density with the rest of the network.
This implies that the subgraph induced by a community (see Section 2.2,
page 23) should be at least weakly connected, otherwise the total internal
density could be increased by partitioning the community into its weakly
connected components without increasing the external density. However
a more explicit definition must be stated in order to compute what would
be the optimal (or at least a good) community partition in a given network.

The most straightforward description of communities is to assume that
they are spanned by the densest possible clusters, i.e. maximal complete
subgraphs or cliques [Palla, Derényi, Farkas et al. (2005)]. Nevertheless,
this characterization is quite restrictive and does not fit for real networks.
It is not clear that imposing the maximum clique (which is already NP-
hard to compute) as a community is appropriate since this can mask
smaller cliques for non-overlapping communities. Moreover, the notion of
clique is ambiguous in weighted networks and the core/periphery struc-
ture often encountered within communities in real networks can not be
represented by cliques.

A large internal density is not the only defining property of a commu-
nity which also requires a low external density to be accurately character-
ized. This leads to the definitions of strong and weak communities [Radic-
chi, Castellano, Cecconi et al. (2004); Hu, Chen, Zhang et al. (2008)]. A
community is said strong if the internal degree of all its vertices is higher
than its external degree. This definition is also quite restrictive and barely
found in real networks. Hence, communities have also been defined in a
weak sense as clusters with a total internal degree (the sum of the inter-
nal degree of its vertices) larger than its total external degree. This is the
fundamental hypothesis behind the planted partition model [Condon and
Karp (2001)].

36 Chapter 3. Community detection

While those characterizations of communities are more appropriate for
real networks, they lack the formalism to create an algorithm to actually
extract community structure from a given network. Therefore, it is often
more convenient to establish a global definition of communities by using
fitness measures or quality functions over the entire graph. As we will see
in the following sections, this can be done by defining a null model, i.e. a
graph which corresponds to the original graph at study for a specific set of
features, e.g. the degree distribution or the expected number of triangles,
but is essentially random in nature. Since a random graph is assumed
to exclude community structure, the null model serves as a comparison
to assess that the graph contains communities. Hereafter, we present a
general formulation proposed by [Reichardt and Bornholdt (2006)] which
defines the energy of a partition based on a chosen null model and pro-
vides a quantitative criterion to optimize the community assignment of
each node. An particularly popular cost function that we describe in Sec-
tion 3.2.2, namely the modularity, has been introduced by [Newman and
Girvan (2004)] and can be expressed within this general framework. This
cost function was one of the first to have the considerable advantage to
not require to know beforehand the number of clusters to extract. Let us
mention that, although here we first present the formalism of Reichardt &
Bornholdt, the modularity of Newman & Girvan was historically devel-
oped before but can be better interpreted within this general framework.

3.2.1 Reichardt & Bornholdt: energy of a partition

Reichardt and Bornholdt have introduced a model inspired from statisti-
cal mechanics in which they interpret the problem of community detec-
tion as finding the ground state of a spin glass i.e. a disordered magnet
[Reichardt and Bornholdt (2006)]. Each node i in the graph is labeled by
a spin variable σi ∈ {1, . . . , c}. This spin state represents the community
assignment of the node. In the optimal spin configuration, edges should
ideally connect nodes in the same spin state, i.e. in the same community,
while vertices in different spin state should be as sparsely connected as
possible. This leads to the definition of an energy function that favors
edges between nodes in the same spin state and penalize other existing
edges. More precisely, for any existing edges, A(i, j) 6= 0, the partition is

� rewarded by aij > 0 if the nodes are in the same spin state σi = σj;

� penalized by cij > 0 if the nodes are in different spin states σi 6= σj.

3.2. Quality functions 37

Conversely, the missing edges in the graph must also be considered to
evaluate the quality of a partition, otherwise the optimal community struc-
ture would be to assign an identical spin variable to all the nodes. That is,
for any non present edges, A(i, j) = 0, the partition should be

� penalized by bij > 0 if the nodes are in the same spin state σi = σj;

� rewarded by dij > 0 if the nodes are in different spin states σi 6= σj.

If we denote by δ(σi, σj) the Kronecker delta, i.e.

δ(σi, σj) =

{
1 if σi = σj
0 if σi 6= σj

,

we can write the energy of a specific partition σ as

H(σ) = − ∑
i,j∈V

[
aij A(i, j)− bij (1− A(i, j))

internal edges︷ ︸︸ ︷]
δ
(
σi, σj

)

−
[
cij A(i, j)− dij (1− A(i, j))
︸ ︷︷ ︸

external edges

] (
1− δ

(
σi, σj

)) (3.1)

where the minus sign before the summation symbol is a convention such
that the optimal partition is defined by the spin configuration of minimum
energy, i.e. the ground state of the infinite range spin glass. One can
rearrange the terms in Eq. (3.1) such that

H(σ) = −H0 − ∑
i,j∈V

[
αij A(i, j)− βij

]
δ
(
σi, σj

)
(3.2)

where H0 = ∑
i,j∈V

[
−
(
cij + dij

)
A(i, j) + dij

]
is independent of the partition

and therefore often discarded from the fitness measure. The values of the
parameters αij and βij, defined by

αij = aij + bij + cij + dij , βij = bij + dij,

depend on the null model one would like to compare the graph with, i.e.
a graph which matches the network under study for a specific set of cho-
sen features but otherwise random in nature and therefore without com-
munity structure. For instance, one can assume that a sufficiently dense

38 Chapter 3. Community detection

community should contain a lot of triangles [Arenas, Fernández, Fortu-
nato et al. (2008)]. This hypothesis is often expected within “balanced”
social networks [Traag, Van Dooren, and De Leenheer (2013)]: the friends
of my friends are often my friends too. In this framework, the parameters
αij and βij might be computed as

αij = ∑
k

A(j, k) A(k, i) δ(σi, σk) , βij = ∑
i,j,k

Nij Njk Nki δ(σi, σk)

where Nij is the probability that there exists a directed edge between the
nodes i and j in the null model. This triangle pattern model is well suited
to analyze social networks, however it illustrates a potential issue for the
choice of αij and βij. Finding the optimal partition for a cost function like
Eq. (3.2) is in general a NP-hard problem [Brandes, Delling, Gaertler et al.
(2006)], hence one will be interested in finding a good approximation of
the optimal partition using greedy algorithms. This means that it is often
desirable to keep the parameters α and β simple (in term of computation
complexity) and independent of the partition which is not the case here.

Another natural choice is to give rewards and penalties for the pres-
ence of the edges proportional to the weight of the edges. That is, the
parameter α is chosen such that αij = w(i, j) which imposes to use a wei-
ghted null model solely defined by the parameter β,

HW(σ) = − ∑
i,j∈V

[
W(i, j)− βij

]
δ
(
σi, σj

)
. (3.3)

One can observe that the energy of a partition, as defined by Eq. (3.2)
or Eq. (3.3), only depends on the internal edges in the different commu-
nities. Hence, to get more insights about the null model and the optimal
partition, we can rewrite those cost functions such that the summation
index runs over the community labels rather than the nodes. That is to
say,

HW(σ) = −
c

∑
r=1

lr − 〈lr〉 = −
c

∑
r=1

hw(σr), (3.4)

3.2. Quality functions 39

where lr is to the total weight of the edges inside community r and 〈lr〉 is
the corresponding expected value in the null model,

lr = ∑
i,j∈V

W(i, j)δ(σi, r)δ(σj, r), (3.5)

〈lr〉 = ∑
i,j∈V

βijδ(σi, r)δ(σj, r). (3.6)

This shows that this kind of fitness measures for the partition σ is additive,
meaning that the value of the cost function can be computed as the sum
of the individual fitness values of each community. As we will see later,
this property is very useful when one wants to find the optimal partition
using a greedy algorithm.

The formulation of Eq. (3.3) for the energy of a partition brings us
back to the original characterization of communities, defined as highly
connected clusters of nodes (large values of lr), but with the additional
assumption that the actual internal density of the clusters must be larger
than the one expected in a random network (〈lr〉 < lr for most r) which is
still to be defined. Reichardt & Borhnoldt proposed to define the param-
eter β as

βij = γRB pij (3.7)

where γRB ≥ 0 is a scaling parameter and pij is the expected number of
edges or the expected weight of an edge between nodes i and j, which
leads to

HRB(σ) = − ∑
i,j∈V

[
A(i, j)− γRB pij

]
δ
(
σi, σj

)
(3.8)

= −
c

∑
r=1

lr − γRB 〈lr〉p (3.9)

The scaling parameter γRB allows to analyze the network at different reso-
lution levels, independently of the chosen null model. Indeed, if γRB = 0,
the optimal partition consists of a single community with all the nodes,
which is the most coarse-grained representation of a network. On the
other hand, if γRB → ∞, then the optimal partition consists of n clusters,
each composed of a single vertex, which is the most fine-grained repre-
sentation of a network. The value of the resolution parameter γRB can
be chosen according to prior knowledge about the expected size of the
communities. However, there are ongoing research interests to charac-

40 Chapter 3. Community detection

terize stable partitions, i.e. partitions that are optimal for a large range
of values of γRB [Delvenne, Yaliraki, and Barahona (2010); Traag, Krings,
and Van Dooren (2013); Delvenne, Schaub, Yaliraki et al. (2013)]. Those
stable partitions are supposed to be the ones that provide the most signif-
icant clusters to represent the network [Lancichinetti, Radicchi, Ramasco
et al. (2011)]. However, the stable partitions extracted for different resolu-
tion levels are often independent, i.e. one can not build one of the stable
coarse-grained partitions based on one of the stable fine-grained partitions
because the structure of the communities tends to be completely reorga-
nized. Hence, what will be considered the “best” partition for a given
network will always depend on the applications.

In their original work, Reichardt & Borhnoldt have suggested to use
an Erdős-Rényi graph as the null model. This means that the parameter
pij in Eq. (3.7) is chosen constant

pij = p,

such that every edge in the null model exists with a constant probability p.
If we denote by nr the number of nodes in community r, one can compute
the expected number of edges inside community r as

〈lr〉p = pn2
r , (3.10)

hence self loops are allowed in this null model. This leads to

HRB(σ) = −
c

∑
r=1

lr − γRB pn2
r (3.11)

which shows that a set of nodes is sufficiently connected to be a commu-
nity if its internal density is larger than γRB p. As mentioned previously,
the null model should match the original graph for some of its structural
features, therefore the parameter p was chosen such that both graphs have
on average the same number of edges. This can be done by choosing

p =
m
n2

where m is the total number of edges, m = ∑
i,j∈V

A(i, j).

The selection of an appropriate null model is a major concern. With
the increasing interest for the detection of community partitions, many

3.2. Quality functions 41

different expressions of null models have been proposed [Perry and Wolfe
(2012); Mondragón (2014)]. Some null models have also been designed for
specific applications like the analysis of social networks [Milo, Shen-Orr,
Itzkovitz et al. (2002)] or biological networks [Milenković, Filippis, Lappe
et al. (2009)]. While the selection of a suited null model is often crucial, we
will keep here the discussion focused on generic null models. In particu-
lar, the choice of an Erdős-Rényi graph for the null model has two major
drawbacks. First, it is not straightforward to extend the model to weighted
graphs. While pij = p = m

n2 gives the probability to connect any pair of
nodes such that the expected number of edges in the null model is equal
to m, defining the weight of such edges would require additional and spe-
cific knowledge about the network. For example, it has been shown that
choosing a geometric distribution for the weights is not appropriate to re-
veal community structure [Garlaschelli (2009)]. Moreover, it is well known
that Erdős-Rényi graphs exhibit a Poissonian degree distribution for large
values of n, though in real networks, the degree distribution often follows
a fat-tail power law [Albert and Barabási (2002)]. This indicates that the
number of edges might not be the best feature to match in the original
graph. This observation leads to the definition of a null model with, on
average, the same degree distribution as the input network, which is called
the configuration null model. This is at the basis of the fitness measure
introduced by Newman & Girvan called the modularity.

3.2.2 Newman & Girvan: Modularity

Newman & Girvan have introduced a fitness measure called the modular-
ity [Newman and Girvan (2004); Newman (2004a); Leicht and Newman
(2008)], based on the configuration model that produces a random graph
with the same degree distribution as the original network [Luczak (1989);
Molloy and Reed (1995)]. The modularity has rapidly become one of the
most popular cost functions for community detection.

Let us first consider an unweighted directed network and explain how
one can build a random graph using the configuration model. As we will
see, there is a straightforward extension for weighted networks, however
the intuition behind the model might be more clear using an unweighted
graph.

As illustrated in Fig. 3.2, from an input graph, one can build two
sequences of nodes representing the edge list. The i(out) sequence cor-
responds to nodes having an outgoing edge, while conversely the j(in)

42 Chapter 3. Community detection

Input Graph:

1 3

42

Edge List:

i(out)

j(in)

1 1 2 2 3

2 3 3 4 4

Random Graph:

1 3

42

Random Shuffle:

2 3 1 2 1

4 3 2 3 4

Fig. 3.2 Configuration null model

sequence corresponds to nodes having an incoming edge. This implies
that each node is present in the (out)/(in) sequence as many times as its
out/in degree respectively. Hence, the kth edge can be recovered by taking
the kth element of the i(out) sequence as source and the kth element of the
j(in) sequence as destination.

Then, a random shuffle is applied to the outgoing and incoming nodes
sequences and the random graph is created by reading sequentially the
nodes in the shuffled sequences. This procedure rewires all the edges of
the graph, although maintaining the exact same degree sequence as the
original graph.

Based on this configuration null model, it is possible to define the ex-
pected number of edges pij between 2 nodes i and j in the random graph.
Each outgoing stub, i.e. a half-edge represented by a single element of the
i(out) sequence, is randomly matched to one of the incoming stubs, i.e. a
half-edge from j(in) sequence. The probability that an outgoing stub from

node i is rewired to one of the incoming stubs of node j is
kin

j
m where kin

j is
the number of incoming stubs attached to node j out of m = ∑

i,j∈V
A(i, j)

incoming stubs in total. If kout
i is the number of outgoing stubs from node

i, the expected number of edges from i to j can be approximated for large
m by

pij
∼= kout

i

kin
j

m
. (3.12)

3.2. Quality functions 43

One can observe that the configuration null model matches, on average,
both the number of edges in the graph and the degree sequence. Indeed,
we have that

∑
i∈V

kin
i = ∑

i∈V
kout

i = ∑
i∈V

∑
j∈V

A(i, j) = m,

so, the expected outgoing degree of a node i in the random graph kout
i,r is

the sum of the expected number of edges from i to each node in the graph
and is given by

〈
kout

i,r
〉
= ∑

j∈V
pij =

kout
i
m ∑

j∈V
kin

j = kout
i ,

and the expected number of edges in the random graph mr is given by

〈mr〉 = ∑
i,j∈V

pij =
1
m ∑

i∈V
kout

i ∑
j∈V

kin
j = m.

Based on a community partition, the modularity cost function, as intro-
duced by [Newman and Girvan (2004)], compares the actual edge density
within each community to the expected edge density in a random network
using the configuration null model. That is,

Q(σ) = ∑
i,j∈V

[A(i, j)
m
− kout

i
m

kin
j

m
]
δ(σi, σj) (3.13)

which, up to a scaling 1
m that does not change the optimal partition, can be

expressed in the framework of Reichardt & Borhnoldt, given by Eq. (3.2),
with αi,j = 1 and βi,j = pij as defined in Eq. (3.12), so γRB = 1 in Eq. (3.7).

As mentioned, the modularity has a straightforward extension to wei-
ghted graphs [Newman (2004a)], using the outgoing and incoming strengths
instead of the degrees for the null model

Qw(σ) =
1

mw
∑

i,j∈V

[
W(i, j)− sout

i

sin
j

mw

]
δ(σi, σj) (3.14)

where mw is the total weight of the input graph

mw = ∑
i,j∈V

W(i, j) = ∑
i∈V

sout
i = ∑

j∈V
sin

j .

44 Chapter 3. Community detection

The modularity score of a partition ranges in [−1, 1]. It equals 0 for a
partition with only 1 community

Qw(1) =
1

mw
∑

i,j∈V
W(i, j)− 1

mw
∑

i,j∈V
sout

i

sin
j

mw

=
1

mw
∑

i,j∈V
W(i, j)− 1

mw
∑
i∈V

sout
i

1
mw

∑
j∈V

sin
j = 1− 1 = 0,

and is in general negative for a partition with n communities, i.e. every
node defining its own community, if there are not many self loops in the
graph. Hence, community partitions associated to high positive values
of the modularity score are supposed to accurately represent the modu-
lar structure of the network. It was originally assumed by Newman &
Girvan that a modularity score larger than 0.3 for a given partition indi-
cates that the network under study has a community structure accurately
represented by the aforementioned partition. However, this hypothesis
has been questioned in recent studies. It has been shown that the opti-
mal modularity score tends to naturally increase with the size of the net-
works and that some particular graph classes can achieve arbitrary large
value of modularity like trees which intuitively do not contain commu-
nity structure [de Montgolfier, Soto, and Viennot (2011); Bagrow (2012)].
Moreover, the modularity suffers from local degeneracies and exhibits a
plateau landscape around its optimum [Good, de Montjoye, and Clauset
(2010)]. This means that there exists a large number of alternative par-
titions that, while being structurally different than the optimal partition,
achieve roughly a similar modularity score. This problem occurs for dif-
ferent versions of the modularity, e.g. unweighted in Eq. (3.13) or weighted
in Eq. (3.14), and is unfortunately more severe for networks with a mod-
ular structure. Therefore, one should avoid using the modularity score
to compare the partitions of different networks and even more so if the
networks are of different sizes. Additionally, one should not use the mod-
ularity score of a partition to assess the quality of that partition regarding
the modular structure of the network. Instead, additional knowledge and
thorough analysis of the extracted communities should be used to infer
the quality of the clusters regarding the application.

In addition, the communities extracted using modularity optimization
are subject to resolution limits, i.e. the size of the clusters is constrained
by the size of the network. The resolution limit phenomenon has been

3.2. Quality functions 45

Fig. 3.3 Resolution limits on the ring of cliques and the ring of rings
networks

introduced by [Fortunato and Barthélemy (2007)] using a ring of cliques
as represented on the left hand side in Fig. 3.3. In such network, the
natural communities are intuitively induced by each of the cliques, as
represented in light green in the figure. However, one can show that, if nc
is the number of nodes in each of the k cliques, then the modularity of a
partition that merges two consecutive cliques on the ring, as represented
in red in the figure, is higher than the natural partition if

nc (nc − 1) + 2 < k.

In other words, if the network is large and contains many small cliques,
then the communities induced by the cliques are too small to be optimal
according to the modularity, even if they are the densest clusters. More
formally, it has been proved that modularity maximization will in general
fail to extract communities with less than

√
m/2 edges. This resolution

limit also occurs when one considers the weighted modularity given by
Eq. (3.14) [Berry, Hendrickson, LaViolette et al. (2011)]. In this case, it may
be impossible to recover communities with a total internal weight less
than

√
mwε/2 where ε is the maximum weight of the inter-communities

edges.

Furthermore, the size of the communities extracted using modularity
optimization is not only lower-bounded but may also be constrained by
an upper bound in some situations. This has been termed the “field of

46 Chapter 3. Community detection

view limit” and has been highlighted by [Schaub, Delvenne, Yaliraki et al.
(2012)]. Though, in this work, the authors consider a slightly different
definition of the communities, i.e. communities act as local traps for a
random walker that navigates over the network following the existing
edges. Once the random walker enters a community, he should need a
large number of steps to exit from it if the community is well defined.
Hence, one can consider a “ring of rings” network, as represented on
the right hand side of Fig. 3.3. When a random walker enters one of
the external rings, the probability that he will stay within the same ring
is quite large and becomes even larger as the random walker goes more
deeply within the ring. This leads to a natural definition of communities
as the subgraphs induced by each of the external rings, as depicted in
light green in the figure. However, one can show that, if the number of
external rings k is such that

k <
nc

4
(nc + 2)
(nc + 1)

≈ nc

4

then a partition that splits each ring in two separate components, as repre-
sented in red in the figure, has a larger modularity score than the natural
partition. This “field of view limit” arises when communities are formed
by long chains of nodes which may happen when one considers graphs of
images or DNA sequences for example. We will have to consider this field
of view limit to define an appropriate null model for image segmentation
in Section 4.2.

Despite those theoretical limitations, the modularity cost function, as
given by Eq. (3.14), has been widely applied in many different fields and
practical contexts [Guimerà, Mossa, Turtschi et al. (2005); Kashtan and
Alon (2005); Mucha, Richardson, Macon et al. (2010); Conover, Davis,
Ferrara et al. (2013)], but it is not entirely known why modularity opti-
mization is able to achieve good clustering results in real networks. The
problem to find the community structure that maximizes the modular-
ity score, has been proven to be a NP-hard problem [Brandes, Delling,
Gaertler et al. (2008)]. Hence, a lot of different heuristics and greedy algo-
rithms have been developed to approximate the optimal partition and we
will present some of them in Section 3.3.

3.2. Quality functions 47

3.2.3 Resolution limit free models

More recently, different models for the spin interaction weights that do
not include any null model have been proposed. Hence, under some
assumptions, one can prove that such models do not suffer from resolu-
tion limits and provide in general a better network clustering. However,
the optimization of this kind of cost functions requires some additional
parameters tuning to extract the most significant partitions [Lambiotte,
Delvenne, and Barahona (2008); Delvenne, Yaliraki, and Barahona (2010);
Traag, Krings, and Van Dooren (2013)] which may increase significantly
the computational cost of community detection algorithms.

Constant Potts model

The Constant Potts Model (CPM) has been introduced by [Traag, Van Doo-
ren, and Nesterov (2011)] and is defined in the framework of Reichardt &
Borhnoldt of Eq. (3.2) by

αij = w(i, j),

βij = γ,

which leads to

HCPM(σ) = − ∑
i,j∈V

[
W(i, j)− γCPM

]
δ
(
σi, σj

)
. (3.15)

This model is essentially equivalent to the Erdős-Rényi null model if one
considers

γCPM = γRB p.

In this work, the authors give a precise definition of what it means for an
objective function to be free of resolution limits.

Let σ = {σ1, . . . σc} be an optimal partition of a graph G for a fitness
measure HG(σ). Then, the fitness measure H(σ) is resolution-limit-free if
any sub-partition ς = {ς1, . . . , ςk}, ςi ∈ σ, is also optimal for the graph
Gς induced by the nodes in ς, that is HGς

(ς) ≤ HGς
(θ) for any partition

θ of Gς. In particular, this implies that if one looks at each subgraph Gi
induced by a community σi, the optimal partitioning of Gi according to
HGi (σ) must be to cluster all the nodes together if HG(σ) is resolution-
limit-free. Hence, each community does not depend on the rest of the

48 Chapter 3. Community detection

network and is both locally and globally optimal. Clearly, the modularity
is not resolution-limit-free in this context since one can expect that the par-
titioning obtained for different subgraphs will be completely independent
of the partitioning of the entire graph.

Moreover, Traag et al. give a sufficient condition for an objective func-
tion to be resolution-limit-free. They define the weight functions αij(G)

and βij(G), associated to a graph G, as local if for any subgraph g ⊂ G,

αij(G) = λ(g)αij(g),

βij(G) = λ(g)βij(g),

where λ is a scaling that may depend on the subgraph g and they show
that any fitness measure that has local weights is resolution-limit-free.

Ronhovde & Nussinov

Ronhovde & Nussinov proposed a model [Ronhovde and Nussinov (2009,
2010)] with

αij = w(i, j) + γRN ,

βij = γRN ,

which leads to

HRN(σ) = − ∑
i,j∈V

[
(w(i, j) + γRN)A(i, j)− γRN

]
δ
(
σi, σj

)
. (3.16)

For unweighted graph, this cost function is equivalent, up to a scaling
factor, to the Erdős-Rényi null model with

γRN =
γRB p

1− γRB p
.

However, the optimal partition for weighted network might be different.

Label Propagation

Raghavan et al. introduced an algorithm for community detection called
Label Propagation [Raghavan, Albert, and Kumara (2007)]. As we will see
in Section 3.3.5, this algorithm searches for a partition where every node
has an internal degree or an internal strength within its community larger

3.2. Quality functions 49

than in any other community.
Even though in the original paper the authors do not optimize a qual-

ity criterion and rather define a spreading pattern of the labels over the
network, it has been shown by [Tibély and Kertész (2008)] that the Label
Propagation algorithm is equivalent to finding the local minima of a Potts
model with

αij = w(i, j),

βij = 0,

hence

HLP(σ) = − ∑
i,j∈V

W(i, j)δ
(
σi, σj

)
. (3.17)

The optimal partition for this model is meaningless since it is trivially
composed of a single community with all the nodes. However, Tibéli &
Kertész have demonstrated that the number of local minima is in gen-
eral much larger than the number of nodes and that some of those local
minima may be interesting.

3.2.4 The Map equation

The Map equation has been introduced by [Rosvall and Bergstrom (2008,
2011)] and has been shown to be an efficient objective function for com-
munity detection. It is inspired by information and optimal coding theory.
As it does not fit in the framework of Reichardt & Bornholdt, we will first
review some basic elements of information theory and then present the
fitness measure.

Information theory

Information theory refers to a branch of applied mathematics that quanti-
fies how information can be optimally represented, compressed, stored or
exchanged. For example, one may want to send a picture through a com-
munication channel, and for the sake of simplicity, assume that the picture
contains 1000 white pixels, so each pixel takes the value 255. One naive
solution is to send every single pixel, and since each pixel requires 8 bits
(to represent a number between 0 and 255), this solution requires to send
8000 bits of data. On the other hand, one could send only the value of

50 Chapter 3. Community detection

the first pixel (8 bits) and, for any consecutive pixels, send the difference
between the current pixel and the previous one, which in this case would
be always 0 (1 bits). Hence, this coding strategy is much more effective
and only requires to transfer of 1007 bits of data. This kind of compres-
sion is called lossless, i.e. one can recover the original picture without loss
of quality, and is the basic principle of the BMP file format. Informa-
tion theory was originally developed by [Shannon (1948)] and now finds
applications in many different problems of signal processing, e.g. natu-
ral language processing, cryptography, image processing, etc. [MacKay
(2003); Cover and Thomas (2012)].

Let us assume that x is an event that may occur with a probability
p(x). The information contained in the event x is defined by

I(x) = − log
(

p(x)
)

.

One can observe that the information of the event x is inversely propor-
tional to its probability to occur p(x). In the limit, if the event x happens
with probability p(x) → 1, observing x does not bring much information
since we knew it would happen with high probability. On the other hand,
if the probability p(x)→ 0, observing the event x is rare enough such that
when it happens, it gives a lot of information about the system. When
the logarithm is taken in base 2 (which will always be the case here), the
information of x is measured in bits and corresponds the number of bits
required to represent the event x. Suppose that we flip a coin and that
the event x is “the coin flipped to head”, which happens with probability
p(x) = 1

2 . Then we need I(x) = 1 bit to represent that x happens (or not),

code : 1
success

0
failure

If the event x corresponds to obtaining a specific face for a roll of an
octahedral dice, we need I(x) = 3 bits to represent x since p(x) = 1

8 ,

code : 111
success

000 001 010 100 011 101 110
failure

Given a random variable X, the Shannon entropy H(X) is a measure of
the uncertainty of the distribution of X. It is defined as the expected

3.2. Quality functions 51

information of a single realization of X, i.e.

H(X) = 〈I(X)〉 = − ∑
X=x

p(x) log
(

p(x)
)

.

The Shannon’s noiseless coding theorem demonstrates that the entropy of
X is the optimal lower bound on the average code length to represent all
the states of X without loss of information. In other words, for any code
c, such that the codeword ci is associated to X = xi,

H(X) ≤ −∑
i

p(xi) |ci| ,

where |ci| is the length of the codeword ci.

A code that attains the minimal average code length is called a Huff-
man code and an algorithm to extract such a code has been developed by
[Huffman (1952)]. For example, let us consider a random variable X that
can reach 4 different states with equal probability. Since ∀i p(xi) =

1
4 , the

optimal coding strategy requires at least

H(X) = −
4

∑
i=1

1
4

log
(1

4

)
= 2 bits per code,

and one can show that there exists a Huffman code defined by

xi p(xi) code
1 1/4 00
2 1/4 01
3 1/4 10
4 1/4 11

If the 4 distinct states xi are not equiprobable, then one can adopt a dif-
ferent strategy and give shorter codewords for the states that occur more
often, hence reducing the expected codeword length:

xi p(xi) code
1 1/2 0
2 1/4 10
3 1/8 110
4 1/8 111

52 Chapter 3. Community detection

In this case, the entropy of the X is H(X) = 1
2 +

2
4 +

3
8 +

3
8 = 7

4 and one can
check that the above code is a Huffman code since the expected length of
a codeword is also 7

4 . It is easy to show that there is not always a Huffman
code attaining the Shannon entropy. Consider a random variable with 2
states that occurs with probability p1 > p2. The entropy of this random
variable is always smaller than 1, however it is impossible to encode it
with an expected codeword length smaller than 1 since we need at least
1 bit per state. However, it has been proven that there exists always a
Huffman code with an expected codeword length larger of at most 1 bit
than the Shannon entropy [Cover and Thomas (2012)].

In the following, we will need to encode a sequence of events, which
means that we draw multiple realizations of the random variable X. For
example, consider the following sequence according to the previous 4
states variable and the associated coding sequences,

1− 4− 2− 1− 3 ⇒ 0011010010 equiprobable
⇒ 0111100110 not equiprobable

where the colors are only present to help the reader to match the original
sequence with the encoded sequences. When the equiprobable encoder
is used, the decoding of the sequence is unambiguous because we know
that we need to read 2 bits per state. However, when the not equiprobable
encoder is applied, the code needs to be prefix-free to be decoded unam-
biguously, which means that no code can appear as a prefix of another
code. Since we do not know the length of each code when the encoded
sequence is received, if a code appears as prefix of another code, then the
decoder can not know, when reading the bits consecutively, which of the
2 states is in the original sequence. This is not the case here and the pro-
posed code is prefix-free. First the decoder reads 0 and knows that the
associated state is 1. Then, the decoder reads 1 and knows that it needs
at least 1 more bit to decode the state. So, it reads 11 and again requires
another bit of data to decode the state. Finally, it reads 111 and knows
that the associated state is 4, and so on.

The Map Equation

The map equation introduced by Rosvall & Bergstrom is based on the idea
we previously mentioned: a random walker, following each edge propor-
tionally to its weight, should spend most of its time inside communities

3.2. Quality functions 53

and barely use edges across communities [Rosvall and Bergstrom (2008)].
One way to encode each step of a random walk is then to give a specific
codeword to each node of the graph. In this case, one can compute the
expected length of a codeword as the entropy of the stationary frequency
distribution to visit each node. If we defined the transition probability
matrix L for a graph G(W, E),

L = S−1W

where S is the diagonal matrix of the node strength, S = diag (W1), then
the stationary frequency distribution to visit each node is given, according
to the Perron-Frobenius theorem, by π, the dominant left eigenvector of
L,

LTπ = π,

which can be computed using a power method. The expected codeword
length of a single step of the random walker is then bounded by the Shan-
non entropy of π

H(π) = −∑ πi log
(

πi

)
.

However, we can do better here because there is an underlying network
structure such that only the transitions between connected states are pos-
sible. The actual lower bound is given by the Shannon entropy of the
associated Markov process [Cover and Thomas (2012)] which is given by

H(G) = ∑ πi L(i, j) log
(

L(i, j)
)

.

Finding a code that reaches this lower bound might be really complicated
or even impossible. The clever idea of the map equation is then to as-
sume that the steps of the random walker can be efficiently represented
by a two levels encoder (or with even more levels as presented in [Rosvall
and Bergstrom (2011)]). The first level encodes the different communi-
ties while the second level encodes the individual nodes. This allows to
reuse the codewords for the nodes in a community to encode the nodes
in another community since those can be differentiated knowing in which
community is the random walker. This efficiently reduces the expected
length of each step of the random walker. So, the problem of finding an
accurate community partition becomes to find an optimal code to min-
imize the expected description length of each step of a random walker
which is given by the map equation. Given a partition σ, one can com-

54 Chapter 3. Community detection

pute the probability that the random walker exits its current community
as

qout =
m

∑
k=1

qk,out (3.18)

where qk,out is the per step probability that the random walker exits com-
munity k, and is given by

qk,out = (1− τ)∑
i∈k

∑
j 6∈k

πi L(i, j) + τ
n− nk
n− 1 ∑

i∈k
πi (3.19)

where τ is a teleportation probability (hence, the random walker is a ran-
dom surfer). This teleportation parameter must be included to analyze di-
rected networks otherwise the random walker would end up being stuck
in stationary classes of the Markov process represented by L and not ex-
plore the entire network. Though, the clustering results are highly robust
to the choice of the value of τ and Rosvall & Bergstrom specify τ = 0.15
as a typical choice. The first term of Eq. (3.19) corresponds to the proba-
bility that the random walker is in community k, does not get teleported
and exits the community by following one of the outgoing edges, while
the second term corresponds to the probability for the random walker
to be teleported to one node outside community k. The entropy of the
movements between communities is then given by

H(qout) =
m

∑
k=1

qi,out

qout
log
(qi,out

qout

)
(3.20)

and gives a lower bound on the expected length of the codeword associ-
ated to communities. Conversely, the probability to move within commu-
nity k is given by

qk,in = qk,out + ∑
i∈k

πi (3.21)

where qk,out corresponds to the exit codeword, associated to community
k, which specifies that the random walker will exit the community in the
next step. The entropy of movements within module k is then given by

H(qk,in) =
qk,out

qk,in
log
(qk,out

qk,in

)
+ ∑

i∈k

πi
qk,in

log
(πi

qk,in

)
. (3.22)

3.2. Quality functions 55

Finally, the map equation reads

HM(σ) = qoutH(qout) +
m

∑
k=1

qk,inH(qk,in). (3.23)

We will present in Section 3.3.7 the Infomap,which is a collection of greedy
algorithms proposed by Rosvall & Bergstrom to optimize the map equa-
tion.

3.2.5 Surprise

For the sake of completeness, we conclude this section about fitness mea-
sures for community detection by introducing a very recent quality func-
tion called Surprise [Aldecoa and Marín (2011)], which is inspired by the
work of [Arnau, Mars, and Marín (2005)].

Based on a community partition, the Surprise computes the probabil-
ity to (surprisingly) observe at least as many internal edges as within the
proposed partition in a uniform random graph. Let us derive this proba-
bility by first denoting by M the maximum possible number of edges in
an undirected network,

M =
n(n− 1)

2
,

and, as previously, by m the actual number of edges in the graph

m =
1
2 ∑

i,j∈V
A(i, j).

Furthermore, we denote by F the maximum possible number of intracom-
munity edges for the given partition

F =
1
2 ∑

c
nc(nc − 1) =

1
2 ∑

i,j∈V
δ
(
σi, σj

)
,

where nc is the number of nodes in community c, and similarly we denote
by f the actual number of intracommunity edges

f =
1
2 ∑

i,j∈V
A(i, j)δ

(
σi, σj

)
.

Then, the probability to observe f internal edges, out of the F possible

56 Chapter 3. Community detection

internal edges in a graph with m edges is given by a hypergeometric
distribution

P(X = f | F, m, M) =

(F
f

)(M− F
m− f

)

(M
m

) .

The Surprise is defined by a cumulative hypergeometric distribution since
it computes the probability to observe at least f intracommunity links
over a maximal number of intracommunity links in the network given by
min(F, m), hence

HS(σ) = − log
min(F,m)

∑
j= f

(F
j

)(M− F
m− j

)

(M
m

) (3.24)

Aldecoa & Marin have recently shown that the Surprise qualitatively out-
performs other commonly used criteria for community detection [Aldecoa
and Marín (2011)]. Furthermore, the maximization of HS(σ) provides ac-
curate and natural partitions [Aldecoa and Marín (2013)] although it is
not entirely known how the measure is affected by resolution limits.

Even though the performances of the Surprise function are excellent,
the fact that the measure is not additive renders the extraction of signif-
icant community partitions computationally more intensive. Moreover,
this cost function still misses generalization for weighted or directed net-
works which are our main concern. Hence, we will not evaluate the per-
formance of this measure in details, even though we believe that it will
become increasingly popular in the future.

3.2.6 Summary

In this section, we introduced different cost functions for community de-
tection which should be optimized over the community assignment of
each node. Reichardt & Bornholdt introduced a general framework in
which most of them can be expressed as a particular case of the choice of
the parameters. The energy of a partition, that should be maximized in

3.2. Quality functions 57

Unweighted
network Weighted network

Reichardt & Bornholdt
αij = 1 αij = w(i, j)

βij = γRB pij pij =
mn2

c
n2

Newman & Girvan
(modularity)

αij = 1

βij =
kout

i kin
j

m

αij = w(i, j)

βij =
sout

i sin
j

mw

Traag et al.
(CPM)

αij = 1 αij = w(i, j)

βij = γCPM

Ronhovde & Nussinov
αij = 1 + γRN αij = w(i, j) + γRN

βij = γRN

Raghavan et al.
(label propagation)

αij = w(i, j) βij = 0

Table 3.1 Summary of cost functions for community detection.

order to extract relevant communities, is given, up to a scaling factor, by

H(σ) = ∑
i,j∈V

[
αij A(i, j)− βij

]
δ
(
σi, σj

)
.

Many researchers have proposed values for the parameters αij and βij and
we presented some of the most popular choices, summarized in Table 3.1.

However, not all criteria can be expressed in the framework of Re-
ichardt & Bornholdt. For example, we presented the map equation, in-
troduced by Rosvall & Bergstrom and based on information theory, that
quantifies the entropy of a random walker over the network. The optimal
community partition should entail the maximal compression of the net-
work and therefore minimize the average description length of a single
step of the random walker given by

HM(σ) = qoutH(qout) +
m

∑
k=1

qk,inH(qk,in).

Finally, we described another approach based on the probability to ob-
served surprisingly as many edges within the communities of a partition
than within the same communities but in a uniform random graph. This

58 Chapter 3. Community detection

probability is given by an hypergeometric distribution and the so-called
Surprise reads

HS(σ) = − log
min(F,m)

∑
j= f

(F

j

)(M− F

m− j

)

(M

m

)
.

The optimization of those cost functions is in general NP-hard. Moreover,
the Infomap and the Surprise are not additive in the sense that one can
not compute the value of those objective functions as the sum of the indi-
vidual fitness value of each community (some global considerations have
to be taken into account), which is often an additional challenge. In the
following section, we will present some of the existing algorithms that
greedily find an approximation of the optimal community partition and
then present a fast, efficient and highly parallelizable algorithm that we
developed.

3.3 Algorithms for Community Detection

Finding the optimal partition for a given cost function is in general out
of reach due to the NP-hardness of the underlying optimization problem.
Hence, multiple greedy algorithms and heuristics have been developed
to approximate the optimal community partition of a network. All those
algorithms have to choose a balance between their time complexity and
the expected quality of the extracted partitions. For example, one can
easily implement an exhaustive search through all the possible partitions,
however the associated complexity would grow faster than exponentially
since the number of partitions is given by the Bell number, and one should
not expect to get an accurate community partition for real networks, even
with only a few thousands nodes, in less than a lifetime.

In this section, we will describe some of the most popular algorithms
for community detection, either due to historical reasons or due to their
performance. Although, we will only present the algorithms that are ap-
plicable to weighted and directed graphs. Unless specifically stated other-
wise, we will always consider the maximization of a general fitness mea-
sure H(σ) knowing that any of the previously mentioned cost functions
can be used.

3.3. Algorithms for Community Detection 59

3.3.1 Spectral optimization

Spectral optimization refers to the optimization of the fitness measure
H(σ) using the eigenvectors and eigenvalues of the associated matrix
[Newman (2006)] and is similar to the classical spectral partitioning. One
can consider a general formulation

H(σ) = ∑
i,j∈V

B(i, j)δ(σi, σj) (3.25)

where the matrix B depends on the chosen cost function. For instance,
using the CPM yields B = W − γ11T , while modularity, with the configu-
ration null model, yields B = W − W11TW

m . Let us first assume that we are
looking for an optimal bisection of the network which will be defined by
a partitioning vector s such that si = 1 if node i is in the first community,
and si = −1 if node i is in the second community. One can write that

H(σ) = ∑
i,j∈V

B(i, j)δ(σi, σj) = ∑
i,j∈V

B(i, j)
sisj + 1

2

= K +
1
2 ∑

i,j∈V
B(i, j)sisj = K +

1
2

sT Bs

where K = 1
2 ∑i,j∈V B(i, j) is a constant independent of the partition σ. So,

the problem of maximizing H(σ) can be written as

max
s

sT Bs,

s.t. s = {−1, 1}n .

which is strictly equivalent to

max
s

sT ∼B s,

s.t. s = {−1, 1}n .

where
∼
B is the symmetric part of B,

∼
B= B+BT

2 , since for the antisymmetric
part

sT
(

B− BT

2

)
s =

1
2

(
sT Bs− sT BTs

)
=

1
2

(
sT Bs− sT Bs

)
= 0.

60 Chapter 3. Community detection

This optimization problem is NP-hard, however if we relax the con-
straint s = {−1, 1}n and only impose ‖s‖2

2 = n, the problem becomes
similar to optimizing a Rayleigh quotient for which the solution is known
to be given by the dominant eigenvector of

∼
B. Since

∼
B is symmetric, s can

be decomposed on the basis of the eigenvectors vi of
∼
B,

s =
n

∑
i=1

αivi , αi = vi
Ts.

Then, one can see that

4 (H(σ)− K) = ∑
i

αivi
T ∼B ∑

j
αjvj

= ∑
i,j

αiαjvi
T ∼B vj = ∑

i
α2

i λi

where λi is the eigenvalue associated to vi. This shows that, as a first
approximation, the partitioning vector can be chosen, according to the
dominant eigenvector v1, such that

si =

1 if v1(i) > 0

−1 if v1(i) < 0

One can then reapply the same procedure to each of the already extracted
communities in order to obtain sub-communities, and do so as long as the
fitness measure increases. However, one should not bisect the subgraph
induced by the community, but rather compute the dominant eigenvector
of the submatrix spanned by the set of nodes in the subgraph, to ensure
an increment of the cost function defined over the whole graph. Unlike in
the classical graph partitioning problem, the number of communities does
not need to be specified in advance and the algorithm stops when no more
positive gain of the fitness measure can be achieved by bipartitioning any
of the communities.

This algorithm has been shown to work very well for graph bisection,
however its performance declines when the graph contains more than
2 clusters, i.e. in the early stages of the algorithm, spectral partitioning
tends to cut some of the existing clusters which become impossible to
recover afterwards. Additionally, if some elements of the dominant eigen-
vector v1 are close to 0, then the assignments of the associated nodes may

3.3. Algorithms for Community Detection 61

be equivocal. The cut value of 0 that defines the partitioning vector s is
somehow arbitrary and a slight variation of this threshold can lead to very
different community partitions. Some authors [Wang, Shen, and Ouyang
(2008); Richardson, Mucha, and Porter (2009)] have proposed to use more
than a single eigenvector to define the partitioning vector. In this case,
the p dominant eigenvectors are computed and form an indicator matrix
X ∈ Rn×p, i.e. each row of X is an indicator vector of dimension p for
the corresponding node. The community partition of the graph is then
obtained by clustering the nodes in the induced p-dimensional space. Un-
fortunately, one needs to find an appropriate value for p, neither too large
to reduce the computational complexity, nor too small to have sufficient
information in the indicator vector to achieve good performances.

The dominant eigenvectors of
∼
B can be computed using a power method

in O
(
n
)

iterations and, even if the matrix
∼
B is full, its peculiar form allows

a faster computation of the multiplication with a vector in O
(
m + n

)
. So,

the complexity of the algorithm is O
(
n (m + n)

)
or O

(
n2) if the graph is

sparse, which is acceptable.

3.3.2 Simulated Annealing

Simulated annealing (SA) is a general discrete optimization technique pro-
posed by [Kirkpatrick, Gelatt, and Vecchi (1983)]. This algorithm is de-
signed to allow, at the beginning, the exploration of a large proportion of
the admissible set and to progressively narrow its search space. Let us
assume that we have 2 different states σ(1) and σ(2), that in our context
will end up being community partitions, and that the current state is σ(1).
Furthermore, we will denote by ∆H the variation of the quality function
to switch from state (1) to state (2),

∆H
(

σ(1), σ(2)
)
= H

(
σ(2)

)
− H

(
σ(1)

)
.

The algorithm accepts to switch to state σ(2) with probability

Pr
(

σ(1) σ(2)
)
=

1
k

eβ∆H(σ(1),σ(2))

62 Chapter 3. Community detection

where k is a scaling parameter over all the possible transitions from state
σ(1),

k = ∑
σ(i)∈Θ(σ(1))

eβ∆H(σ(1),σ(i)),

Θ
(

σ(1)
)
=
{

σ | σ(1) σ
}

,

and β is a noise parameter that can be considered as an inverse tem-
perature β = 1

T . One can see that transitions that reduce the cost func-
tion might be accepted which serves the objective to explore the search
space and reduces the risk that the algorithm gets trapped in local min-
ima. Hence, the algorithm starts with a high temperature, or a small β,
such that all the transitions are accepted with an almost uniform prob-
ability distribution. Then, the temperature is slowly decreased, and the
transitions with a positive variation of the cost function start to have a
higher probability to be accepted. Finally, β → ∞ and the algorithm only
accepts transitions with a strictly positive variation of the cost function un-
til no such transition exists. The system will always converge to a stable
state that can be an arbitrarily good approximation of the true optimum
depending on the chosen parameters.

This algorithm has been applied for community detection by [Guimerà,
Sales-Pardo, and Amaral (2004); Guimera and Amaral (2005)] by defining
two types of transitions, though in this version, the probability to accept
a transition is slightly different

Pr
(

σ(1) σ(2)
)
=

1 if ∆H > 0,

1
k eβ∆H(σ(1),σ(2)) if ∆H ≤ 0.

The first type of accepted transition is a local vertex switch, i.e. a ran-
dom node is taken out of its current community and assigned to another
neighboring community. The gain ∆H depends on the chosen cost func-
tion, but for example, the effect of a switch of node i from community c1
to community c2, denoted c1 → i→ c2, for the modularity is given by

∆HQ
(
c1 → i→ c2

)
= W(i, c2) + W(c2, i)−W(i, c1)−W(c1, i)

− sout
i
m

(
Sin

c2
− Sin

c1
+ sin

i

)
− sin

i
m
(
Sout

c2
− Sout

c1
+ sout

i
) (3.26)

3.3. Algorithms for Community Detection 63

where W(i, c) represents the sum of the edges from node i to nodes in
community c (apart from the self loop of node i) and Sout/in

c is the sum of
the outgoing/incoming strengths of nodes in community c,

W (i, c) = ∑
j∈c
j 6=i

W(i, j), (3.27)

Sout/in
c = ∑

j∈c
sout/in

j . (3.28)

The second type of transition is more global and consists of either a
merge of 2 communities or a split of a community into 2 distinct sets. Let
us again illustrate those transitions using modularity for 2 communities
c1 and c2. The gain of a merge, denoted c1 ∪ c2, can be computed as

∆HQ (c1 ∪ c2) = W(c1, c2) + W(c2, c1)−
1
m

Sout
c1

Sin
c2
− 1

m
Sin

c1
Sout

c2
(3.29)

where
W(c1, c2) = ∑

i∈c1
j∈c2

W(i, j).

The splits can be carried in different manners, for example via spectral
bisectioning or constrained simulated annealing of the subgraph induced
by the community. The gain for a split of a community c into 2 commu-
nities c1 and c2, denoted c→

{
c1, c2

}
, can be computed as the opposite of

the gain to merge c1 and c2

∆H
(
c→

{
c1, c2

})
= −∆H (c1 ∪ c2) (3.30)

It has been shown that applying global transitions leads to better ap-
proximations of the optimum than using only local moves. Typically, in
practical applications, one considers n2 local moves and n global moves
before updating the temperature of the system. However, the complexity
of the algorithm can not be estimated and depends on the initial tempera-
ture and the cooling process. Though, the algorithm is typically very slow
and should not be applied to graphs with more than 104 nodes.

64 Chapter 3. Community detection

1

2

3

4

5

6

7

8

9

10
11

12

13

14

15

16

17

18

19

20

−0.2

0

0.2

0.4

0.6

0.8

1

Dendrogram level

HQ(σ)

1

4

6

2

14

16

19

9

3

5

7

12

15

17

8

10

11

13

20

18

Fig. 3.4 Input graph and dendrogram created by Newman’s algorithm

3.3.3 Newman

After introducing the modularity as a quantitative criterion for the quality
of a community partition, Newman proposed to optimize this measure
using a greedy hierarchical agglomerative algorithm [Newman (2004b)],
although this algorithm can also be applied to optimize other additive
cost functions.

Newman’s algorithm starts with an initial partition with as many com-
munities as nodes in the network, i.e. each node defines its own commu-
nity. Then, communities are repeatedly joined in pairs. At each step, the
“join” that provides that largest increase or the smaller decrease of the
cost function is chosen among all possible joins. Since the network con-
tains initially n communities and at each step 2 communities are merged,
reducing the number of communities by 1, the maximum number of joins
is n − 1. This can be represented by a dendrogram, i.e. a tree showing
the order of each join, as illustrated in Fig. 3.4. A cut through this den-

3.3. Algorithms for Community Detection 65

drogram defines a community partition for which one can compute the
associated value of the fitness measure. Therefore, the best partition can
be selected among all the levels of the dendrogram, which is represented
by the dashed vertical line in Fig. 3.4.

At each iteration, the algorithm must choose the best possible join.
Yet merging a pair of communities between which there are no edges can
never improve the value of the cost function. Hence, the algorithm only
considers pairs of communities that are connected by at least one edge, so
in the worst case, it needs to check for O

(
m
)

possible joins. After a join,
the algorithm must update a matrix of the fraction of edges between each
communities by summing the corresponding rows and columns, which
can be done in O

(
n
)

flops. Finally, each join requires O
(
m + n

)
flops in

the worst case. Since there are at most n − 1 iterations, the complexity
of the Newman’s algorithm is O

(
(m + n)n

)
or O

(
n2) for a sparse graph,

which is similar to the complexity of spectral optimization.

Fast modularity

Clauset et al. have observed that the implementation of Newman’s al-
gorithm is very inefficient for sparse graphs and often wastes both time
and memory space for the storage and the operations on the communi-
ties connectivity matrix whose elements are 0 in the vast majority, at least
during the first iterations [Clauset, Newman, and Moore (2004)]. They
did not describe a new algorithm but rather improved the implementa-
tion of Newman’s original algorithm by using much more efficient data
structures called max-heap. A heap is a tree-based data structure with a
key for each node in the tree and an order relation on those keys. A heap
is a max-heap if the key of a parent node is always greater than the keys
of its children. Obviously, the largest key in a max-heap is always the
root node but note that there is no specific ordering between siblings or
cousins in the tree.

Instead of using the adjacency matrix, the algorithm of Clauset et al. is
based on 3 data structures that are maintained during the whole process:

1. a masked matrix M containing the variation of the cost function
when 2 communities (or nodes during the first iterations) i and j are
joined:

M(i, j) =

∆H(i ∪ j) if A(i, j) 6= 0,

0 otherwise.
(3.31)

66 Chapter 3. Community detection

Each row of this matrix is stored as a balanced binary max-heap,
such that an element can be found, deleted or inserted in O

(
log n

)

time and the maximum element can be found in constant time.

2. a max-heap L containing the largest element of each row of M as
well as the indices of the corresponding communities.

3. a vector K containing the scaled degrees Ki = ki
2m , or the scaled

strengths for weighted networks. This is required to optimize the
modularity, though for a directed network one would need 2 vectors
K(out) and K(in). Moreover, one needs to store the community sizes
in the vector K to optimize one of the resolution free models that we
introduced in Section 3.2.3.

The algorithm can then be summarized as follows

1. Compute the initial matrix M and store it as a balanced binary max-
heap for each row. Compute the elements of the vector K for each
node. Populate the max-heap L with the largest element on each
row of M. Set H to its initial value.

2. Select the largest element of M from L, join the corresponding com-
munities and update M, L and K. Update H = H + M(i, j).

3. Repeat step 2 until the largest element of L is negative. The value of
H is the approximation of the maximum value of the cost function.

Note that the update rule imposes that as soon as the largest element
of L is negative, all the elements of M are negative which in turn im-
poses that H can only decrease in consecutive iterations. So, the algo-
rithm can stop earlier than when there is no more than 1 community in
step 3. One can check that the update of the matrix M and the max-heap
L takes O

(
(|i|+ |j|) log n

)
flops where i and j are the joined communities

and |i| denotes the number of neighboring communities of i, read its de-
gree. Knowing that the total degree of the communities is ∑i |i| = 2m, the
worst case complexity is O

(
md log n

)
where d is the depth of the dendro-

gram. Typically, the observed depth of the dendrogram is O
(
log n

)
and

the complexity of the algorithm is O
(
m log2 n

)
or O

(
n log2 n

)
for sparse

network. This represents a huge improvement over the original algorithm
of Newman and this algorithm was the first to allow the analysis of large
networks (around 106 nodes). Let us mention that some authors have
pointed out that this algorithm might be biased and form large communi-
ties during the early steps at the expense of small existing communities.

3.3. Algorithms for Community Detection 67

In successive papers [Danon, Díaz-Guilera, and Arenas (2006); Wakita and
Tsurumi (2007)], different modifications of this algorithm have been pro-
posed, though, up to our knowledge, those specific algorithms have not
been extended to weighted or directed networks and we will not discuss
them further.

3.3.4 Schuetz & Caflisch

Schuetz & Caflisch have also observed the bias of the algorithm of Clauset
et al. towards the formation of large communities during the early stages
[Schuetz and Caflisch (2008)]. They proposed an alteration of the algo-
rithm of Clauset et al. to promote the creation of multiple clusters at the
same time, hence reducing the risk of condensation of the nodes into a few
large communities. This task is carried out by allowing at most l indepen-
dent joins in each level of the dendrogram. The qualifier “independent”
for the joins refers to a “Touched-Community-Exclusion-Rule” (TCER): a
join between 2 communities is accepted only if none of the 2 communities
have been involved in a previous join at the current dendrogram level.
Each level of the algorithm can be summarized as follows:

0. Initialize: mark all the communities as “not touched”,

1. Select the best join ∆H(i ∪ j) over all remaining connected pairs of
communities (i, j) where neither i nor j is marked as “touched”,

2. If the gain ∆H(i ∪ j) > 0, apply the join and tag both communities i
and j as touched. Otherwise, discard the pair (i, j),

3. Repeat steps 1 and 2 until l joins have been applied, or the best
gain is negative ∆H(i ∪ j) < 0, or all the communities are tagged as
touched.

While multiple clusters grow at the same time, the TCER imposes that
each community can not be part of more than one join per level, hence this
rule prevents the aggregation into a few large communities. Furthermore,
it guarantees that the variation of the cost function can be computed as
the sum of the gains of each accepted join because those are independent.
Finally, the TCER ensures that the cost function can only increase at each
level of aggregation since all the accepted joins have an associated positive
gain ∆H > 0. Note that even if ∆H(i ∪ j) > 0 and ∆H(j ∪ k) > 0, there is
no guarantee that ∆H(i ∪ j ∪ k) > 0.

68 Chapter 3. Community detection

Additionally, the algorithm of Schuetz & Caflisch further improves the
quality of the partition with a refinement step called “vertex mover”. The
refinement step is applied on the partition obtained after convergence of
the joining steps. All the nodes are sorted by increasing degree and se-
quentially reassigned to a neighboring community when that produces a
positive gain, ∆H(c1 → i→ c2) > 0. Those reassignments occur until any
individual vertex movement would decrease the quality of the partition.

The complexity of this algorithm is O
(
md log n

)
which is identical to

the complexity of the implementation introduced by Clauset et al. Indeed,
both algorithms are based on the same data structures and the same kind
of operations. However, the algorithm of Schuetz & Caflisch does not
require the creation and maintenance of the max-heap L, but on the con-
trary it needs to compute O

(
l
)

pairwise gains other than the maximum
which leads in general to a larger computational cost in practice. The
complexity of a single vertex mover step is O

(
m
)

since all edges have to
be considered to compute the different neighboring gains. However, the
overall complexity can not be estimated since it depends on the number of
vertex mover steps required to reach local convergence. But, the authors
claim that the running time of the vertex mover steps was always at least
one order of magnitude smaller than the running time of the joining steps
in all the example tested.

3.3.5 Label propagation

The label propagation algorithm has been introduced by [Raghavan, Al-
bert, and Kumara (2007)] and even though it is not designed to optimize a
particular cost function, it has been shown by [Tibély and Kertész (2008)]
that this algorithm extracts a stable partition for the resolution-limit-free
model defined by Eq. (3.17). In this framework, a partition is stable if
there is no individual vertex switch from one community to another that
increases the quality of the partition.

The label propagation algorithm starts in a configuration where each
node has a distinct label. Communities are defined during the whole pro-
cess as sets of nodes with the same label, hence the algorithm is initialized
with a partition in which each node defines its own community. Then, the
labels propagate through the network using a simple updating rule: a
node is selected and its label is updated to the label shared by most of its
neighbors. When there is a tie, one label is chosen uniformly at random.
As the labels propagate, some of them will disappear while others will

3.3. Algorithms for Community Detection 69

dominate inside groups of highly connected nodes. The node selection
is carried out by going through a randomly shuffled vector containing all
the node indices. In one iteration, all the nodes have their labels updated
at most once, then a new randomly shuffled index vector is created for
the following iteration. The updating of the node labels can be performed
either

• synchronously: at iteration t, a node takes the label shared by most
of its neighbors at time t− 1,

• asynchronously: at iteration t, a node takes the label shared by most
of its neighbors at time t for the nodes that have been already up-
dated, and at time t− 1 for the others.

The algorithm stops when each node has a label shared by most of its
neighbors. Note that due to the random selection of labels when ties occur,
it is often not possible to reach a stable labels configuration. The stopping
criterion is similar to the definition of strong communities introduced by
[Radicchi, Castellano, Cecconi et al. (2004)] as presented in Section 3.2.
However, strong communities should contain nodes with more neighbors
inside the community than outside it, while here communities contain
nodes with more neighbors inside their community than in any other
community.

Obviously, due to the randomness involved both in the nodes selec-
tion and in the tie breaking processes, multiple stable label configurations
may be obtained from the same initial configuration (when some prior
knowledge is available on the communities, one can choose to not la-
bel some nodes initially to favor the aggregation around specific center
nodes). However, Raghavan et al. showed that different community par-
titions obtained for a single network are in general similar. Though, one
can not choose easily a specific partition as the best one among all avail-
able partitions. Therefore, the proposed solutions are to either consider
overlapping communities or to aggregate the different partitions to form
a new overall partition. Assume that a node i takes the labels l1 and l2 in
2 different runs of the algorithm. Then, one way to aggregate the different
partitions is to give a new label to node i as (l1, l2) and to identify the com-
munity of node i as the set of nodes with the same label (l1, l2). However,
this solution tends to over-partition the network in many communities
that become smaller as the number of individual runs aggregated is large.

Each iteration of the label propagation algorithm takes a linear time

70 Chapter 3. Community detection

O
(
m
)
, however the overall complexity of the method depends on the num-

ber of iterations which can not be estimated but has been observed to stay
small in many examples.

3.3.6 Louvain Method

The Louvain method is a greedy hierarchical clustering algorithm intro-
duced by [Blondel, Guillaume, Lambiotte et al. (2008)]. This algorithm
has become extremely popular in recent years because it is fast, allow-
ing to analyze huge networks with billions of edges [Haynes and Perisic
(2009)], and produces significant partitions [Lancichinetti and Fortunato
(2009b)]. For example, this algorithm is now implemented within the fa-
mous business social network LinkedIn1 and allows everyone to visualize
the relationships between colleagues or customers and to better compre-
hend its professional network.

The algorithm is divided in two phases applied recursively as depicted
in Fig. 3.5. The first phase is the optimization phase which looks for a lo-
cally optimal partition by considering only individual vertex swaps. This
phase of the algorithm is similar to the vertex mover refinement step of
the algorithm of Schuetz & Caflisch in Section 3.3.4. As in many other
greedy algorithms, the community partition is initialized with a single
node per community and as many communities as nodes in the input
network. Then, based on the chosen cost function, individual nodes are
removed from their current community and swapped to the neighboring
community which produces the largest positive gain of the cost function.
For example, if we consider for a potential switch a node i in a community
c1 then its new community c2 is chosen such that

c2 = arg max
c

∆H
(
c1 → i→ c

)
(3.32)

where ∆H
(
c1 → i→ c

)
is given by Eq. (3.26) for the modularity and by

∆HCPM
(
c1 → i→ c

)
=W(i, c) + W(c, i)−W(i, c1)

−W(c1, i)− 2γCPM (nc − nc1)
(3.33)

for the constant Potts model where nc is the number of nodes in commu-
nity c. Similar formulations can be obtained for the other cost functions

1http://inmaps.linkedinlabs.com/

http://inmaps.linkedinlabs.com/

3.3. Algorithms for Community Detection 71

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15 16

17

18

19

20
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15 16

17

18

19

20

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15 16

17

18

19

20
81120

101318

146

214
91619

571215
317

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15 16

17

18

19

20
81120

101318

146

214
91619

571215
317

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15 16

17

18

19

20
81120

101318

146

214
91619

571215
317

C1

C3

C4

C2 1

2

3

4

5

6

7

8

9

10

11

12

13

14

15 16

17

18

19

20

Optimization

Optimization

Final clustering

Aggregation

Aggregation

Fig. 3.5 Optimization and aggregation steps of the Louvain method.

presented in the thesis.
If none of the potential switches to a neighboring community produces

72 Chapter 3. Community detection

a positive gain, that is c2 = c1 and ∆H
(
c1 → i → c2

)
= 0, then the node

either stays in community c1 if ∆H
(
c1 → i → {}

)
< 0, or otherwise is

removed from c1 and creates a new community.

The nodes are potentially switched in a random order. Each node
is considered once before a new random order of the nodes is created.
When no more local correction with a non negative gain can be applied to
increase the value of the cost function, the algorithm initiates the second
phase which is the innovative idea introduced by Blondel et al.

The second phase of the algorithm is the aggregation phase in which the
input graph is collapsed according to the communities found in the first
phase. This creates a new network where each single node corresponds to
a community in the previous graph as depicted between two consecutive
rows of Fig. 3.5. The purpose of this aggregation phase is to reapply the
optimization phase on the collapsed graph such that one can consider ad-
ditional improvements of the cost function by clustering groups of nodes
rather than individual nodes.

However, the cost function must still be optimized with respect to
the original network. This imposes that the creation of a community of
“super”-vertices in the aggregated graph should be equivalent to clus-
tering all the nodes of the associated communities in the original net-
work. Let us denote by c1 and c2 two communities in the original graph
G(V, E, W) which become “super”-vertices in the aggregated graph G′(V′,
E′, W ′). Then, for the modularity, one needs to impose that

∑
i∈c1
j∈c2

[
W(i, j)−

sout
i sin

j

mw

]
= W ′(c1, c2)− s′out

c1
s′inc2

m′w
(3.34)

which naturally leads to define an edge between 2 nodes in the aggregated
graph as the sum of the edges between the 2 associated communities in
the original graph,

W ′(c1, c2) = ∑
i∈c1
j∈c2

W(i, j). (3.35)

A nice property of the configuration null model is that by defining the
“super”-edges as in Eq. (3.35), the aggregated graph can be analyzed in-
dependently of the original graph and Eq. (3.34) is automatically satisfied.

3.3. Algorithms for Community Detection 73

Indeed,

s′out
c1

= ∑
c∈V′

W ′(c1, c) = ∑
c∈V′

∑
i∈c1
j∈c

W(i, j),

= ∑
i∈c1

∑
c∈V′

∑
j∈c

W(i, j) = ∑
i∈c1

∑
j∈V

W(i, j) = ∑
i∈c1

sout
i ,

the same property can be obtained for the internal strength sin
j and since

m′w = ∑
c1,c2∈V′

W ′(c1, c2) = ∑
c1,c2∈V′

∑
i∈c1
j∈c2

W(i, j),

= ∑
c1∈V′

∑
i∈c1

∑
c2∈V′

∑
j∈c2

W(i, j) = ∑
i∈V

∑
j∈V

W(i, j) = mw,

this implies that Eq. (3.34) is satisfied.

Unfortunately, this does not hold for the constant Potts model since
the condition of Eq. (3.34) becomes

∑
i∈c1
j∈c2

[W(i, j)]− γCPMn1n2 = W ′(c1, c2)− γCPM (3.36)

where n1 and n2 are the number of nodes in communities c1 and c2 respec-
tively. However, we can slightly modify the definition of the cost function
as

HCPM = ∑
i,j∈V

[
W(i, j)− γCPM Ni Nj

]
(3.37)

where Ni is the node size of node i. This form is equivalent to the original
definition if we initialize the node size to 1 for every node in the original
network. Then, the node size of a node in the aggregated graph must
be computed as the sum of the node size of the nodes in the associated
community,

N′c = ∑
i∈c

Ni

and the condition becomes

∑
i∈c1
j∈c2

[W(i, j)]− γCPMn1n2 = W ′(c1, c2)− γCPM Nc1 Nc2

74 Chapter 3. Community detection

which naturally holds.

The two phases of the Louvain method are recursively applied until
no cluster increasing the value of the cost function can be found in the
last aggregated graph. In other words, the stopping criterion is that the
optimal partition of the last aggregated graph, on the left hand side of Fig.
3.5, is to keep each “super”-vertex (the nodes of the aggregated graph)
alone in its own community. This algorithm produces hierarchical levels
for the communities, i.e. the partition at a specific scale is defined by
merging communities of the partition at a lower scale. This allows to
analyze a network at various resolutions, from a coarse-grained resolution
in the last aggregated network to a fine-grained resolution in the early
steps.

This algorithm has proven to produce good community structures. Its
complexity is expected to be O

(
n log n

)
but a precise complexity analysis

is still lacking due to the hardness to describe a priori the number of
corrections through all the nodes in the optimization phase. Although the
algorithm is fast in practice, the sequential corrections slow it down and
make it very hard to parallelize on a multiple core architecture which in
turn reduces the possible applications to very large networks. There has
been some attempts to parallelize the Louvain method, either using naive
optimization strategies or complex data structures and shared memory
[Staudt and Meyerhenke (2013); Bhowmick and Srinivasan (2013)], but
the quality of the extracted partitions tends to be much smaller than using
the original algorithm due to the lack of local information about the graph
topology within some threads. In Section 3.4, we will present a brand new
algorithm which is inspired by the Louvain method in the fact that it uses
the same aggregation step, but is faster while producing communities of
similar quality and being highly parallelizable.

3.3.7 Infomap

The Infomap is the optimization strategy introduced by Rosvall & Berg-
strom to maximize the value of the map equation which is given by
Eq. (3.23) [Rosvall and Bergstrom (2010)]. Rather than a dedicated algo-
rithm, the Infomap consists in a collection of algorithms applied to opti-
mize the measure.

First, one needs to compute the stationary node visit frequency π

3.4. Fast community extraction 75

which can be done by applying a power method to the matrix

L = (1− τ)S−1W +
τ

n
11T (3.38)

where τ is the teleportation probability. This teleportation probability
guarantees the existence of a unique steady state distribution π. In-
deed, the induced Markov chain is aperiodic and irreducible, hence by
the Perron-Frobenius theorem, the steady state distribution is unique.

Then, to optimize the map equation, the Infomap applies the algo-
rithm of Clauset et al. , presented in Section 3.3.3, by repeatedly merging
pairs of communities which produce the largest decrease in the expected
description length of the random walker. After convergence, the partition
is refined using simulated annealing, as presented in Section 3.3.2. Using
the same initial partition, the simulated annealing algorithm is initialized
at different temperatures and the run that produces the shortest descrip-
tion length, i.e. the minimal value of the map equation, is selected.

In a subsequent paper [Rosvall and Bergstrom (2011)], a multilevel
hierarchical extension of the map equation has been developed. In this
case, Rosvall & Bergstrom observed that the Louvain method was more
appropriate to optimize the measure and leads to better optima. Again,
the partition obtained after convergence is refined by considering both
submodules movements and individual node movements until the value
of the cost function can not be improved.

The complexity of the Infomap is directly tied to the form of the cost
function (two-levels or multilevel) and to the algorithms used. Moreover,
the map equation is not an additive cost function. Hence, computing the
variation when merging 2 communities is much more costly than for the
other cost functions which increases the computational complexity of the
method.

3.4 Fast community extraction

We will now present a new algorithm that we developed purposely for
community detection in very large graphs. Our algorithm is somehow at
the crossroads between the algorithm of Schuetz & Caflisch (SC), the La-
bel propagation method (LP) and the Louvain method (LM). The general
idea is to build several communities at the same time (SC), by updating
the nodes assignments synchronously (LP), and to iterate on those nodes
assignments until the cost function reaches a local optimum (LP-LM) be-

76 Chapter 3. Community detection

Algorithm 1 Fast community extraction

Input : a graph G(V, E)
Output : a community partition matrix C ∈ Rk×n

Initialize C = In, Ct = 0, Gt = G
. C final partition, Ct partition at level t for Gt

while Ct 6= I do
Ct ← Assign(Gt) . see Section 3.4.1
Ct ← Positive(Ct, Gt) . see Section 3.4.2
while ∃ i ∈ Vt, c ∈ Ct with ∆H (ci → i→ c) > 0 do

Ct ← Maximal(Ct, Gt) . see Section 3.4.4
Ct ← Positive(Ct, Gt)

Gt ← Aggregate(Gt, Ct) . Aggregation step (LM)
C = CtC . Aggregated communities from partition Ct

fore applying an aggregation of the network based on the community
partition (LM).

But, we want to maintain as much as possible the key property of
each of those algorithms. First, if one has access to several processors, it
is convenient to use all the computational power available to speed up
the execution, which is the main advantage of the synchronous LP. How-
ever this algorithm can not be used to optimize a specific cost function.
On the other hand, LM can be applied to any cost function (preferably
additive) but its updating rule makes it really hard to parallelize. In-
deed, consider that all the nodes may switch of community at the same
time and assume that a node i wants to plug into a community c, that is
∆H(i→ c) > 0. Two problematic situations may arise. First, others nodes
may join community c, which becomes c∪ {i1, . . . ik}, and this may render
the switch of i suboptimal or even decrease the quality of the partition if
∆H (i→ c ∪ {i1, . . . ik}) < 0. What is even worse is that the community c
can be split because some of its nodes were themselves switched, which
we can denote with a slight abuse by c → ∪

{
c1, . . . , cp

}
. In this case, the

switch of node i can simply not be applied at all.
In the following sections, we will show how we can build communities

while still allowing synchronous corrections of the nodes for any type of
quality function. Our method can be summarized as presented in Algo. 1
for which each step will be detailed in a dedicated section, apart from
the aggregation step which was explained in Section 3.3.6. Our approach
to allow synchronized corrections is to assign each node to another node

3.4. Fast community extraction 77

Algorithm 2 Initial nodes assignments

function Assign(G(V, E))
for all i ∈ V do

a(i) = arg maxj ∆H(i→ j) . Best neighbor assignment

end for
T ← graph

(
V,
{
(i, a(i)) ∀i

})
. Assignment graph

Ct ←WCC (T) . Weakly Connected Components
return Ct

rather than to a community, which is represented by the function As-
sign(G). By doing so, we induce directed tree-like structures over the
graph. In Section 3.4.1, we will show how those structures define com-
munities and what their characteristics are. Then, we will present how
we can apply corrections of the node assignments to improve the qual-
ity of the community partition. Two types of corrections are proposed.
First, we will discussed in Section 3.4.2 the Positive(Ct, G) correction step
which imposes that the gain to assign each node to its community must
be positive. Then in Section 3.4.4, we will present the Maximal(Ct, G)
correction step that imposes that the gain to assign each node to its com-
munity must be larger than the gain to assign it to any other community.
Finally in Section 3.4.5, we will discuss the convergence of our algorithm.

3.4.1 Definition of communities

As we have just explained, when communities are defined as sets of ver-
tices, one can not apply synchronous corrections of the nodes assignments
because each community may cease to exist as a cohesive group. We pro-
pose to define communities by assigning each node to another node rather
than to a community and, by doing so, we ensure that corrections can be
applied synchronously. Indeed, if a node requires a switch of its assign-
ment to a node, it will always be able to apply it whatever is the current
state of the communities in the network since the nodes are permanent
unlike the communities that are evolving.

To initialize the community structure, each node is assigned to its best
neighbor based on a chosen cost function independently of the choice of
the other nodes (see function Assign(G) in Algo. 2), that is for all i ∈ V,

78 Chapter 3. Community detection

the assignment a(i) is computed as

a(i) = arg max
j∈N(i)

∆H
(
i→

{
j
})

. (3.39)

where N(i) is the set of neighbors of i, i.e. N(i) = {j | (i, j) ∈ E}. For
nodes having multiple neighbors that provide the best positive gain, one
of them is chosen at random. It is easy to see that each node has a null
gain to be assigned to itself since the community partition does not change
in this case,

∆H
(
i→

{
i
})

= 0.

This implies that the gain to assign each node to its best neighbor must
be positive and nodes without any neighbor that provides a positive gain
will always be assigned to themselves, i.e.

max
j∈N(i)

∆H
(
i→

{
j
})

= 0 ⇒ a(i) = i.

As depicted in Fig. 3.6, the assignments of each node create a set of
directed subgraphs, spanning the input graph, which we will call the as-
signment graph. We define the community partition as the set of weakly
connected components of this assignment graph. For example, the assign-
ment graph presented in Fig. 3.6 induces 3 communities highlighted by
different colors. Throughout our algorithm, all the corrections will there-
fore be applied to the assignment graph which in turn will modify the
community structure.

Each weakly connected component of the assignment graph is de-
scribed by a directed tree-like structure. Indeed, one can see that a compo-
nent with k nodes contains exactly k edges since every node has a single
outgoing assignment. Therefore, each component is spanned by a di-
rected tree with one additional edge, hence justifying the name “directed
tree-like structure”. Furthermore, it is easy to prove that such structure
contains exactly 1 strongly connected component (SCC) in the form of a
directed cycle.

Let us consider a community c induced by the weakly connected com-
ponent of the assignment graph Tc. First, one needs to consider an undi-
rected version of the connected component graph Tu

c , and as just stated
this graph is a tree with exactly one additional edge. It is well known
[West (2001)] that adding one edge to a tree creates exactly one cycle.
Therefore, when one adds direction to the edges, the graph Tc can not

3.4. Fast community extraction 79

1

2

3

4

5

67

8

9

10
1112

13

14

15

1

2

3

4

5

67

8

9

10
1112

13

14

15

Input graph: Assignment graph:

Best
neighbor

SCC node
Branch node

Fig. 3.6 Input graph & assignment graph defining the communities

contain more than 1 cycle. However this graph must also contain at least
one cycle. Indeed, consider a sequence of nodes s =

{
i1, . . . , iq

}
such that

il+1 follows il if the assignment of il is il+1, a(il) = il+1. Now, consider
the assignment of the node iq. Either a(iq) ∈ s and our graph contains at
least a cycle, or a(iq) 6∈ s and we can increase the sequence s→

{
s, a(iq)

}
.

However, the number of nodes in Tc is finite and therefore the sequence
can not become arbitrary long. Hence, after following a sufficient num-
ber of assignments, the sequence s can not be increased anymore and the
last node q′ must have its assignment in s which creates a cycle. Therefore,
the directed tree-like structure spanning our communities contains exactly
one strongly connected component (SCC) in the form of a directed cycle.
The nodes composing those SCCs in each communities are represented by
1 in Fig. 3.6 and in the subsequent figures.

The SCC can be seen as a set of connected roots defining the core of the
community. The others nodes in Tc form what we will call the branches
or the leaves for nodes with an incoming degree in Tc of 0. The nodes
in the different branches are represented by 1 in Fig. 3.6 and the fol-
lowing. Obviously from the definition, there is a path from every branch
node to any root node in the SCC and our directed tree-like structures are
somehow reverse trees (for which paths are supposed to be from a root to
the leaves). For a directed graph, the SCCs can be of any size but in an
undirected graph, the SCCs are (in most cases) of size 1 (if a(i) = i) or 2.
Indeed, consider a maximal sequence of nodes in a SCC s =

{
i1, . . . , iq

}

such that a(il) = il+1 and a(iq) = i1 and assume that q > 2. It is clear

80 Chapter 3. Community detection

from the assignment rule that

∆H
(
i1 →

{
i2
})

> 0,

and furthermore,

∆H
(
i2 →

{
i3
})

> ∆H
(
i1 →

{
i2
})

> 0,

otherwise the assignment of i2 would have been i1 since G is undirected.
Similarly,

∆H
(
iq →

{
i1
})

> ∆H
(
iq−1 →

{
iq
})

> · · · > ∆H
(
i1 →

{
i2
})

> 0

which is impossible because i1 would have chosen iq as its assignment.
The only way to have a SCC of size larger than 2 for an undirected graph
is that all the gains ∆H

(
ip →

{
ip+1

})
are equal for all p and the assign-

ments, chosen at random in this case, are forming a loop as presented.
This occurs very rarely and was never observed in our experiments for
weighted networks.

The assignment of each node is clearly independent of the assignments
of the other nodes and only depends on the graph G. Hence, we can
easily parallelize this initialization of the communities and use as many
processors as available. The assignment of each node can be computed in
O
(
kout), so the complexity of Assign(G) is O

(
m
)
.

Even if each node had chosen the neighbor that provides the largest
local gain as defined by Eq. (3.39), the synchronicity of the assignments
might produce communities in which the presence of some nodes de-
creases the value of the cost function. Formally, one can easily build a
graph such that there exist 3 nodes i,j and k with ∆H

(
i→

{
j
})

> 0 and
∆H

(
j→

{
k
})

> 0, while ∆H (i→ {j, k}) < 0. This implies that some
correction steps should be applied to increase the overall quality of the
community partition. Our algorithm considers two types of corrections
applied recursively until a local optimum has been reached. We call them
the Positive and the Maximal corrections as presented in Algo. 1 and we
will discuss each of them in the next sections. We will also explain how
the communities should be stored in memory based on the assignment
graph such that the corrections can be applied efficiently.

3.4. Fast community extraction 81

Algorithm 3 Positive correction

function Positive(Ct, G(V, E))
for all i ∈ V do

g(i) = −∆H (ci → i→ {}) . Local gain
while ∃i ∈ ci with g(i) < 0 do

c1, c2 ← Split(ci) . Optimal assignment graph bisection
for all j ∈ c1 ∪ c2 do

g(j) = −∆H
(
cj → j→ {}

)
. . Update local gain

Ct = Ct \{ci} ∪ {c1, c2} . Update communities

return Ct

3.4.2 Positive correction

The first type of correction is designed to split communities by assuming
that every node should contribute positively to the fitness measure. We
define the local gain g(i) of a node i as the gain to assign the node to its
community, which can be computed as the opposite of the gain to remove
i from its community ci,

g(i) = −∆H (ci → i→ {}) . (3.40)

For obvious computational reasons, one can not check for all the possible
divisions of all the existing communities. First, our algorithm analyzes
only the communities that contain at least 1 node with a non positive lo-
cal gain. Those communities are the best candidates to find a split that
increases the cost function. Furthermore, we want to maintain the assign-
ment graph that defines the communities and therefore, the corrections
can only be applied by updating some node assignments. Hence, only a
small number of divisions are applicable and consist of removing exist-
ing assignments. So, the Positive correction step, as described in Algo. 3,
recursively searches for the optimal bisection of communities containing
a node with a non positive local gain, g(i) < 0, by removing at most 2
assignments.

Within a community, two different kinds of bisection that preserves
the rest of the assignment graph can be considered. First, we can remove
any single assignment within one of the directed branches as depicted in
Fig. 3.7. The node whose assignment was removed is then considered
self-assigned. This effectively bisects the community since there exists 2

82 Chapter 3. Community detection

1

23

4

5

67

1

23

4

5

67

1

23

4

5

67

Input community: Assignment removal: Final communities:

Fig. 3.7 Positive correction in a branch

SCCs after the removal of the assignment: the original SCC of the input
community and a SCC of size 1 in the disconnected branch.

Another possibility is to remove assignments within the SCC of the
input community. However, one can easily check that removing one as-
signment changes the structure of the SCC without actually splitting the
community. Hence, we need to remove any pair of assignments within
the SCC to bisect the community as depicted in Fig. 3.8. In this case, the
2 nodes, whose assignments were removed, are considered self-assigned,
which eliminates the SCC of the input graph and creates 2 SCCs of size 1.

For every such bisection, we can easily compute the associated gain of
the cost function as given by Eq. (3.30) and our algorithm simply selects
the best among all the possible assignment(s) removal and applies the
bisection. The local gain of each node within the input community is
then updated based on the new community structure and the positive
correction is reapplied if required (if one of the nodes still has a negative
local gain).

A priori, the complexity of the positive correction step may seem pretty
bad. To compute the bisection gain, one needs to know the total weight
of the internal edges in the input community and the total weight of the
edges between the 2 separated components. In the worst case scenario, if
the input community has nc nodes, one needs to check for O

(
nc
)

edges
per node in one of the separated components. Since the positive correc-
tion analyzes the removal of every single assignment, the worst case is
to have an assignment graph composed of one long chain of nodes, for

3.4. Fast community extraction 83

1

23

4

5

67

1

23

4

5

67

1

23

4

5

67

Input community: Assignments removal: Final communities:

Fig. 3.8 Positive correction in a strongly connected component.

which the sum of the lengths of the branches is O
(
n2

c
)

and the complex-
ity of the Postive function is O

(
n3

c
)
. However, with an efficient storage

of the communities based on the assignment graph, one can achieve a
linear complexity in the number of edges within the community and a
quadratic complexity in the number of nodes in the SCC, O

(
mc + n2

SCC
)

or O
(
nc + n2

SCC
)

for sparse graphs. The quadratic part does not increase
dramatically the running time of the algorithm because the size of the
SCCs is generally much smaller than the size of the communities. Finally,
the positive corrections applied in a community are clearly independent
of the state of all the other communities for additive cost functions, so
each correction can be assigned to a different processor.

3.4.3 Storage of communities

To apply our corrections, we need to update efficiently the communities
according to the modifications of the assignment graph. As we have just
discussed for the positive correction step, we need to determine the set
of nodes in a branch that remain connected to a particular node whose
assignment is removed. Moreover, we need to remove those nodes from
their community. Furthermore, in the following section, we will present
the maximal correction step for which we will also need to insert branches
in existing communities. This has led us to store the communities as
doubly linked lists (DLL). Using this data structure, the insertion and the
removal of a branch can be done in constant time and the computation of

84 Chapter 3. Community detection

assign.

1 2 6

4 5

3

7

8 12

11

9 10

DLL

Assignment graph: Linked list ordering:

Fig. 3.9 Node ordering in the doubly linked list (DLL) to store a com-
munity.

the set of nodes in a branch can be done in linear time in the size of the
branch.

An example of DLL representing a community is presented in Fig. 3.9
along with the assignment graph spanning the community. The purpose
of the DLL is to explore entirely each branch while progressing through
the assignment graph. More precisely, for any pair of nodes i and j in
the same community, if o(i) and o(j) are the orders of the nodes in the
DLL and o(i) > o(j), then there must be no path from i to j in the assign-
ment graph, unless i is in the SCC. Moreover, if k is the first node in the
assignment graph such that there is a path from i to k

I =
{

i, i1, . . . , ip, k
}

,

and from j to k

J =
{

j, j1, . . . , jq, k
}

,

with iα 6= jβ ∀α, β, then if o(i) > o(j), the order of any nodes in I must be
larger than the order of any nodes in J ,

o (iα) > o
(
iβ

)
∀α, β.

Visually, the DLL starts the ordering from a leaf node (with an in-degree
of 0 in the assignment graph). Then, we move down in the branch of this
leaf by following the assignments until a node with strictly more than 1

3.4. Fast community extraction 85

branch is discovered (with an in-degree > 1 in the assignment graph). In
this case, the DLL is pointed to another leaf in those branches and we
iteratively explore all the branches with the same principle.

The insertion of a branch in an existing DLL can be done in constant
time. Let p(i) denote the predecessor of a node i in the list and s(i) its
successor and assume that we have to insert a branch d1 ↔ · · · ↔ dk,
also stored as a DLL, in an existing community because the node dk has
rewired its assignment to a node i of that community. The insertion can
be done by

• updating the predecessor of node i such that it points to d1

p(d1) = p(i) , s(p(i)) = d1,

• updating the links of node i such that its predecessor is node dk

p(i) = dk , s(dk) = i,

which is done in constant time. The removal of a branch is done simi-
larly by updating the predecessor of the first node in the branch and the
successor of its last node.

Let us briefly illustrate how the DLL of Fig. 3.9 has been constructed.
While the nodes labels in the figure correspond to the order of the nodes
in the DLL, we will use them as regular labels for the sake of simplicity.
Without loss of generality, we can assume that we start the DLL by the ex-
ploration of the branch of node 1 . Following the edges in the assignment
graph, we obtain a first DLL as

1 ↔ 7 ↔ 8 ↔ 12

Then suppose that we find node 2 . We observe that it has not been
linked yet to any DLL. Since its assignment is node 7 which is already
linked, using the update rule, the DLL becomes

1 ↔ 2 ↔ 7 ↔ 8 ↔ 12

Then for example, we may find node 5 . By following the chain of as-
signments, we find the branch 5 ↔ 6 and we end up again on node

86 Chapter 3. Community detection

7 . The DLL becomes

1 ↔ 2 ↔ 5 ↔ 6 ↔ 7 ↔ 8 ↔ 12

and so on, until all the nodes have been assigned inside a DLL.

We already described different advantages of the DLLs to handle the
modifications applied to the community structure through the assignment
graph, however we did not mention that, in addition, it also allows to com-
pute in linear time all the bisection gains when a positive correction step
is required. As mentioned in Section 3.4.2, for each possible assignment
removal, we need to compute the sum of the weights of the edges between
the 2 disconnected sets. Using the ordering of the DLL and knowing the
number of branches attached to each node, we only need to iterate once
over each node in the community that undergoes a positive correction,
as represented in Fig. 3.10. Each panel of the figure corresponds to the
removal of 1 assignment in the community spanned by the assignment
graph presented in Fig. 3.9. In each panel, we present the assignment
graph of the community on the left hand side, with all assignments in
blue, the removed assignment in red and the assignments of nodes in the
removed branch in green. On the right hand side, we present a schematic
view of the adjacency submatrix of the community. Even though we do
not actually compute this submatrix, we believe that this representation
adds clarity for the reader.

Panel (a) corresponds to the removal of the assignment of the first
node. The gain of this removal is easily computed knowing the sum S1 of
the outgoing and incoming edges to all the other nodes in the community

S1 = ∑
j∈c

w(1, j) + w(j, 1),

as represented in red in the submatrix. Then, we store the stack S1 to
compute the effect of following removals and we define a first group g1 =

{1}. Similarly, panel (b) corresponds to the removal of the assignment of
the second node for which we compute the associated gain using

S2 = ∑
j∈c

w(2, j) + w(j, 2),

and we define another group g2 = {2}. However, thanks to the structure
of the DLL, we know that the edges between node 1 and node 2 will never

3.4. Fast community extraction 87

1 2 6

4 5

3

7

8 12

11

9 10

(a) Correction of node 1

1 2 6

4 5

3

7

8 12

11

9 10

(b) Correction of node 2

1 2 6

4 5

3

7

8 12

11

9 10

(c) Correction of node 3

1 2 6

4 5

3

7

8 12

11

9 10

(d) Correction of node 4

1 2 6

4 5

3

7

8 12

11

9 10

(e) Correction of node 5

1 2 6

4 5

3

7

8 12

11

9 10

(f) Correction of node 6

1 2 6

4 5

3

7

8 12

11

9 10

(g) Correction of node 7

1 2 6

4 5

3

7

8 12

11

9 10

(h) Correction of node 8

1 2 6

4 5

3

7

8 12

11

9 10

(i) Correction of node 9

1 2 6

4 5

3

7

8 12

11

9 10

(j) Correction of node 10

Fig. 3.10 Positive correction iterations through the assignment graph

88 Chapter 3. Community detection

1 2 6

4 5

3

7

8 12

11

9 10

(k) Correction of node 11

1 2 6

4 5

3

7

8 12

11

9 10

(l) Correction of node 12

Fig. 3.10(cont’d) Positive correction iterations through the assignment
graph

connect separated components anymore. So, we can update the value of
the stack S1 accordingly

S1 = S1 − w(1, 2)− w(2, 1).

Likewise for panel (c) where the third node removes its assignment, we
can compute the sum of the weight of the edges between the bisected sets,
define a group and update the stacks of the previous nodes

S3 = ∑
j∈c

w(3, j) + w(j, 3),

g3 = {3} ,

S1 = S1 − w(1, 3)− w(3, 1) , S2 = S2 − w(2, 3)− w(3, 2).

Then, we reach node 4 that requires a peculiar approach as represented
in panel (d). We know that, unlike the previous nodes, node 4 has 1 con-
nected branch, so to compute the sum of the weight of the edges between
the bisected sets, we do not compute a new stack and a new group but
rather update the previous one. Since the last group was g3, this leads to

∀j < 4, Sj = Sj − w(j, 4)− w(4, j),

S3 = S3 + ∑
j∈c
j 6=3

w(4, j) + w(j, 4),

g3 = {g3, 4} = {3, 4} .

Note that the summation index does not consider the edges to node 3

3.4. Fast community extraction 89

since this node is part of the previous group. As previously, we create
a stack S4 and a group g4 for node 5 which is a leaf, and update the
previous stacks. When we reach node 6 in panel (f), knowing that it has 2
connected branches, we can compute the sum of the weight of the edges
as the sum of the stacks of 2 previous groups (which were groups 4 and 3)
and of its edges. In this case, all those nodes will form a cohesive group
in the consecutive iterations, so we update the stack of the smallest group
index in this branch and discard the other

∀j < 6, Sj = Sj − w(j, 6)− w(6, j),

S3 = S3 + S4 + ∑
j∈c

j 6=g(3),g(4)

w(6, j) + w(j, 6),

S4 = 0, g4 = ∅

g3 = {g3, g4, 6} = {3, 4, 5, 6}

For a node i in the DLL, knowing the number bi of branches attached to
i and the number of groups ng already created, the steps to compute the
bisection gain can be summarized as follows

for all j < i do
Sg(j) = Sg(j) − w(j, i)− w(i, j) . update the previous stacks

gng−bi+1 = gng−bi+1 ∪ · · · ∪ gnb ∪ {i} . update the smaller index group

Sng−bi+1 = ∑
ng−bi+1
l=ng

Sl + ∑ j∈c
j 6=gng−bi+1

(w(i, j) + w(j, i))

for l = ng to ng − bi + 2 do
Sl = 0, gl = ∅

Using this iterative procedure for all the nodes in the community, we
can compute all the bisection gains with a linear complexity in the number
of edges in the community O

(
mc
)

since we use each edge exactly twice
(once in each direction, outgoing and incoming).

90 Chapter 3. Community detection

Algorithm 4 Maximal correction

function Maximal(Ct, G(V, E))
C = Ct
for all i ∈ V do

c∗i = arg maxc ∆H
(
ci → i→ c

)
. Best community for i

for all i ∈ V, if c∗i 6= ci do
draw p(i) uniform ∈ [0, 1]
if p(i) < p then . See Section 3.4.5

b(i) = branch(i) . Nodes in the branch of i
if ∆H

(
ci → b(i)→ c∗i

)
> 0 then

a(i) = arg maxj∈c∗i
∆H(i→ j) . Update assignment of i

C ← insert
(
b(i), c∗i

)
. . Insert branch b(i)

return C

3.4.4 Maximal correction

The positive correction described in Section 3.4.2 ensures that all the nodes
have a positive contribution to the cost function, i.e.

g(i) ≥ 0, ∀ i ∈ V,

as given by Eq. (3.40). However, it might be possible to further improve the
quality of the community partition by rewiring some of the node assign-
ments, that is by switching some nodes from one community to another.

The second type of correction is designed to assign each node to the
community which provides the largest gain based on the current partition.
This Maximal correction is summarized in Algo. 4. As in the Louvain
method, one can compute the best community to allot a node i, currently
in a community ci, as

c∗i = arg max
c

∆H
(
ci → i→ c

)
(3.41)

However, in our framework, communities are spanned by the assignment
graph such that if a node switches its assignment to reach a new com-
munity, it imposes to all the other nodes in its connected branches to also
change of community (without actually changing their assignments). This
is depicted in Fig. 3.11 for a switch of a node in a branch and in Fig. 3.12
for a switch of a node in the SCC of a community. In the latter, one can

3.4. Fast community extraction 91

1

23

4

5

67

8

9

10
1

23

4

5

67

8

9

10
1

23

4

5

67

8

9

10

Input communities: Optimal correction: Final communities:

Fig. 3.11 Maximal correction in a branch

1

23

4

5

67

8

9

10
1

23

4

5

67

8

9

10
1

23

4

5

67

8

9

10

Input communities: Optimal correction: Final community:

Fig. 3.12 Maximal correction in a strongly connected component.

observe that, since there exists a path in the assignment graph from any
node in the community to any node in its SCC, when a node in the SCC
switches its assignment, the SCC ceases to exist and the 2 communities
are merged.

Hence, for every node with a positive switching gain, i.e.

∆H
(
ci → i→ c∗i

)
> 0,

we first determine the set of nodes in its connected branches b(i), i.e. the
set of nodes with a directed path leading to i in the assignment graph.
Then, we allow the switch only if the total gain T(i) to switch all the
nodes in b(i) to c∗i is positive. The total gain can be computed as

T(i) = ∑
j∈b(i)

∆H
(

ci → j→
{

c∗i ∪ b(i)
})

(3.42)

92 Chapter 3. Community detection

Finally, if the switch of a node is accepted, i.e. T(i) > 0, we update the
assignment graph and insert the branch b(i) in the DLL of c∗i . The new
assignment of the switching node is computed as the best single node
assignment within the new community c∗i ,

a(i) = arg max
j∈c∗i

∆H(i→ j).

One can observe that the maximal correction does not require any
other information than the current community partition to compute the
potential switches of all the nodes. Furthermore, we apply all the maxi-
mal corrections synchronously, that is the best community for any node
only depends on the input partition and is independent of the correc-
tions applied to other nodes. The communities are updated after all the
new assignments have been computed. This allows an efficient use of a
parallel processor architecture where each core can handle a set of nodes
independently.

The set of possible corrections for a node is constrained to its neigh-
boring communities. Indeed, knowing that ∀i , g(i) > 0 from the positive
correction, the maximum gain

g∗(i) = max
c

∆H
(
ci → i→ c

)

can only be positive if the node shares at least one edge with the commu-
nity c∗i . Therefore, for each node, we only need to look for its neighboring
communities and the complexity of the Maximal correction is linear in
the number of edges O

(
m
)
.

Like for the initial assignment, the synchronicity of the maximal cor-
rections can lead to communities with nodes having a negative local gain.
Hence, after each maximal correction, we reapply a positive correction
step to ensure the positivity of the gain of each node. It is worth noting
that while the positive correction can only increase the number of commu-
nities, the maximal correction tends to decrease the number of communi-
ties by reassigning nodes in SCCs, e.g. Fig. 3.12. Hence, those 2 types
of correction balance each other. This sequence of maximal correction
followed by positive correction is repeatedly applied to the assignment
graph until all the nodes are assigned to a community with a maximal
non-negative gain.

When this stable partition is reached, the network is aggregated as in

3.4. Fast community extraction 93

a a
a−

ε a−
ε

a− 2ε

Odd iterations

Even iterations

Fig. 3.13 Infinite maximal correction with mutually attractive nodes.

the Louvain method. Then, the exact same procedure is applied to this
aggregated graph which provides another hierarchical level of clustering.
The algorithm stops when it can not extract a community structure in the
last aggregated graph, or in other words, when the optimal community
matrix in the aggregated graph is the identity, i.e. the mutual assignment
of any pair of “super”-nodes produces a negative gain. Unfortunately, the
total complexity of the algorithm can not be evaluated since it depends on
the number of maximal and positive corrections applied which can not be
estimated.

3.4.5 Convergence

Let us conclude the discussion about our method by addressing some
concerns about the convergence of the algorithm. One can observe that
the positive correction step only increases the value of the cost function.
Since the network is finite, the number of possible community partitions
is also finite, hence the cost function is discrete and upper bounded, so
the positive correction step converges. One can even bound the number of
iterations per positive correction. We have seen that the positive correction
removes existing assignment to bisect communities. This means that in
a community with nc nodes, we can apply at most nc − 1 assignments
removals. Hence, given a community partition, the number of iterations
for one positive correction step is bounded by ∑c (nc − 1).

However, we can not apply a similar reasoning for the maximal correc-
tion. Each individual modification of the assignments leads to a positive
variation of the cost function because it may be accepted only if the to-
tal gain is positive T(i) > 0. However, all the assignments are corrected

94 Chapter 3. Community detection

at the same time and one can not guarantee that this leads to a positive
variation of H. Indeed, the distribution of the weight of the edges might
prevent this iterative procedure to converge. In some situations, mutually
attractive or repulsive nodes would permanently switch their community
assignments which produces an infinite sequence of maximal corrections.
An example of such distribution of the weight of the edges is presented
in Fig. 3.13 for which only the weights of the relevant edges are dis-
played. This assignment graph defines 2 communities for which we will
analyze the assignments of the 2 top nodes 1 . Let us assume that the
initial assignments of the nodes are the dashed blue edges, hence each
node has an internal weight of a in its community. In this case, both 1
nodes have a positive gain to switch community because each shares 2
edges with the other community (the gray edge of weight a− 2ε and the
dashed green edge of weight a− ε) and their total internal weight would
become 2a− 3ε > a. Hence, the assignments of both nodes are rewired
to the dashed green assignments since those are the largest single nodes
assignment in the other community. But, due to the synchronicity of the
rewiring step, the two 1 nodes stay in different communities. In this con-
figuration, both nodes have again a positive switching gain because their
current internal weight has become a − ε (and not 2a − 3ε as expected)
while their total weight to the other community is 2a− 2ε (from the gray
and the dashed blue edges). Hence, both nodes switch back to the dashed
blue assignments and the system will keep oscillating between those 2
states.

This kind of phenomenon also arises on consensus problem for syn-
chronous multi-agent systems [Sarlette, Tuna, Blondel et al. (2008); Carli,
Fagnani, Frasca et al. (2010)]. While various strategies can be applied,
we designed our algorithm to accept each individual (maximal) correc-
tion with a probability p < 1 which ensures convergence. For instance,
in the example provided in Fig. 3.13, if only one of the 2 assignment is
swapped, both 1 nodes would have a total internal weight (2a− 3ε and
2a − 2ε) larger than the external weight (a and a − ε). This probability
p somehow balances the quality of the clustering with the computational
time required to meet a stable state and guarantees convergence. When
p is small, only a few corrections are accepted and the cost function will
mostly increase at each step. The algorithm will then converge quickly to
a local optimum but will not explore much of the search space. On the
other hand, when p is large, more corrections are accepted, potentially
increasing the overall quality of the communities but also the number of

3.4. Fast community extraction 95

iterations required to reach convergence.
To observe why the introduction of this probability p ensures conver-

gence, let each possible community partition be represented by one state.
The partition at iteration t + 1 only depends on the partition at iteration t,
hence the sequence of corrections is a Markov process and correspond to
a walk over the associated Markov chain of community partition states. If
p = 1, all the maximal corrections are accepted and the Markov process
is fully deterministic, i.e. from any starting state there is only one reach-
able state. We know that from any initial partition, after sufficiently many
steps, we end up in a stationary class of the Markov chain, but one can
not have any guarantee about the size of this class. If the stationary class
is of size larger than 1, then the algorithm will not converge as presented
in Fig. 3.13. When p < 1, the Markov process becomes stochastic. In
this case, from any starting state, one could reach potentially many states,
each corresponding to the acceptance of a subset of all the maximal cor-
rections. Let us show that this guarantees that all the stationary classes are
of size 1, thus the stationary classes are stationary states and the algorithm
converges to one of those stable partitions.

To see this, first observe that there exist stationary states. Indeed, the
community partition associated to the global optimum of the cost function
can not be improved, hence no corrections could be applied to this par-
tition and the associated state must be stationary. Moreover, for any cost
function, there are often multiple local optima for which the associated
states could be stationary.

Furthermore, from any initial state of the Markov chain, there exists a
path leading to a stationary state. A valid strategy to identify such a path
is to only accept one maximal correction per iteration. If we do so, the cost
function increases at each iteration because the only corrections that can
be accepted have a positive global gain T(i) > 0, as given by Eq. (3.42).
Then, after a sufficient number of corrections, the cost function can not be
further increased and reaches a local optimum. So, the state associated to
this community partition is stationary.

This imposes that all the stationary classes of our Markov process are
of size 1 as soon as p < 1. For any set of states of dimension larger than
1, there exists a path from each state in the set to a stationary state as we
have just demonstrated. Hence the set can not be a stationary class.

Finally, it is well known that from any starting state, any random walk
over a Markov chain always ends up in a stationary class with probability
1. This means that, if p < 1, from any initial partition, our sequence of

96 Chapter 3. Community detection

positive and maximal corrections converges with probability 1.

3.4.6 Concluding remarks

In this section, we have presented a new algorithm for community detec-
tion based on a particular structure that we called the assignment graph
which is used to define the communities from its weakly connected com-
ponents. We then introduced two types of local corrections of the assign-
ment of the nodes (the positive and the maximal corrections) to greedily
improve the value of the quality function and we demonstrated how those
corrections can be efficiently applied to maintain the structure of the as-
signment graph. We showed that the corrections of the assignment of the
nodes can be applied synchronously which makes the algorithm highly
parallelizable. In the following chapter, we will see that another advan-
tage of the assignment graph is that it allows our algorithm to converge
faster (i.e. in less iterations over the entire set of nodes) than the Louvain
method that is its main competitor in terms of computational time.

Nonetheless, other types of local (or potentially global) corrections
could be introduced to enrich the algorithm but that would either in-
crease the computational time to extract a community partition or prevent
the algorithm to be efficiently run on a parallel architecture. Moreover,
one could relax or even remove some of the checking rules to investigate
a potential correction of a node assignment. For example, we only ap-
plied a positive correction step for communities containing a node with a
negative local gain (Eq. (3.40)). Although, it might happen that the value
of the cost function would still increase if some communities were split
even if they do not contain such nodes. Allowing more potential correc-
tions would naturally increase the computational cost of the algorithm
but it could also increase its efficiency. Finally, we imposed our correction
steps to result in strictly positive variation of the cost function. But, as for
simulated annealing (see Section 3.3.2), one could consider additional ex-
plorations of the search space by allowing sometimes corrections leading
to small negative variations of the cost function. Though, to guarantee
the convergence, one will need to ensure at some point that all the correc-
tions are strictly increasing the quality function and it is not sure that the
assignment graph would not return to a previous state which will make
the additional exploration useless. We let those investigations on possible
modifications of the algorithm for future research and, in the following
chapter, we will apply our community detection algorithm to synthetic

3.4. Fast community extraction 97

benchmark graphs to prove its efficiency and on graphs extracted from
pictures or video frames as a segmentation method.

4 Performance of algorithms and applications

The popularity of an algorithm is often tied to two factors: the reputa-
tion of its authors and its performance. The former is rather arbitrary

and, until recently, the efficiency of community detection algorithms was
hardly compared besides their complexity. Scientists have never agreed
on a set of benchmark networks with known community structures that
could be shared and used as standard. The very few available real graphs,
like the Zachary karate club or the bottlenose dolphins networks, are ei-
ther too small or containing communities so strongly defined that all al-
gorithms have a similar performance on those benchmark graphs. Obvi-
ously, there exist many large real networks that could be used to evaluate
the quality of the different methods but, their “true” community parti-
tions are not known a priori which makes any quantitative analysis diffi-
cult. Another problem is that, many real networks are built on data that
belong to private companies and organizations, like mobile telecommuni-
cation exchanges between customers. Due to the sensitivity of those data,
scientists can only acquire them under non-disclosure agreement, hence
they cannot be shared between researchers.

This explains why so many greedy algorithms and heuristics have
been developed, without being able to state which one was the best to
use in a practical context. Hence, there have been many efforts recently
to define appropriate models to create computer generated benchmark
graphs designed to assess the quality of community detection algorithms.
In the first section of this chapter, we will present the LFR model which
has established itself as a reference in the field [Lancichinetti, Fortunato,
and Radicchi (2008); Lancichinetti and Fortunato (2009a)]. We will there-
after apply all the algorithms that we presented in Chapter 3 to this model
and thoroughly compare their results against various parameters settings.
We will show that our method, described in Section 3.4, produces quan-
titatively similar results as some of the best available algorithms and that
its main advantage is its computational speed which outperforms all the
other methods. Hence, we strongly believe that, in the future, it will al-
low scientists to analyze huge networks or to process massive amounts of

100 Chapter 4. Performance of algorithms and applications

data.
Then in Section 4.2, we will present the results of our algorithm ap-

plied to uncover the boundaries of objects of interest inside an input pic-
ture, which is known as image segmentation. We encountered this prob-
lem in the early development of our algorithm and it largely inspired the
method by bringing out the needs for a fast and parallelizable algorithm
for community detection. We will extend this framework for 3D segmen-
tation and present some early results on video tracking in Section 4.2.3.
Finally, in Section 4.2.4, we will show how our algorithm has been used
in a practical application to extract the boundary of different materials in
microstructural images. This allows to generate an accurate mesh over the
polycristal microstructure to simulate its deformations.

4.1 LFR benchmark model

To analyze the efficiency of different community detection algorithms,
one needs to apply them to networks for which the actual partitions are
known and then compare their results with those true partitions. Since
the true community partitions of real networks are rarely known a pri-
ori, it makes more sense to apply the different algorithms to computer
generated benchmark graphs in which the exact partition can be defined
beforehand. One can then quantitatively compare the outcome of each
method and evaluate their performance. Naturally, if an algorithm failed
to extract an accurate partition for computer generated benchmark graphs,
it does not mean that this algorithm is bad in general but rather than it
may fail to extract communities in networks that exhibit similar properties
to the generating model of the applied benchmark. But, if the generating
model is broad enough to simulate many real networks, one can reason-
ably extrapolate the results on computer generated benchmark graphs to
real networks.

A particular class of random graphs has become popular after the
works of Newman & Girvan [2002] and is based on the planted `-partition
model [Condon and Karp (2001)]. In this model, the graph is composed
of l communities with v vertices each, so the total number of vertices is
n = l v. The edges are added in the graph at random using two prob-
ability parameters. For any ordered pair of nodes (i, j), an edge from i
to j is added with probability pin if both nodes belong to the same com-
munity. Otherwise, if they belong to different communities, the edge is
added with probability pout. Therefore, the expected internal density of

4.1. LFR benchmark model 101

each community is pin and their expected external density is pout. This
implies that the communities are well defined as long as pin > pout which
defines a range of parameter values where the algorithms should be able
to extract good community structures. In graphs created with the planted
partition model, the expected internal and external degrees, respectively
defined for each node as the expected number of incident edges directed
within or outside its communities, are equal for all nodes and given by

〈kint〉 = pin (v− 1) , (4.1)

〈kext〉 = pout (l − 1) v. (4.2)

Newman & Girvan [2002] have considered a slightly different version
of this model where they fixed the average degree to 〈k〉. Therefore, the
probability parameters pin and pout are not independent and bound by
the relation

〈k〉 = 〈kint〉+ 〈kext〉 = pin (v− 1) + pout (l − 1) v. (4.3)

It is then easier to work with a topological mixing parameter µT ∈ [0, 1]
which sets, for each node, the expected proportion of edges directed out-
side of its community. Hence, this topological mixing parameter is just
another way to control the strength of the communities in the random
network. The expected internal and external degrees then read

〈kint〉 = (1− µT) 〈k〉 , (4.4)

〈kext〉 = µT 〈k〉 . (4.5)

from which the original probability parameters of the l-planted partition
model can be recovered.

As in the original model, let us compute the range of values for the
topological mixing parameter such that the communities are well defined.
When µT = 0.5, each node has on average as many neighbors inside and
outside of its community, however this does not give the actual threshold.
Indeed, if the network is large enough, the edges added outside of the
communities will be widely spread across the graph and the predefined
communities will remain the most densely connected clusters of nodes
even for µT > 0.5. More precisely, one can compute the expected internal

102 Chapter 4. Performance of algorithms and applications

(resp. external) density 〈eint〉 (resp. 〈eext〉) of each node as

〈eint〉 =
〈kint〉
(v− 1)

=
(1− µT) 〈k〉

v− 1
,

〈eext〉 =
〈kext〉

v (l − 1)
=

µT 〈k〉
v (l − 1)

.

and the condition pin > pout becomes

µT <
v (l − 1)
v l − 1

≈ l − 1
l

.

Hence, as previously mentioned, the threshold for µT , such that the com-
munities are well defined, grows with the number l of communities in the
network, at least theoretically.

The model of Newman & Girvan has also been extended to weighted
networks by [Fan, Li, Zhang et al. (2007)]. One can choose 2 values wint
and wext for the weight of the internal and external edges respectively, or
choose the weight of the edges uniformly distributed around those values.
We can again derive thresholds for the parameters µT and R = 〈wext〉

〈wint〉 , the
ratio between the expected weight of external and internal edges, and we
obtain

µT <
v (l − 1)

R(v− 1) + v (l − 1)
≈ l − 1

l + (R− 1)
. (4.6)

if R
v is small. As expected, there is an interaction between µT and R. If

R ≈ 1, then 〈wext〉 ≈ 〈wint〉 and the network is essentially unweighted so
we recover the previous threshold value for µT . If R ≈ 0, we get µT < 1
which is always true of course but makes sense since the external edges
carry almost no weight so whatever is the number of internal edges, their
large weights maintain the cohesion of the community (however, we still
need the communities to be connected). On the other hand, If R� s1, the
communities are well defined only if there are many internal edges such
that their total weight is large enough to compensate the weight of the
external edges. However in this case, the approximation about R

v might
not hold so the threshold value is slightly different.

Although those models may be interesting to simulate some partic-
ular graphs, they are not appropriate to represent many real networks
that contain a community structure. All the communities in the planted
`-partition model are spanned by Erdős-Rényi random graphs with pa-

4.1. LFR benchmark model 103

rameter pin and they are also interconnected by an Erdős-Rényi random
graph with parameter pout. Hence, the degree distribution is Poissonian
with an average degree 〈k〉 as given by Eq. (4.3). However, as stated in
Chapter 3.1, the degree distribution is often more heterogeneous in real
networks and exhibits a power law distribution with nodes of very low
and very high degrees coexisting in the graph. Moreover, the community
size distribution tends to also follow a power law and the hypothesis of
the planted partition model, that all communities are of equal size, is not
realistic (though, the model have been extended by [Brandes, Gaertler, and
Wagner (2003)] to create communities whose size is normally distributed).
Finally, the edge weight distribution has also been observed to follow a
power law [Barrat, Barthélemy, Pastor-Satorras et al. (2004)].

More recently, a model to create benchmark graphs containing those
power law distributions has been proposed by [Lancichinetti, Fortunato,
and Radicchi (2008)] and is now commonly called the LFR benchmark.
First, each node is given a degree from a power law distribution with pa-
rameter τ1, i.e. ki v k−τ1 , and with the average and maximal degree fixed.
Then, the communities size is taken from a power law distribution with
parameter τ2, i.e. nc v n−τ2 , and with the minimal and maximal sizes
fixed such that the total number of nodes is n. Again, the topological
mixing parameter is used to control the expected internal and external
densities of the nodes. Each node is assigned to a community, to match
the drawn sizes sequence, and shares a fraction (1− µT) of its edges with
nodes in the same community, Eq. (4.4), using the configuration model
described in Section 3.2.2 (if this is not possible, some nodes are shuf-
fled between communities). Finally the outgoing edges are added such
that each node shares on average a fraction µT of its edges with nodes
in other communities, Eq. (4.5). Some realizations of the LFR benchmark
are presented in Fig. 4.1 with n = 60 and 〈k〉 = 8 for different value of
µT (the exponent of the power laws where set by default to τ1 = 2.5 and
τ2 = 1.5 which are often observed in the literature). All those graphs have
the same expected number of edges. One can easily see how, when µT
increases, the number of external edges grows and therefore the number
of internal edges shrinks, hence the communities become loosely defined
and obviously harder to extract for any algorithm.

The LFR benchmark has been extended to directed and weighted net-
works [Lancichinetti and Fortunato (2009a)]. For the latter, first an un-
weighted graph is created and then the weight of the edges is added to
the network. To achieve this, one introduces a weight mixing parameter

104 Chapter 4. Performance of algorithms and applications

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23
24

25

26

27

28 29
30

31

32

33 34

35 36

37 38

39

40

41

42

43

44

45

46

47

48

49

50

51
52

53

54

55

56

57
5859

60

(a) µT = 0.2

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23
24

25

26

27

28 29
30

31

32

33 34

35 36

37 38

39

40

41

42

43

44

45

46

47

48

49

50

51
52

53

54

55

56

57
5859

60

(b) µT = 0.4

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23
24

25

26

27

28 29
30

31

32

33 34

35 36

37 38

39

40

41

42

43

44

45

46

47

48

49

50

51
52

53

54

55

56

57
5859

60

(c) µT = 0.6

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23
24

25

26

27

28 29
30

31

32

33 34

35 36

37 38

39

40

41

42

43

44

45

46

47

48

49

50

51
52

53

54

55

56

57
5859

60

(d) µT = 0.8

Fig. 4.1 LFR benchmark graphs for different topological parameters µT

µW ∈ [0, 1] that sets the expected proportion of the strength of each node
that is carried by its external edges. In the LFR model, the strength of the
nodes is computed as a power of their degree, si = kβ

i , which was again
chosen to match observations on real graphs [Barrat, Barthélemy, Pastor-
Satorras et al. (2004)]. The internal and external strengths are given by

sint
i = (1− µW) kβ

i ,

sext
i = µWkβ

i .

The actual weight of the edges is chosen to minimize the variance between

4.1. LFR benchmark model 105

the expected and the observed strengths,

var
[
wij
]
=

n

∑
i=1

(
kβ

i − ρi

)2
+
(
(1− µW) kβ

i − ρint
i

)2
+
(

µWkβ
i − ρext

i

)2

where ρ represents the actual strengths of the nodes,

ρi = ∑ W(i, j)

ρint
i = ∑ W(i, j)δ

(
σi, σj

)
,

ρext
i = ∑ W(i, j)

(
1− δ

(
σi, σj

))
.

The optimization of var
[
wij
]

is approximated by iteratively increasing or
decreasing the weight of the edges. It has been observed that var

[
wij
]

decreases exponentially with the number of iterations using this proce-
dure. Hence, the complexity to create weighted networks with the LFR
benchmark is equivalent to the complexity to create unweighted networks,
which is O

(
m
)
. Unfortunately, the thresholds for the parameters µT and

µW to have good communities are less clear in this model. Indeed, the no-
tion of density is not well defined in weighted networks and, if we apply
the same reasoning as in Eq. (4.6), then the internal and external densities
are independent of µT and solely controlled by µW . However, one can still
derive a weaker bound such that the expected weight of an internal edge
is larger than the expected weight of an external edge. The expected edge
weights are given by

〈
wint

〉
=

(1− µW) 〈s〉
(1− µT) 〈k〉

=
(1− µW)

(1− µT)
〈k〉β−1 , (4.7)

〈
wext〉 = µW 〈s〉

µT 〈k〉
=

µW
µT
〈k〉β−1 , (4.8)

and the condition
〈
wint〉 ≥

〈
wext〉 simply becomes

µT ≥ µW .

Measuring the quality of a partition

To compare the results of each algorithm, we need a quantitative crite-
rion to measure how close are the extracted partitions to the true partition
of the benchmark. Several measures have been proposed in the literature

106 Chapter 4. Performance of algorithms and applications

[Meilă (2007)] based for example on the number of correctly classified ver-
tices or edges, like the Rand index or the Jaccard index, but the most com-
monly used measures in community detection are based on information
theory as introduced in Section 3.2.4. The idea is to quantify how much
information about the true partition one can infer from the extracted par-
tition. To do so, we need to introduce two additional measures of entropy.
First, the joint entropy measures the uncertainty of the joint probability
distribution p(x, y) to observe X = x and Y = y and is given by

H(X, Y) = − ∑
X=x,Y=y

p(x, y) log
(

p(x, y)
)

,

= H(Y, X).

Then, if we observe a particular realization of the random variable Y = y,
the entropy of the probability distribution of X is given by

H(X | Y = y) = − ∑
X=x

p(x | y) log
(

p(x | y)
)

,

and the conditional entropy is defined as

H(X | Y) = E
[

H(X | Y = y)
]
= ∑

Y=y
p(y) H(X | Y = y)

= − ∑
Y=y

p(y) ∑
X=x

p(x | y) log
(

p(x | y)
)

,

= − ∑
X=x,Y=y

p(x, y) log
(

p(x, y)
p(y)

)
,

knowing that p(x, y) = p(y) p(x | y) = p(x) p(y | x).

In our context, the random variables X and Y correspond to commu-
nity partitions, so p(x) = p(X = x) is the probability that a node taken at
random belongs to community x in the partition X. Therefore

p(x) =
nx

n
,

where nx is the number of nodes in community x in the partition X, and

p(x, y) =
nxy

n
,

4.1. LFR benchmark model 107

where nxy is the number of nodes that belong to community x in the
partition X and to community y in the partition Y.

One can observe that

H(X | Y) = − ∑
X=x,Y=y

p(x, y) log
(

p(x, y)
)
+ ∑

X=x,Y=y
p(x, y) log

(
p(y)

)
,

= H(X, Y) + ∑
Y=y

p(y) log
(

p(y)
) [

∑
X=x

p(x | y)

]
,

= H(X, Y)− H(Y),

since ∑
X=x

p(x | y) = 1.

As previously mentioned, we want to measure how much information
we have about the true partition X from an extracted partition Y. This
is given by the mutual information I(X, Y) between X and Y which is
the difference between the entropy of X and the conditional entropy of X
knowing Y,

I(X, Y) = H(X)− H(X | Y) = H(X) + H(Y)− H(X, Y). (4.9)

If the two partitions are independent (in the limit of infinitely large graphs)
H(X | Y) = H(X) so the mutual information is 0 and, if the two partitions
are exactly identical, then the conditional entropy of X knowing Y is 0 so
I(X, Y) = H(X). So, the larger is the value of the mutual information
between the two partitions, the closer they are to each other. However,
it has been shown that the mutual information can not accurately distin-
guish different sub-partitions. If X is a partition and Y1 and Y2 are two
different partitions obtained by sub-partitioning some clusters of X, then
I(X, Y1) = I(X, Y2) = H(X), since the conditional entropy in this case is
H(X | Y1) = H(X | Y2) = 0, although the partitions Y1 and Y2 may be
very different. Therefore, [Danon, Díaz-Guilera, Duch et al. (2005)] intro-
duced a normalized variant, called the normalized mutual information,
which is able to distinguish between different sub-partitions

NMI(X, Y) =
2 I(X, Y)

H(X) + H(Y)
. (4.10)

The normalized mutual information has become one of the most common
quantitative criteria to compare the output of community detection algo-
rithms. Other measures based on information theory have been proposed,

108 Chapter 4. Performance of algorithms and applications

like the variation of information, but we observed that most of them are
highly correlated with the NMI, hence it will be used in what follows.
The NMI ranges in [0, 1] where 1 indicates exactly identical partitions and
0 (in the limit) totally independent partitions. Finally, in the context of
community partitions, the normalized mutual information is computed
as

NMI(X, Y) =
−2 ∑

x,y
nxy log

(
nxy n
nx ny

)

∑
x

nx log
(

nx
n

)
+ ∑

y
ny log

(
ny
n

) . (4.11)

4.1.1 Weighted networks

We extensively applied all the algorithms presented in Chapter 3 to the
weighted LFR benchmark and measured their performance using the NMI.
All the algorithms were implemented in C++ , either directly by the authors
of the method or within an open-source package. The Louvain method
(LM, Section 3.3.6) was implemented by V. Traag and is available at http:
//www.traag.net/code/. We built the implementation of our fast commu-
nity extraction (FCE, Section 3.4) based on that source code. The algorithm
of Clauset et al. (CNM, Section 3.3.3) is available at http://www.cs.unm.
edu/~aaron/research/fastmodularity.htm and the method of Schuetz &
Caflisch (SC, Section 3.3.4) is available at http://www.biochem-caflisch.
uzh.ch/public/5/network-clusterization-algorithm.html. The label
propagation algorithm (LP, Section 3.3.5) has been implemented within
the igraph package [Csardi and Nepusz (2006)] and finally the infomap
of Rosvall & Bergstrom (Section 3.3.7) can be downloaded from http:
//www.tp.umu.se/~rosvall/code.html.

The results for modularity based algorithms (FCE, LM, CNM & SC)
and for LP are presented in Fig. 4.2 for undirected LFR graphs and in Fig.
4.3 for directed LFR graphs. Both figures are composed of 5 heat maps,
corresponding to the different algorithms, and a summary plot which
presents the cumulative area covered in each heat map, i.e. the proportion
of the area of the experimental plane covered by NMI values larger than
q, for q ∈ [1, 0.4]. The values of NMI were limited to 0.4 in this summary
plot because this corresponds to the average value of NMI achieved for
communities created at random. Obviously, all the curves closely collapse
to 100% after this threshold.

Each heat map displays a smooth interpolation of the average value

http://www.traag.net/code/
http://www.traag.net/code/
http://www.cs.unm.edu/~aaron/research/fastmodularity.htm
http://www.cs.unm.edu/~aaron/research/fastmodularity.htm
http://www.biochem-caflisch.uzh.ch/public/5/network-clusterization-algorithm.html
http://www.biochem-caflisch.uzh.ch/public/5/network-clusterization-algorithm.html
http://www.tp.umu.se/~rosvall/code.html
http://www.tp.umu.se/~rosvall/code.html

4.1. LFR benchmark model 109

0 0.2 0.4 0.6 0.8 1
NMI

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

µT

µ
W

FCE

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

µT

µ
W

LM

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

µT

µ
W

CNM

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

µT

µ
W

SC

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

µT

µ
W

LP

0.40.60.81

10 %

20 %

30 %

40 %

50 %

60 %

NMI

Covered area

FCE LM

CNM SC

LP

Fig. 4.2 Performance (NMI) of algorithms on the undirected LFR bench-
mark with n = 1000, 〈k〉 = 10, kmax = 20 and community sizes in [10, 100].

110 Chapter 4. Performance of algorithms and applications

0 0.2 0.4 0.6 0.8 1
NMI

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

µT

µ
W

FCE

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

µT

µ
W

LM

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

µT

µ
W

CNM

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

µT

µ
W

SC

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

µT

µ
W

LP

0.40.60.81

10 %

20 %

30 %

40 %

50 %

60 %

NMI

Covered area

FCE LM

CNM SC

LP

Fig. 4.3 Results for directed networks (See caption of Fig. 4.2).

4.1. LFR benchmark model 111

of NMI computed on 50 graphs for each couple of mixing parameters
(µT , µW) ∈ [0, 1] × [0, 1] discretized with a step size of 0.05. The x-axis
captures the value of µT while the y-axis captures the value of µW . In
this experiment, the parameters for the benchmark were set to n = 1000,
〈k〉 = 10 and kmax = 20 with communities size distribution in the range
[10, 100]. The other parameters were kept as default and do not influence
much the results.

First, one can observe that all algorithms perform better under the
diagonal which corresponds to the set of mixing parameters for which
the expected weight of internal and external edges are equal (see Eq. (4.7)
and Eq. (4.8)), i.e. communities start to be less well defined and harder to
extract above the diagonal. However, it also becomes questionable if the a
priori defined communities are still relevant in this range and if it remains
desirable for the algorithms to extract them. LP is the only method with
a clearly different behavior under the diagonal. This algorithm achieves
lower value of NMI for µT > 0.5 but has also a slower decay for larger
values of µT . It is also interesting to observe that the performance of all
the algorithms is superior on directed networks which can be seen from
the larger covered areas in Fig. 4.3. The threshold for µT such that the
communities can be extracted is around 0.8 for undirected networks and
around 0.9 for directed networks.

In terms of quality, the main competitor of our FCE algorithm is LM
which slightly outperforms our method for small values of µT and µW and
just above the diagonal. The difference between the results of the 2 meth-
ods is rather small everywhere else and none of the algorithms is strictly
dominating the other. The quality of SC is close to the performance of our
algorithm for undirected networks but much less for directed networks.
Finally, CNM achieves worse performances than all the other methods.

Since LM is slightly better than FCE for small values of the mixing
parameters (with µW ≥ µT), we analyzed more closely the partitions ex-
tracted by both algorithms. We observed that those partitions are in fact
always very close to each other and that the average NMI of the partitions
extracted by our algorithm is smaller due to more inaccurate merges of
the true communities. For instance, a graph corresponding to µT = 0.1
and µW = 0.15 is illustrated in Fig. 4.4, with the true partition repre-
sented by the color of each node and the partitions extracted by FCE and
LM represented as filled enclosing contours. One can see that most of the
communities are correctly extracted and that both algorithms incorrectly
merge two communities located in the top left of the figure. However,

112 Chapter 4. Performance of algorithms and applications

1
2

3

4

5

6
78

9

10

11
12

13

14

15

16

17
18

19

20

21

22

23

24

25

26

27
28

29

30

31

3233

34

35

36

373839

4041

42

43

44

45
46

47

48
49

50

51

52

53

54

55

56

57

58

5960

61

62

63

64

65

66

67

68

69

70

71

72

73

74
75

76

77

78

79

80

81

82

83
84

85

86

87

88

89

90
91

92
93

94
95

96

97

98

99100

Communities
found by:

FCE only
LM only
FCE & LM

Fig. 4.4 Community partitions extracted by LM and FCE on the LFR
benchmark with n = 100 and 〈k〉 = 5. The color of each node indicates
their true community assignment from the LFR benchmark.

FCE also merges two communities located on the top right of the figure
while LM is able to correctly extract them. This highlights that, although
FCE extracts a less accurate partition than LM, the true communities are
not entirely split apart using FCE, hence the results are not as inaccurate
as they may seem from Fig. 4.2 and Fig. 4.3. This also indicates an inter-
esting direction for future development of the algorithm where additional
correction steps might be defined to avoid this behavior.

We have also computed the average value of modularity achieved by
each algorithm which is represented in Fig. 4.5 for the undirected LFR
graphs and in Fig. 4.6 for the directed LFR graphs. Although it is well
known that, as mentioned in Section 3.2.2 (see page 44), the modularity is
not an accurate criterion to assess the quality of the different algorithms
due to its large number of local optima [Good, de Montjoye, and Clauset
(2010)], it is still interesting to observe how well each algorithm optimizes
the measure as an objective function. Surprisingly, the results for all the
algorithms are extremely close for undirected networks (except for LP but
this algorithm does not optimize modularity) and only CNM seems to
slightly underperform the other methods. For directed networks, FCE and
LM outperform CNM and SC which is the same observation than for the

4.1. LFR benchmark model 113

actual quality of the extracted partitions. Those observations confirm that
the modularity value is not an accurate criterion to quantify the quality of
a method but also that our FCE algorithm does a good job in optimizing
this objective function.

Finally, we applied FCE and LM to the CPM cost function (see Sec-
tion 3.2.3) and the results are represented in Fig. 4.7 for undirected LFR
networks and in Fig. 4.8 for directed LFR networks. Both figures also con-
tain the results of the classical and hierarchical Infomap (Section 3.3.7).
As for modularity, FCE & LM produce very close results both in terms
of NMI and as optimizer of the CPM cost function. The performances
of both algorithm are even closer than for modularity. The infomap be-
haves extremely well in its classical version and outperforms all the other
algorithms, but its hierarchical version is somehow less stable which is
not surprising since we did not use a hierarchical benchmark model. This
was somehow expected since the infomap mixes different optimization al-
gorithms and uses a peculiar cost function. Moreover, it has been shown
recently [Schaub, Lambiotte, and Barahona (2012)] that infomap was es-
pecially well suited to cluster graphs created using the LFR benchmark
model. We will show in the following that the impressive quality of the
partitions extracted using infomap comes at the cost of the large compu-
tational time required by the method.

We observe very similar behaviors of the algorithms for various pa-
rameters settings of the LFR benchmark and also for various graph sizes.
We present in Fig. 4.9 and Fig. 4.10 the results for undirected and directed
networks with n = 5000, 〈k〉 = 15 and kmax = 40 and, in Fig. 4.11 and Fig.
4.12, the results for undirected and directed networks with n = 10000,
〈k〉 = 30 and kmax = 60. One can observe that, as the size of the networks
increases, the range of mixing parameters for which we can correctly ex-
tract community structures also increases as explained in the description
of the benchmark model. The performances of CNM seems awkward in
the last figure, however the poor quality of the partitions is due to imple-
mentation and memory issues rather than to the actual algorithm.

Our analyses show that our algorithm achieves similar or even higher
qualitative performances than the other popular and efficient methods for
community detection. However, the main achievement of our method is
its very small computational time along with its highly parallelizable be-
havior. We analyzed the computational time required by each method to
extract community partitions for benchmark graphs growing from n =

103 to n = 106. The average degree was set to one hundredth of the

114 Chapter 4. Performance of algorithms and applications

−0.2 0 0.2 0.4 0.6 0.8 1
MOD

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

µT

µ
W

FCE

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

µT

µ
W

LM

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

µT

µ
W

CNM

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

µT

µ
W

SC

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

µT

µ
W

LP

0.40.60.81
0 %

20 %

40 %

60 %

80 %

100 %

MOD

Covered surface

FCE LM

CNM SC

LP

Fig. 4.5 Modularity value (See caption of Fig. 4.2).

4.1. LFR benchmark model 115

−0.2 0 0.2 0.4 0.6 0.8 1
MOD

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

µT

µ
W

FCE

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

µT

µ
W

LM

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

µT

µ
W

CNM

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

µT

µ
W

SC

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

µT

µ
W

LP

0.40.60.81
0 %

20 %

40 %

60 %

80 %

100 %

MOD

Covered surface

FCE LM

CNM SC

LP

Fig. 4.6 Modularity value for directed networks (See caption of Fig. 4.2).

116 Chapter 4. Performance of algorithms and applications

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

µT

µ
W

FCE

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

µT

µ
W

LM

0

0.2

0.4

0.6

0.8

1

NMI

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

µT

µ
W

FCE (CPM)

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

µT

µ
W

LM (CPM)

0

0.5

1

CPM

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

µT

µ
W

Infomap

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

µT

µ
W

Infomap (Hie)

0

0.2

0.4

0.6

0.8

1

NMI

Fig. 4.7 Performance of FCE & LM on CPM and of Infomap (See caption
of Fig. 4.2).

4.1. LFR benchmark model 117

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

µT

µ
W

FCE

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

µT

µ
W

LM

0

0.2

0.4

0.6

0.8

1

NMI

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

µT

µ
W

FCE (CPM)

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

µT

µ
W

LM (CPM)

0

0.5

1

CPM

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

µT

µ
W

Infomap

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

µT

µ
W

Infomap (Hie)

0

0.2

0.4

0.6

0.8

1

NMI

Fig. 4.8 Performance of FCE & LM on CPM and of Infomap on directed
networks (See caption of Fig. 4.2).

118 Chapter 4. Performance of algorithms and applications

0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1
N

M
I

0.20.4 0.60.8

0.2
0.4
0.6
0.8

µ
T

µW

FC
E

0.20.4 0.60.8

0.2
0.4
0.6
0.8

µ
T

µW

LM

0.20.4 0.60.8

0.2
0.4
0.6
0.8

µ
T

µW

C
N

M

0.20.4 0.60.8

0.2
0.4
0.6
0.8

µ
T

µW

SC

0.20.4 0.60.8

0.2
0.4
0.6
0.8

µ
T

µW

LP

0.20.4 0.60.8

0.2
0.4
0.6
0.8

µ
T

µW

FC
E

(C
PM

)

0.20.4 0.60.8

0.2
0.4
0.6
0.8

µ
T

µW

LM
(C

PM
)

0.20.4 0.60.8

0.2
0.4
0.6
0.8

µ
T

µW

Infom
ap

0.20.4 0.60.8

0.2
0.4
0.6
0.8

µ
T

µW

Infom
ap

(H
ie)

0
0.2

0.4
0.6

0.8
1

20
%

40
%

60
%

80
%

100
%

N
M

I

C
overed

surface

Fig.4.9
Perform

ance
(N

M
I)

of
algorithm

s
on

the
undirected

LFR
benchm

ark
w

ith
n
=

5000,〈 k〉
=

15,k
m

ax
=

40
and

com
m

unity
sizes

in
[15,150].

T
he

color
codes

of
the

titles
of

each
algorithm

give
the

legend
of

the
last

figure
(C

overed
Surface).

4.1. LFR benchmark model 119

0
0.

1
0.

2
0.

3
0.

4
0.

5
0.

6
0.

7
0.

8
0.

9
1

N
M

I

0.
2 0

.4
0.

60
.8

0.
2

0.
4

0.
6

0.
8

µ
T

µW

FC
E

0.
2 0

.4
0.

60
.8

0.
2

0.
4

0.
6

0.
8

µ
T

µW

LM

0.
2 0

.4
0.

60
.8

0.
2

0.
4

0.
6

0.
8

µ
T

µW

C
N

M

0.
2 0

.4
0.

60
.8

0.
2

0.
4

0.
6

0.
8

µ
T

µW

SC

0.
2 0

.4
0.

60
.8

0.
2

0.
4

0.
6

0.
8

µ
T

µW

LP

0.
2 0

.4
0.

60
.8

0.
2

0.
4

0.
6

0.
8

µ
T

µW

FC
E

(C
PM

)

0.
2 0

.4
0.

60
.8

0.
2

0.
4

0.
6

0.
8

µ
T

µW

LM
(C

PM
)

0.
2 0

.4
0.

60
.8

0.
2

0.
4

0.
6

0.
8

µ
T

µW

In
fo

m
ap

0.
2 0

.4
0.

60
.8

0.
2

0.
4

0.
6

0.
8

µ
T

µW

In
fo

m
ap

(H
ie

)

0
0.

2
0.

4
0.

6
0.

8
1

20
%

40
%

60
%

80
%

10
0

%

N
M

I

C
ov

er
ed

su
rf

ac
e

Fi
g.

4.
10

R
es

ul
ts

fo
r

di
re

ct
ed

ne
tw

or
ks

(S
ee

ca
pt

io
n

of
Fi

g.
4.

9)
.

120 Chapter 4. Performance of algorithms and applications

0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1
N

M
I

0.20.4 0.60.8

0.2
0.4
0.6
0.8

µ
T

µW

FC
E

0.20.4 0.60.8

0.2
0.4
0.6
0.8

µ
T

µW

LM

0.20.4 0.60.8

0.2
0.4
0.6
0.8

µ
T

µW

C
N

M

0.20.4 0.60.8

0.2
0.4
0.6
0.8

µ
T

µW

SC

0.20.4 0.60.8

0.2
0.4
0.6
0.8

µ
T

µW

LP

0.20.4 0.60.8

0.2
0.4
0.6
0.8

µ
T

µW

FC
E

(C
PM

)

0.20.4 0.60.8

0.2
0.4
0.6
0.8

µ
T

µW

LM
(C

PM
)

0.20.4 0.60.8

0.2
0.4
0.6
0.8

µ
T

µW

Infom
ap

0.20.4 0.60.8

0.2
0.4
0.6
0.8

µ
T

µW

Infom
ap

(H
ie)

0
0.2

0.4
0.6

0.8
1

20
%

40
%

60
%

80
%

100
%

N
M

I

C
overed

surface

Fig.4.11
Perform

ance
(N

M
I)ofalgorithm

s
on

the
undirected

LFR
benchm

ark
w

ith
n
=

10000,〈 k〉
=

30,k
m

ax
=

60
and

com
m

unity
sizes

in
[15,150].

T
he

color
codes

of
the

titles
of

each
algorithm

give
the

legend
of

the
last

figure
(C

overed
Surface).

4.1. LFR benchmark model 121

0
0.

1
0.

2
0.

3
0.

4
0.

5
0.

6
0.

7
0.

8
0.

9
1

N
M

I

0.
2 0

.4
0.

60
.8

0.
2

0.
4

0.
6

0.
8

µ
T

µW

FC
E

0.
2 0

.4
0.

60
.8

0.
2

0.
4

0.
6

0.
8

µ
T

µW

LM

0.
2 0

.4
0.

60
.8

0.
2

0.
4

0.
6

0.
8

µ
T

µW

C
N

M

0.
2 0

.4
0.

60
.8

0.
2

0.
4

0.
6

0.
8

µ
T

µW

SC

0.
2 0

.4
0.

60
.8

0.
2

0.
4

0.
6

0.
8

µ
T

µW

LP

0.
2 0

.4
0.

60
.8

0.
2

0.
4

0.
6

0.
8

µ
T

µW

FC
E

(C
PM

)

0.
2 0

.4
0.

60
.8

0.
2

0.
4

0.
6

0.
8

µ
T

µW

LM
(C

PM
)

0.
2 0

.4
0.

60
.8

0.
2

0.
4

0.
6

0.
8

µ
T

µW

In
fo

m
ap

0.
2 0

.4
0.

60
.8

0.
2

0.
4

0.
6

0.
8

µ
T

µW

In
fo

m
ap

(H
ie

)

0
0.

2
0.

4
0.

6
0.

8
1

20
%

40
%

60
%

80
%

10
0

%

N
M

I

C
ov

er
ed

su
rf

ac
e

Fi
g.

4.
12

R
es

ul
ts

fo
r

di
re

ct
ed

ne
tw

or
ks

(S
ee

ca
pt

io
n

of
Fi

g.
4.

11
).

122 Chapter 4. Performance of algorithms and applications

103 104 105 10610−1

100

101

102

103

n

Ti
m

e
[s

]

103 104 105 106
0

0.5

1

n

N
M

I

FCE
FCE (CPM)

LM
LM (CPM)

CNM
Infomap

Infomap (Hie)
SC
LP

Fig. 4.13 Average computational time and NMI for each algorithm with
respect to n.

number of nodes in the graph, 〈k〉 = n/100, and the community sizes
were chosen between one hundredth and one tenth of the number of
nodes, [n/100, n/10]. The results are presented in Fig. 4.13 where the
top panel shows the average computational time for each method and the
bottom panel shows their average NMI value with respect to n. Each algo-
rithm was applied to benchmark graphs with mixing parameters couples
µT , µW ∈ {0.1, 0.3, 0.5, 0.7, 0.9}, µW ≤ µT , i.e. for 15 different pairs. Each
marker in the plot corresponds to the average computational time or NMI
on 25 graph realizations per pair of mixing parameters.

As stated earlier, to have a fair comparison, all the different algorithms
were tested using a C++ implementation and executed on dedicated single

4.1. LFR benchmark model 123

0 5 10 15
100

102

104

106

Iteration

N
um

be
r

of
co

rr
ec

ti
on

s FCE
LM

Fig. 4.14 Average number of corrections observed per iteration for FCE
and LM.

processors. This implies that no external task could have slowed down
the processor and perturbed the results. Some algorithms were not tested
for the largest graph sizes, as soon as the computational time required
to extract a partition was larger than 1500 seconds, and CNM was also
discarded earlier because of memory issues leading to extremely poor
quality of the extracted communities. It is clear from Fig. 4.13 that FCE
outperforms all the other methods. We observed that FCE extracts par-
titions between 5 and 20 times faster than LM using either modularity
or CPM, so the computational time performance seems to not be tied to
the cost function. Moreover, even smaller computational time could have
been reached using dedicated multiple processors architectures due to the
highly parallelizable nature of our method.

One can observe that even if FCE is much faster than the other meth-
ods, the average quality of the extracted partitions is similar to the average
quality of the partitions extracted by the other algorithms optimizing the
same cost function. Hence, our method does not trade too much quality
for time performance. The decay of quality for large sizes is due to the
well known resolution limit problem of modularity previously mentioned
in Section 3.2.2. This observation is confirmed by observing the NMI
curves for FCE and LM applied to the CPM cost function which leads to
partitions of impressive quality even for graphs with 1 million of nodes.

One can wonder why FCE is so much faster than LM using only a sin-
gle processor since both methods are based on the same idea of moving

124 Chapter 4. Performance of algorithms and applications

nodes from one community to another. The explanation behind the large
speed-up of our algorithm lies in two observations. First, the two types of
corrections we introduced in FCE allow to change the community assign-
ment of a larger number of nodes in one iteration due to the assignment
graph. This leads to a clear computational gain compared to sequential
modifications of LM. Another observation is that even if the total number
of corrections is about the same for both algorithms, our method allows
to find a steady partition of the nodes in fewer iterations, as displayed in
Fig. 4.14. Each iteration of LM requires to loop over all the nodes and
edges of the graph to check for possible increases in the cost function.
By reducing the required number of iterations to reach convergence, our
algorithm extracts much faster the first hierarchical level, i.e. before the
aggregation of the communities, and that is the dominant factor in the
total time complexity.

4.1.2 Unweighted networks

We also applied the different algorithms on the unweighted LFR bench-
mark for which the results are displayed in Fig. 4.15. The NMI of the
extracted partitions are represented in the left column for undirected net-
works and in the right column for directed networks. The ranking of the
methods is not fundamentally different than for weighted networks but
we present the results for the sake of completeness.

CNM clearly does not achieve good quality for any parameter settings.
SC is very close to FCE for small (n = 1000) undirected networks but is
less accurate for any other kind of networks. Our FCE algorithm is close
to LM, and even more so for directed networks. The gap between the 2
NMI curves is mainly explained by the same observation as in Fig. 4.4,
i.e. our method makes additional merges of small clusters compared to
LM, without breaking the true communities. This was expected since on
the diagonal of the mixing parameters set for weighted networks, the ex-
pected weight of internal and external edges is the same, so the networks
are theoretically close to unweighted networks. Again, the gap between
FCE and LM is much smaller for directed networks and almost absent for
larger networks (n = 10000). LP produces good results but drops sud-
denly for specific thresholds of µT . Apart from a weird behavior for small
µT , the hierarchical infomap outperforms all the other methods but its
classical version which achieves equivalent NMI for undirected networks.

4.1. LFR benchmark model 125

FCE LM CNM SC
LP Infomap Infomap (Hie)

n = 1000
〈k〉 = 10

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

µT

N
M

I

n = 1000
〈k〉 = 10

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

µT

N
M

I

n = 5000
〈k〉 = 15

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

µT

N
M

I

n = 5000
〈k〉 = 15

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

µT

N
M

I

n = 10000
〈k〉 = 30

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

µT

N
M

I

n = 10000
〈k〉 = 30

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

µT

N
M

I

Fig. 4.15 Performance of algorithms on the unweighted LFR benchmark
(undirected on the left side and directed on the right side).

126 Chapter 4. Performance of algorithms and applications

4.1.3 Analysis of the probability parameter

Finally, we analyzed the effect of the probability parameter p < 1 intro-
duced in Section 3.4.5 and required to guarantee the convergence of FCE.
When p is small, only a few corrections are accepted per iteration and
the method is close to LM (up to the assignment graph that defines the
communities and forces some additional node switches) because we can
safely assume that the accepted corrections will often be independent. On
the other hand, when p is large, many corrections can be applied syn-
chronously.

To this end, we applied FCE to networks with various mixing param-
eters values and with n = 10 000 and n = 100 000 and compute the aver-
age computational time required by the algorithm to extract communities
(the computational time for smaller networks is too small to distinguish
between the effect of p or some noisy measurements). The results are
presented in Fig. 4.16. The first observation is that, as expected, when
the value of p increases, the computational time decreases significantly.
This is observed for both modularity and CPM, so this seems indepen-
dent of the cost function. Moreover, when the communities are correctly
extracted (NMI' 1), the value of p has almost no effect on the outcome
of the algorithm and the performance curves are very stable. Finally, for
networks containing communities harder to extract, i.e. on the diagonal of
the mixing parameters set, the quality of the extracted communities starts
to decrease slightly after p = 0.8. This is why, in all our experiment, we
set p = 0.8 which gives an appropriate balance between the quality of the
extracted partitions and the computational time of FCE.

4.2 Image Processing

How many objects are present in a picture? This simple question from a
human point of view (depending on what one considers to be an object)
has raised a lot of research for the last decades and remains a very chal-
lenging problem for a computer. There are many practical applications
where this problem occurs: discovering abnormal shadows on a CT or
PET scan for tumor detection, detection of people and objects from im-
ages of surveillance cameras or from a camera at the front of a car in the
context of collision detection, etc. This task is commonly known as image
segmentation.

4.2. Image Processing 127

n=1e4 (MOD, directed) n=1e4 (MOD, undirected)
n=1e5 (MOD, directed) n=1e5 (MOD, undirected)
n=1e4 (CPM, directed) n=1e4 (CPM, undirected)
n=1e5 (CPM, directed) n=1e5 (CPM, undirected)

0.2 0.4 0.6 0.8

100

101

102

p

Ti
m

e
[s

]

µT = 0.1, µW = 0.1

0.8
0.9

1

N
M

I

0.2 0.4 0.6 0.8

100

101

102

p
Ti

m
e

[s
]

µT = 0.3, µW = 0.1

0.9

1
N

M
I

0.2 0.4 0.6 0.8

100

101

102

p

Ti
m

e
[s

]

µT = 0.5, µW = 0.1

0.9

1

N
M

I

0.2 0.4 0.6 0.8
100

101

102

p

Ti
m

e
[s

]

µT = 0.7, µW = 0.1

0.9

1

N
M

I

0.2 0.4 0.6 0.8

100

101

102

p

Ti
m

e
[s

]

µT = 0.3, µW = 0.3

0.8
0.9

1

N
M

I

0.2 0.4 0.6 0.8

100

101

102

p

Ti
m

e
[s

]

µT = 0.5, µW = 0.3

0.9

1

N
M

I

Fig. 4.16 Analysis of probability parameter p on the LFR benchmark.

128 Chapter 4. Performance of algorithms and applications

n=1e4 (MOD, directed) n=1e4 (MOD, undirected)
n=1e5 (MOD, directed) n=1e5 (MOD, undirected)
n=1e4 (CPM, directed) n=1e4 (CPM, undirected)
n=1e5 (CPM, directed) n=1e5 (CPM, undirected)

0.2 0.4 0.6 0.8
100

101

102

p

Ti
m

e
[s

]

µT = 0.7, µW = 0.3

0.9

1

N
M

I

0.2 0.4 0.6 0.8

100

101

102

103

p
Ti

m
e

[s
]

µT = 0.5, µW = 0.5

0.8
0.9

1
N

M
I

0.2 0.4 0.6 0.8
100

101

102

p

Ti
m

e
[s

]

µT = 0.7, µW = 0.5

0.9

1

N
M

I

0.2 0.4 0.6 0.8
100

101

102

103

p

Ti
m

e
[s

]

µT = 0.7, µW = 0.7

0.8
0.9

1

N
M

I

Fig. 4.16(cont’d) Analysis of probability parameter p on the LFR bench-
mark.

4.2.1 Picture graph

The number of techniques in computer vision is quite large, and the the-
ory behind them comes from various fields such as histogram metrics
[Werman, Peleg, and Rosenfeld (1985)], watershed techniques [Beucher

4.2. Image Processing 129

et al. (1991)], active contours [Olszewska (2009); Kass, Witkin, and Ter-
zopoulos (1988)], manifold learning [Ho, Lee, Yang et al. (2004); Sun-
daramoorthi, Mennucci, Soatto et al. (2009)], etc. Some methods are based
on graph theory [Cour, Benezit, and Shi (2005); Arbelaez, Maire, Fowlkes
et al. (2011)]. Those procedures generally build a graph, called a picture
graph, where each node represents a pixel of the input picture. Since
the number of pixels may be very large, even for low resolution pictures,
ideas have been proposed to reduce the number of nodes in the graph to
a representative subsample of pixels or regions, [Alzoubi and Pan (2008)]
and see other references therein.

The weighted edges of the undirected picture graph encode the simi-
larity between pairs of pixels in the picture. Without a priori knowledge
about the components of the input image, a classical way to define the
weight of the edges is to use a Gaussian kernel function

w(i, j) =

e
d(i,j)2

σ2
x e

|F(i)−F(j)|2
σ2

i if d(i, j) < dmax,

0 otherwise,
(4.12)

where d(i, j) is the distance between pixels i and j (e.g. the Euclidean or
the Chebyshev distance) and F(i) is a feature vector evaluated at pixel i.
This feature vector can be for example the scalar intensity value for gray
scaled images or the HSV transform for color images. The edge weight
can be controlled by the user defined parameters σx, σi and dmax.

Based on this undirected weighted graph, classical methods [Wu and
Leahy (1993)] try to find a set of edges, known as a cut, that optimizes
a criterion, as for the classical minimum cut problem, Section 2.4. The
cost function is in general defined as the ratio between the total weight
of the cut edges and a scaling factor that penalizes the creation of very
small components, i.e. to avoid that the optimal cut corresponds to the
segmentation of the boundary or the corner of the picture which are natu-
rally the less connected pixels. The ratio cut [Cox, Rao, and Zhong (1996)]
uses a scaling factor based on the dimension of the components and the
minimum mean cut [Wang and Siskind (2001)] uses the number of cut
edges. The normalized cut [Shi and Malik (2000)] is based on the internal
similarity of the components. Optimizing the normalized cut criterion is
known to be NP-hard but a continuous relaxation can be solved in poly-
nomial time. Another effective method proposed by [Felzenszwalb and
Huttenlocher (2004)] extracts regions in the graph minimizing the inter-

130 Chapter 4. Performance of algorithms and applications

(a) Input picture (b) Segmentation using
modularity

Fig. 4.17 Segmentation of a baby face (130× 132 pixels) using modular-
ity.

nal difference of regions while also maximizing the external difference
between regions. Some recent works [Alzate and Suykens (2008); Fred-
erix and Barel (2013)] proposed to avoid the high computational complex-
ity of such methods by extracting an approximation of the optimal cut
using an incomplete Cholesky decomposition. Unfortunately, in general
these methods need to know the number of objects of interest in the in-
put picture to define a stopping criterion or they have to set an arbitrary
threshold on the minimum value of the cut criterion that may lead to
inappropriate segmentation.

All those methods try to split the picture graph into salient regions
by defining boundaries between the regions, hence acting as divisive al-
gorithms. On the other hand, one can agglomerate adjacent connected
nodes, which in turn defines regions within the picture. Hopefully, pixels
that belong to the same object should be more similar with each other
than with the other surrounding pixels. Therefore, pixels within an object
should be linked with highly weighted edges, and loosely connected with
neighboring pixels, hence revealing a community structure. This implies
that we can apply our community detection algorithm on a picture graph
to segment the underlying image. Moreover, our method does not require
any a priori knowledge about the shape, the position or the number of
objects displayed in the input picture, which is a main advantage in this
field.

Fig. 4.17 shows the results of the segmentation of an image with our
FCE community detection algorithm using modularity which extracts 34

4.2. Image Processing 131

Fig. 4.18 Segmentation of a baby face using windowed modularity.

regions. The parameters of the picture graph were set to σx = 1.2, σi = 10,
dmax = 3. One can see that all the regions segmented by the algorithm
are coherent but also that the objects of interest are clearly oversegmented
(6 regions for the shirt and 7 for the face). This oversegmentation is due
to the field of view limit [Schaub, Delvenne, Yaliraki et al. (2012)] already
mentioned in Section 3.2.2. Each object (including the background) is
spanned by long chains of locally interconnected nodes. The maximal
distance between connected pixels dmax is small compared to the size of
the picture which leads to a huge number of disconnected pairs of nodes
in the picture graph. Therefore, modularity is not able to accurately ex-
tract the different objects.

There are at least two ways to tackle this resolution problem. First,
one can increase the distance dmax which in turn reduces the number of
disconnected pairs of nodes within communities. While this is a good
theoretical solution that may work on very small images, it is not actually
suitable. One can check that the number of neighbors for each pixel grows
as O(d2

max), making this solution inappropriate for practical applications.
Another possible solution is to modify the null model in such a way that it
somehow takes into account the distance inside communities. We pursue
this idea in the next section.

4.2.2 Windowed configuration null model

To avoid oversegmentation, we proposed to change the null model such
that it takes into account the fact that an object can be spread over a large
area of the picture and that the associated pixels can not be connected.
To this end, we introduced the windowed configuration null model that

132 Chapter 4. Performance of algorithms and applications

extends the resolution parameter introduced by Reichardt & Bornholdt,
Section 3.2.1. The window configuration null model is given by

pij =
1

2m
siΛijsj, (4.13)

where Λ is a mask matrix defined as

Λij =

1 if d(i, j) ≤ dΛ ,

0 otherwise ,
(4.14)

and dΛ is an additional parameter depending on the size of the picture
and the expected size of the objects. The cost function to optimize over the
community assignment of the nodes in the picture graph can be written
as

QΛ(σ) =
1
m ∑

i,j∈V

[
W − SΛS

m

]
(i,j)

δ(σi, σj) (4.15)

where S is the diagonal matrix of the strength of the nodes, S = diag(s).
As for the CPM, we need to adjust the null model after the aggregation
step such that merging nodes in the aggregated graph is equivalent to
merging the associated communities in the original graph (see page 73).
This can be done by using

Λ′ = (S′)−1
(

C S Λ S CT
)
(S′)−1, (4.16)

where C is the community assignment matrix, C ∈ {0, 1}p×n , C(i, j) = 1
if σ(i) = j, and S′ is the diagonal matrix of the aggregated strength of the
nodes, S′ = diag(C s). One can observe that this definition is consistent
with the classical modularity, i.e. if we define Λ = 1n1T

n then Λ′ = 1p1T
p .

The communities extracted by FCE using the windowed modularity
for the previous test picture is presented in Fig. 4.18 for dΛ = 15. There
are 8 regions defined by the algorithm which have very good visual rele-
vance. The left eyelash of the baby is kept separated from the face as in
Fig. 4.17. This shows that our windowed null model effectively produces
larger communities by allowing additional merging but without occulting
the small details extracted by the original cost function. Although, this
may also introduce small errors like the right ear that is clustered with the
shirt due to a tiny darker region on the right side of the baby face.

Another interesting feature of our method is that the extracted com-

4.2. Image Processing 133

(a) FCE Segmentation. (b) Penultimate step of FCE Seg-
mentation.

Fig. 4.19 Segmentation of 2 elephants (320× 480 pixels) using window
modularity

munities are hierarchical. This might allow to extract smaller parts of
objects contained in larger areas of the picture. For example, Fig. 4.19
shows the communities extracted at the last and the penultimate aggre-
gation steps for a picture graph defined using σx = 5, σi = 9, dmax = 3
and dΛ = 25. In Fig. 4.19a, representing the final community partition,
there are 7 main regions segmented (and some small communities, with
less than 10 pixels, due to image artifact), that are the sky, the elephants,
the grass, one tusk and the ear shadow due to the large difference in pixel
intensities. On the other hand, the communities extracted at the penulti-
mate aggregation step, represented in Fig. 4.19b, allow to discover finer
boundaries between the relevant parts of the picture showing that there
are in fact 2 distinct elephants.

We ran our algorithm on a set of pictures taken from the Berkeley im-
age segmentation database [Martin, Fowlkes, Tal et al. (2001)] and found
relevant contours of objects when the parameters of the picture graph
were correctly defined. Some results are displayed in Fig. 4.20 along with
the initial pictures and human segmentation benchmarks. The different
pictures are presented in increasing level of complexity according to the
benchmark, and the parameters used for each picture graph are presented
in Table 4.1. One can see that our algorithm is able to correctly identify
the general contour of the objects in each picture but tends to have some
difficulties to define boundaries in low gradient regions like the neck of
the camel in the third row. There are also additional aggregations of com-
munities that might be considered, for example the background behind
the violinist in the fourth row or in the large rock at the right side of the
figure in the fifth row.

134 Chapter 4. Performance of algorithms and applications

(a) Input picture (b) Human benchmark (c) FCE segmentation

(d) Input picture (e) Human benchmark (f) FCE segmentation

(g) Input picture (h) Human benchmark (i) FCE segmentation

(j) Input picture (k) Human benchmark (l) FCE segmentation

(m) Input picture (n) Human benchmark (o) FCE segmentation

Fig. 4.20 Segmentation results on BSDS pictures.

4.2. Image Processing 135

plane σx =
√

2 , σi = 5 , dmax = 3 , dΛ = 20

horses σx =
√

2 , σi = 3 , dmax = 2 , dΛ = 20

camel σx =
√

2 , σi = 2 , dmax = 2 , dΛ = 25

violinist σx =
√

2 , σi = 4 , dmax = 3 , dΛ = 20

desert σx = 2 , σi = 2 , dmax = 4 , dΛ = 30

Table 4.1 Parameters used for the segmentation presented in Fig. 4.20

While we observe good segmentation results, we also notice that the com-
munities found can change dramatically with a minor modification of the
parameters (σx, σi, dmax or dΛ). This sensitivity to the parameters has been
observed in most segmentation methods but it seems to affect strongly our
results. Hence, we do not claim that our algorithm may outperform other
dedicated segmentation methods, but due to its fast computational speed
and to the overall quality of the extracted regions, it can be used as an
accurate preprocessor for any input picture to largely simplify the task of
more precisely tuned segmentation algorithm. Moreover, the cost function
we used is not particularly designed for the image segmentation problem
and other kind of criterion may be used. As soon as the cost function is
somehow defined over the node community assignments, our algorithm
is able to greedily optimize it. For example, the energy function used for
active contours, also called snakes, is defined by

E(B) =
1∫

0

[
Eint (B(s)) + Econ (B(s)) + Eext (B(s))

]
ds, (4.17)

where B(s) is the boundary of a region, Eint (B(s)) is the internal en-
ergy which describes the flexibility and the resistance of the boundary,
Econ (B(s)) is the constraint energy to control the size of the region and
Eext (B(s)) is the external energy described from the input picture to seg-
ment coherent regions. This functional is not directly computed from the
node assignments but one could still compute the variation in the energy
by switching some nodes from one community to another, hence modify-
ing the boundary of the region. Therefore, this kind of cost function could
be an excellent candidate, however the computational cost could also in-
crease because one would need to compute the variation of the boundary

136 Chapter 4. Performance of algorithms and applications

t=0
t=1

t=2

t=0

t=1

t=2

Fig. 4.21 Sliced network. Reprint with authorization from [Traag (2013)].

curve, etc.

4.2.3 Video tracking and 3D Segmentation

Solving the image segmentation problem allows one to automatically ex-
tract the position of different objects within a picture. Though, in many
applications, one is also interested in following the evolution of those po-
sitions which is known as video tracking. While the image segmentation
problem is already difficult, the video tracking problem raises even more
challenges like changes in the pose (rotation, deformation,...) or in the
ambient illumination, occlusion of the target, camera movements, and so
on [Maggio and Cavallaro (2011)].

One way to handle video tracking is to consider each frame as an indi-
vidual picture, to segment this picture and then try to match each object
from one frame to the next one. This approach has the main advantage
that it does not largely increase the computational cost of the algorithm
since one only needs to segment individual pictures. Although, matching
targets from one frame to the other might be very difficult when the ap-
pearance of other objects is similar to the target, which is known as image
clutter.

On the other hand, one can use simultaneously the information of

4.2. Image Processing 137

Fig. 4.22 Hands tracking.

multiple frames to segment the objects and acquire their trajectories at
the same time. As a proof of concept, we applied our algorithm to this
problem by considering a video as a sliced network as depicted in Fig.

138 Chapter 4. Performance of algorithms and applications

4.21. Sliced or multilayer networks have become increasingly popular
recently to study networks with multiple types of edges [De Domenico,
Solé-Ribalta, Cozzo et al. (2013); Kivelä, Arenas, Barthelemy et al. (2014)].
Each frame of the video is represented by a picture graph in a slice. Then,
multiple slices are connected using a similar measure than in the picture
graph. Two nodes i and j in different slices are connected if the time
interval between the slices is smaller than dT and the distance between
the associated pixels is again smaller than dmax. For example, in Fig. 4.21,
dT = 1 and dmax = 1. Finding the communities in a sliced network then
hopefully reveals both the objects and the evolution of their positions in
consecutive frames. Although, the more slices are connected, the larger is
the network to cluster which may dramatically increase the computational
time of the algorithm.

We applied this 3 dimensional segmentation to a video of someone
moving their arms and try to track the position of the hands. The results
are presented in Fig. 4.22. We initiated the tracking of the hands by
defining one seed pixels per hand. We then computed the communities
enclosing those seeds and tracked the evolution of those communities
(and the surroundings).

We used dT = 2 and initiated the network with 3 frames. After each
segmentation, the sliced network is updated. We simply discarded the
oldest frame and added a new slice to the network. The communities are
then initialized as found in the previous step for the 2 remaining slices
(according to their assignment graphs) and with 1 community per node
in the new slice. Finally, our algorithm is applied to this updated sliced
network using the initial partition. Each node in the new frame can either
choose to join a community in the 2 previous frames (hopefully if the
pixels belong to the same object) or to define a new community in the
new frame (if a new object appears).

First, it is clear that this method will not be resilient to occlusions. If the
tracked community disappears behind an obstacle, then the seed vanishes
and our tracking technique will not allow to recover the object when it
reappears. However, if the occlusion is only partial, then the community
can still be tracked. This can be seen in the third and fourth frames of the
video displayed in Fig. 4.22, where the right hand starts being occluded
by the left hand. However, because there is still a small portion of the right
hand that remains visible at the bottom, the community is recovered after
the occlusion. One can see that the arms are also tracked even though their
communities are only displayed when they are in the neighborhood of the

4.2. Image Processing 139

hands (to maintain the readability of the figure). Although the arms seem
oversegmented, similarly as the baby face in Fig. 4.17 which may indicate
that either dΛ should have been chosen smaller or dmax larger.

Again, we do not claim that this method can outperform other exist-
ing algorithms specifically designed for video tracking purposes. How-
ever, the results are convincing and the method can potentially be tuned
to reach high overall quality (mainly using ad hoc cost functions). This
3 dimensional segmentation could also be used for 3D reconstruction.
For example, in medical imaging, one usually takes multiple consecutive
scans of the region of interest (brain, hearth, etc.) to discover abnormal-
ities. Hence, this kind of “video” could be segmented using our method
to recover the external surface of medically interesting regions.

4.2.4 Boundary of inclusion in microstructure

Finally, let us conclude this chapter with a practical application in which
our algorithm has been applied successfully. With the actual development
of numerical methods and computer resources, engineers and researchers
present a growing interest in being able to model materials behavior based
on their experimentally observed microstructures, rather than under sim-
plifying assumptions about their constituent. Materials characterization
techniques have reached a point today where it is easy to obtain an im-
age of a material’s microstructure. These may include metallography or
electron microscopy that are widely available in research laboratories and
in the industry. Fig. 4.23 presents an experimental procedure to study
the deformation of a Duplex stainless steel consisting of 2 phases. An
image of the region of interest is taken after preparation of the surface.
Then, the sample is inserted inside an adjusted opening in a plane strain
compression specimen made of the same material and sealed by welding.
The specimen is quickly heated at 850°C, annealed for 30s to ensure tem-
perature homogeneity, deformed by plane strain compression and finally
quenched to limit microstructural evolution. After deformation the sam-
ple is carefully extracted from the compressed block and an image of the
region of interest after deformation is taken.

In this framework, image-based modeling has been the topic of intense
research in the last decade. One of the most popular practices is to build a
finite element mesh of the microstructure, as represented in Fig. 4.24, that
will serve as input in an appropriate solver. One could build the mesh
based on the pixel grid. However this approach may largely increase the

140 Chapter 4. Performance of algorithms and applications

Fig. 4.23 Overview of the experimental procedure to study deformation.

number of elements in the mesh and the boundaries in the microstructure
become staircase-shapped which increases the surface of the elements and
may affect the computation of the studied fields.

This is where our algorithm has become convenient. Since the com-
munities extracted are necessarily defining connected components of the
graph, our method segments closed domains in an input picture, without
intersection nor holes between them if the distance dmax is kept small. This
allows to subsequently apply automated mesh generation algorithms that
can usually produce good quality meshes even in the case of complex do-
main boundaries. Among many other meshing softwares, the free Gmsh
project [Geuzaine and Remacle (2009)] provides a powerful environment

4.2. Image Processing 141

Fig. 4.24 Non uniform mesh generation on picture.

Fig. 4.25 Optimized mesh of the Duplex microstructure.

for this purpose.
The mesh obtained from Gmsh after segmentation of the microstruc-

tural image is shown in Fig. 4.25. Using this mesh, qualitative similarity
between the experimental deformed microstructure and the simulation
has been observed, but the analysis of the simulation goes far beyond the
scope of the thesis.

5 Extraction of role structure

Until now, we have extensively presented the problem of community
detection and shown that clustering is essential to comprehend large

networks and reveal their relevant properties. However, this structural
distribution of the nodes in a graph is not always representative. For
instance, bipartite networks or cycle graphs do not contain communities
in the sense of coherent clusters of vertices. Those kinds of graphs may
enclose some densely connected groups of nodes, which could therefore
be identified as communities, however any of those communities will al-
ways be composed of nodes from different classes and will therefore have
a poor interpretation in terms of representative clusters. Though, those
graphs may be heavily organized and less attention has been paid to un-
cover more general structures. This task is known as role extraction or
block modeling [Wasserman and Faust (1994); Cason (2012)] and general-
izes the concept of community.

In this chapter, we will first state precisely the role extraction problem.
Then, we will present in Section 5.2 a model proposed by Reichardt &
White which extends the energy function described in Section 3.2.1 for
community detection. Yet, this model requires some prior knowledge on
the role structure which might be problematic in practice. Therefore, in
Section 5.3, we will show that one can handle the role extraction problem
by defining a pairwise node similarity measure and thereafter present
some of the similarity measures proposed in the literature. In Section 5.4,
we will analyze a new efficient similarity measure briefly introduced in
[Denayer (2012)] that is based on the number of common neighbors at
any distance between each pair of nodes in the graph. Finally, computing
the exact pairwise node similarity using this measure is computationally
expensive, therefore we will introduce in Section 5.5 a low rank iterative
scheme that approximates the similarity score and allows to analyze large
networks.

144 Chapter 5. Extraction of role structure

A

B C

A

B C

A

B C

A

B C

Fig. 5.1 Some examples of 3 roles structures.

5.1 Role model in network

The role extraction problem consists in finding a simple description of a
graph that would be accurately represented by this smaller comprehensi-
ble structure called the reduced graph or the image graph. This problem
is a generalization of the community detection problem. Roles can be
broadly defined as groups of nodes that share roughly similar connectiv-
ity patterns across the graph. Hence, communities form a particular class
of roles where nodes in a role mainly interact with nodes in the same
role. However, many other kinds of role interactions may be defined like
in a leader-follower model to represent social network interactions or in
a block cycle model for food webs. For example, some possible role in-
teractions, represented by their reduced graph, over a 3 roles structure
are illustrated in Fig. 5.1. Note that, only the first role structure defines
communities. In the following, we will always use 1 to represent nodes
of the original graph and 1 to represent roles, i.e. nodes in the reduced
graph.

The role extraction problem is sometimes referred as block modeling.
This comes from the fact that, based on the adjacency matrix A of the
graph, finding a representative role structure is equivalent to finding a
permutation matrix P such that the edges of the relabeled graph, associ-
ated to the adjacency matrix PAPT , are mainly concentrated within blocks:

5.1. Role model in network 145

A = PAPT =

P?

For an in-depth review of block modeling, we refer the interested
reader to [Doreian, Batagelj, and Ferligoj (2005)].

The role extraction problem is based on the assumption that nodes can
be clustered according to a suitable measure of equivalence. The first re-
lation of equivalence between graph vertices was introduced by [Lorrain
and White (1971)] and is called the structural equivalence. Two nodes are
structurally equivalent if they have exactly the same neighbors. This im-
plies that all the blocks of size larger than 2, i.e. the equivalence classes, in
the permuted adjacency matrix must be either null or complete, with po-
tentially some variations allowed on the diagonal of the diagonal blocks.
This measure of equivalence is rather restrictive and tends to extract many
small roles when applied to real graphs. Therefore, another relation of
equivalence has been introduced called the regular equivalence [White
and Reitz (1983); Everett and Borgatti (1994, 1996)]. Two nodes are regu-
larly equivalent if they share similar connections with other equivalence
classes, where the notion of similar connection must be specified. In gen-
eral, two nodes are considered regularly equivalent if they are connected
to the same equivalence classes, while the number of such connections
does not matter. This implies that the off diagonal blocks in the permuted
adjacency matrix must be either null or contain at least one element per
line and per column. Regular equivalence is a relaxation of structural
equivalence. Clearly, structural equivalence implies regular equivalence
but the opposite is not true. Originally, the structural and regular equiva-
lence were strictly combinatorial and therefore not robustly applicable to
real networks. However, some works have been done to define algorithms
which approximate the optimal equivalence classes [Borgatti and Everett
(1993); Luczkovich, Borgatti, Johnson et al. (2003)].

Based on a chosen equivalence criterion, one has to build a quality
function to optimize over both the role structure and the role assignment
of the nodes in the graph. More precisely, if we denote by B the adjacency

146 Chapter 5. Extraction of role structure

matrix of the reduced graph and by σ the assignment matrix of each node
to a role, the problem can be stated as

(B∗, σ∗) = arg max
B,σ

QA(B, σ)

where QA depends on the graph topology and the chosen equivalence
criterion. One then has to solve a combinatorial optimization problem
with respect to 2 variables, and therefore this problem is in general harder
than the community detection problem.

The quality function QA(B, σ) can be constructed either indirectly,
based on a (dis)similarity measure between pairs of nodes, or directly, by
measuring the fit of the clustering compared to an ideal clustering with
perfect relations within and between clusters. For the latter, one has to
choose a cost function that is sensitive to a measure of distance between
the actual blocks A(σi, σj) connecting clusters σi and σj and ideal blocks
between those clusters. The structure of those ideal blocks depends on the
relation of equivalence one is interested in. If we denote by K(σi, σj) the
set of ideal blocks between the clusters σi and σj, the problem can then be
stated as

σ∗ = arg min
σ

∑
σi ,σj

min
K∈K(σi ,σj)

d
(

A(σi, σj), K
)

,

where d is an appropriate measure of distance, for example

d
(

A(σi, σj), K
)
= ∑

x∈σi ,y∈σj

|A(x, y)− K(x, y)| .

Another approach of direct quality function based on the reduced graph
has been introduced by [Reichardt and White (2007)] and will be detailed
in the next section.

On the other hand, one can build the quality function based on a dis-
similarity measure and define clusters as groups of nodes closed to each
others. The general idea is to embed the graph vertices in a p-dimensional
space based on some structural properties of the nodes. One can use local
measures like the degree, the number of neighbors at distance d, the num-
ber of triads (i.e. the number of triangles as called by sociologists), etc. but
also more global centrality measures like the closeness or the betweenness
centrality (see Section 2.4 or [Newman and Girvan (2004); Klein (2010)]).
Once the p measures have been computed for each node i and aggregated
into an indicator vector ti, one can compute the pairwise dissimilarity as

5.2. Quality function: Reichardt & White 147

the distance between the indicator vectors

D(i, j) = d(ti, tj)

where d can be any type of norm like the Euclidian distance

d(ti, tj) =

√√√√
p

∑
s=1

(
ti(s)− tj(s)

)2,

or the Manhattan distance

d(ti, tj) =
p

∑
s=1

∣∣ti(s)− tj(s)
∣∣ .

Finally, one can also use a similarity or dissimilarity measure based on
the adjacency matrix. This approach is generally more suited when one
wants to establish clusters based on a specific equivalence criterion. For
example, one can use

D(i, j) =
√

∑
k
(A(i, k)− A(j, k))2

which is a dissimilarity measure based on structural equivalence since it
computes the number of non-common neighbors between nodes i and j.
Another measure based on structural equivalence is given by the Pearson
correlation between the rows or the columns of the adjacency matrix

D(i, j) =
∑k(A(i, k)− µi)(A(j, k)− µj)

nσiσj
,

where µi = ∑j A(i, j)/n and σi =
√

∑j(A(i, j)− µi)2/n. In Section 5.3, we
will go over a number of types of similarity measures specifically designed
for the extraction of role structure based on regular equivalence.

5.2 Quality function: Reichardt & White

The quality function proposed by [Reichardt and White (2007)] is a straight-
forward extension of Eq. (3.2) introduced for community detection in an
unweighted graph. Let us first assume that we know a role structure, rep-
resented by its unweighted adjacency matrix B, such that B(σi, σj) = 1

148 Chapter 5. Extraction of role structure

if edges are allowed from block σi to block σj. The quality function
QRW(σ, B) measures the fit between a partition σ for the graph, repre-
sented by its adjacency matrix A, and the reduced graph as

QRW(σ, B) =
1
m ∑

i 6=j

[
aij A(i, j)B(σi, σj) + bij(1− A(i, j))(1− B(σi, σj))

]
.

(5.1)
where aij (resp. bij) rewards the presence (resp. absence) of an edge
between nodes i and j if an edge is allowed (resp. forbidden) in the role
model between σi and σj. Therefore, this cost function is based on regular
equivalence between the nodes inside each cluster. If one is interested in
structural equivalence, penalties for the presence of forbidden edges and
for the absence of allowed edges can be added. The terms of Eq. (5.1) can
be rearranged such that

QRW(σ, B) = Q0 +
1
m ∑

i 6=j

((
aij + bij

)
A(i, j)− bij

)
B(σi, σj). (5.2)

where Q0 does not depend neither on the partition nor on the role struc-
ture. Reichardt & White proposed to balance the weight aij and bij because
often there are not as much existing edges as missing ones. Hence, they
imposed that aij + bij = 1, ∀i, j, and that

∑
i 6=j

aij A(i, j) = ∑
i 6=j

bij (1− A(i, j)) .

To achieve this, they used aij = 1 − pij and bij = pij with ∑i 6=j pij =

∑i 6=j A(i, j). Therefore, pij can be interpreted as the probability that there
exists an edge from node i to node j, and they chose to use the configura-
tion null model to define this probability. In this case, one can note that
if the adjacency matrix of the reduced graph B is diagonal (i.e. the roles
are communities), then we recover the unweighted modularity given by
Eq. (3.13).

As previously, we can write the summation over the cluster indices
rather than over the node indices which gives

QRW(B, σ) =
1
m ∑

r,s
(ers − 〈ers〉)B(r, s) (5.3)

where ers is the actual number of edges between clusters r and s and 〈ers〉

5.2. Quality function: Reichardt & White 149

is the expected number of such edges,

ers = ∑
i 6=j

(aij + bij)A(i, j)δ(σi, r)δ(σj, s),

〈ers〉 = ∑
i 6=j

bijδ(σ1, r)δ(σj, s).

Using Eq. (5.3), one can see that from a given partition σ, we can
easily compute the optimal adjacency matrix of the reduced graph. In-
deed, maximizing QRW(B, σ) is equivalent to maximizing every single
term (ers − 〈ers〉)B(r, s). Therefore, one simply needs to set

B(r, s) =

1 if ers − 〈ers〉 > 0,

0 otherwise.
(5.4)

Based on this observation, Reichardt & White suggested to extract the
role structure of an input graph by first maximizing

Q∗RW(σ) =
1
m ∑

r,s
|ers − 〈ers〉| (5.5)

and then defining the reduced graph using Eq. (5.4). The optimization
procedure can be handled using any of the algorithms presented in Chap-
ter 3, even though simulated annealing was originally chosen.

This quality function has been successfully applied to uncover the role
structure of a commodity trade network [Reichardt and White (2007)].
However, it suffers from some important drawbacks. First, there is abso-
lutely no guarantee that the optimization of Eq. (5.5) effectively extracts a
relevant role structure since the reduced graph is removed from the op-
timizing scheme. Moreover, the method should also work for weighted
networks, but an unweighted reduced graph seems inappropriate to rep-
resent clusters in a weighted network. Finally, this method is not able
to extract a relevant role structure for some simple graphs like a com-
plete bipartite graph. Clearly, the roles are strongly defined in this kind
of network since each node within one of the disjoint sets is structurally
equivalent to all the nodes within this set. However, one can compute
that, for such network,

A(i, j)− pij = A(i, j)−
kout

i kin
j

m
= 0 , ∀i, j

150 Chapter 5. Extraction of role structure

and therefore, QRW(σ, B) = 0 for any partition σ and any reduced graph
B. Therefore, the method can not extract any role in this type of graph.

5.3 Pairwise node similarity measures

As we have seen, the definition and the optimization of a direct quality
criterion to extract roles in a network are really challenging and might
yield unexpected results since one needs to optimize the cost function
with respect to both the structure of the reduced graph and the cluster
assignment of each node. Hence, indirect quality criteria based on the
pairwise node similarity have been developed. The idea of such methods
is to somehow compare each node of the input graph with the nodes of
the reduced graph by measuring how similar they are in terms of flows or
connectivity patterns. More precisely, given an input graph and a reduced
graph, one is interested in defining a suitable pairwise node similarity
S(A, B) which sets a positive real value for every pair of nodes (i, j) with
i ∈ VA, the node set of A, and j ∈ VB, the node set of B. Each node of the
input graph can then be associated to the role, i.e. a node of the reduced
graph, to which it is the most similar.

Although this approach seems to suffer from the same inconvenience
than a direct quality criterion (that is we need to assume a particular
structure for the reduced graph beforehand) one can in general use the
criterion function to define a pairwise node self-similarity measure. This
means that each node of the input graph is compared to all the nodes of
the same graph using S(A, A). Therefore, one can compute the similarity
between each pair of nodes and then cluster highly similar nodes together.
For example, one can apply a community detection algorithm on the sim-
ilarity graph, whose weighted adjacency matrix is the pairwise node self-
similarity measure S(A, A), since nodes in the same cluster should be
highly similar with each other and highly dissimilar with nodes in other
clusters, hence revealing a community structure.

In the following sections, we will present some interesting pairwise
node similarity measures previously introduced in the literature.

5.3.1 Blondel et al.

The similarity measure proposed by [Blondel, Gajardo, Heymans et al.
(2004)] is a generalization of the hub and authority scores proposed by
[Kleinberg (1999)] to rank web pages for search engines. The purpose of

5.3. Pairwise node similarity measures 151

the latter is to classify each web page as either a hub, i.e. a web page con-
taining a lot of links pointing to relevant authorities, or an authority, i.e. a
web page containing interesting information and hence pointed by many
hubs. Therefore, the role structure for this ranking and the associated
adjacency matrix are given by

Hub Authority B =

 0 1

0 0

 .

A node is an important hub if its outgoing edges are directed to important
authorities, and is an important authority if its incoming edges are coming
from important hubs. This suggests a reinforcement iteration to compute
the scores as

hk+1 =
Aak
‖Aak‖

, ak+1 =
AThk

‖AThk‖
, (5.6)

where h is the vector of hub scores and a the vector of authority scores.
The normalization comes from the fact that we are only interested in the
relative scores of each node rather than in their absolute values, i.e. a
node would be classified as hub only if its hub score is larger than the
hub score of the other nodes rather than if it achieves a particular value of
hub score. Moreover, we want to ensure the convergence of the sequences
hk and ak which are initialized with h0 = a0 = 1. If we denote by [x | y]
the horizontal concatenation of 2 vectors or matrices x and y, one can
rewrite Eq. (5.6), up to the normalization factors, as

[hk+1 | ak+1] = A [ak | 0] + AT [0 | hk] ,

= A [hk | ak]

 0 0

1 0

+ AT [hk | ak]

 0 1

0 0

 ,

= A [hk | ak] BT + AT [hk | ak] B.

This illustrates the basic principle of the similarity introduced by Blon-
del et al. : two nodes i ∈ VA and j ∈ VB should be highly similar if the
children of i are similar to the children of j or if the parents of i are similar
to the parents of j. More precisely, the pairwise node similarity measure
of Blondel et al. SB

A,B is given by the fixed point solution of

Sk+1 =
A Sk BT + AT Sk B
‖A Sk BT + AT Sk B‖F

. (5.7)

152 Chapter 5. Extraction of role structure

with S0 = 11T . Using the property of the Kronecker product (denoted by
⊗) that ATXB = (B⊗ A) vec(X), where vec(X) is the vectorization of the
matrix X formed by stacking vertically the columns of X, Eq. (5.7) can be
written as

sk+1 =

(
B⊗ A + BT ⊗ AT) sk

‖(B⊗ A + BT ⊗ AT) sk‖2
=

Msk
‖Msk‖2

, (5.8)

where sk = vec(Sk). One can prove that this sequence converges to s(s0) =
Πs0
‖Πs0‖2

where Π is the orthogonal projector on the invariant subspace of M
associated to the dominant eigenvalue ρ(M). However, when −ρ(M) is
also an eigenvalue of M, then two converging and alternating sequences
are observed {seven(s0), sodd(s0)}. In this case, the authors propose that the
sequence seven(s0) should be used as the pairwise node similarity matrix.

When one does not have a hypothetical role structure available for the
graph, the measure can still be used to compute a pairwise node self-
similarity SB

A,A = SB
A as the fixed point solution of

Sk+1 =
A Sk AT + AT Sk A
‖A Sk AT + AT Sk A‖F

. (5.9)

This measure tends to give higher similarity scores for pairs of nodes
involving one high degree node. This can lead to a situation where some
nodes are more similar to other nodes than to themselves. Therefore, one
needs to apply a scaling of the similarity matrix such that each node is
exactly similar to itself, S(i, i) = 1, and all other similarity scores S(i, j) ≤
1. This can be done using for example a diagonal scaling

SB
A = D−0.5

S SB
A D−0.5

S ,

where DS is the diagonal matrix of the unscaled self-similarity scores,
DS = diag

(
SB

A(i, i)
)
.

This pairwise node similarity has been used for example to automat-
ically extract synonyms from a dictionary by assuming that synonyms
should have many words in common in their definition and also appear
together in the definition of many words. However, the measure is not
able to extract relevant similarity scores when the graph associated to A
is regular or if A is normal. In those cases, one can prove that the simi-
larity matrix is of rank 1 which implies that, after scaling, it is given by
SB

A = 11T which makes the extraction of roles impossible.

5.3. Pairwise node similarity measures 153

Low rank approximation

Computing the exact pairwise similarity matrix of Blondel et al. can be
computationally too expensive for large networks because after each it-
eration of Eq. (5.7) or Eq. (5.9), the number of non null elements in the
matrix Sk+1 tends to increase until this matrix eventually becomes full.
Therefore, a low rank iterative scheme that approximates the pairwise
similarity matrix has been proposed by [Cason, Absil, and Van Dooren
(2013)]. Let ΓA,B[.] be the linear operator used in the iterative sequence of
the similarity measure,

ΓA,B : Rn×c → Rn×c : ΓA,B[X] = AXBT + ATXB, (5.10)

where c is the number of roles, B ∈ Rc×c, and n is the number of nodes in
the input graph, A ∈ Rn×n. One can observe that the iterative solutions
of Eq. (5.7) or Eq. (5.9) are solution of the optimization problem

Sk+1 = arg max
‖S‖F=1

〈S, Γ [Sk]〉 (5.11)

where 〈.〉 denotes here the standard matrix inner product.

Using this observation, a low rank iterative scheme may then be de-
fined as

S(r)
k+1 = f

(
S(r)

k

)
= arg max

S∈Rn×c
≤r

〈
S, Γ2

[
S(r)

k

]〉
(5.12)

where S(r)
k is the pairwise node similarity of rank at most r at iteration k

and Rn×c
≤r is the set of matrices in Rn×c of rank at most r,

Rn×c
≤r =

{
UΣVT

∣∣∣∣∣∣
U ∈ Rn×r, V ∈ Rc×r, Σ ∈ Rr×r

UTU = In, VTV = Ic, Σ diagonal

}
.

Note that the operator Γ[.] (which could be either ΓA,B[.] or ΓA,A[.]) is ap-
plied twice in Eq. (5.12) because we are only interested in the fixed point
solution of the even sequence when it differs from the odd sequence. In
practice, each iterative solution of Eq. (5.12) can be computed using a trun-
cated singular value decomposition (SVD). See [Cason (2012)] for a proof
of convergence of the low rank iterative scheme.

154 Chapter 5. Extraction of role structure

5.3.2 Cooper & Barahona

Another pairwise node similarity measure has been introduced by Cooper
& Barahona based on the number of paths originating from or leading to
each node [Cooper and Barahona (2011); Beguerisse-Diaz, Vangelov, and
Barahona (2013)]. First, let us remind that the number of paths of length
l from a node i to a node j is given by [Al](i, j) while the number of such
paths from j to i is given by [ATl

](i, j). One can compute the total number
outgoing and incoming paths of length l from and to node i as [Al1](i)
and [ATl1](i).

The similarity score of Cooper & Barahona SCB
A is a self-similarity mea-

sure based on this total number of paths. Intuitively, if nodes have sim-
ilar connectivity patterns, they should roughly have the same number of
neighbors at various distances, and therefore they should be highly simi-
lar. Based on this idea, one can compute an indicator matrix X containing
the total number of paths of length l ≤ lmax as

X =
[

βA1 | . . . | (βA)lmax 1 | βAT1 | . . . |
(

βAT
)lmax

1
]

(5.13)

where the first lmax columns correspond to the outgoing paths and the last
lmax columns correspond to the incoming paths. The parameter β = α

ρ(A)

ensures the convergence of the sequence with α ∈ [0, 1] and ρ(A) the
dominant eigenvalue of A, i.e. its spectral radius. The value of α allows
to tune the importance of long paths (global connectivity) with respect to
short path (local connectivity).

Each row of X serves as an indicator vector of the total flow profile of
the associated node. Since the similarity score should reward similar flow
profiles, it is natural to define SCB

A as

SCB
A (i, j) =

xixT
j

‖xi‖
∥∥xj
∥∥ , (5.14)

where the scaling ensures SCB
A (i, i) = 1 and SCB

A (i, j) ≤ 1. Note that this
similarity matrix can also be computed for lmax → ∞ as the normalized

5.3. Pairwise node similarity measures 155

sum of the two iterative sequences

Sout
k+1 = A

(
11T +

(
α

ρ(A)

)2
Sout

k

)
AT (5.15)

Sin
k+1 = AT

(
11T +

(
α

ρ(A)

)2
Sin

k

)
A (5.16)

which converge only if α < 1.
The main advantage of the similarity score of Cooper & Barahona is

that it is in general cheaper to compute than SB
A when lmax is finite and this

similarity measure has therefore been successfully applied on different
networks [Beguerisse-Díaz, Vangelov, and Barahona (2013); Beguerisse-
Díaz, Garduño-Hernández, Vangelov et al. (2013)]. However, much in-
formation, like the origins or the destinations of the paths, is lost since
the measure only considers the total number of paths by computing the
product of the powers of A and 1.

5.3.3 Leicht, Holme & Newman

Finally, let us discuss the self-similarity measure of [Leicht, Holme, and
Newman (2006)] based on the predicate that a node i should be similar to
a node j if i has a neighbor v that is itself similar to j. As a first candidate,
the similarity measure of Leicht et al. , SL

A, could be written as

SL
A(i, j) = φ ∑

v
A(i, v)S(v, j) + ψδ(i, j) (5.17)

=
[
φA S + ψI

]
(i, j) (5.18)

where the first term corresponds to the similarity between j and the neigh-
bors v of i, the second term enforces that each node is similar to itself and
φ and ψ are parameters to be chosen. Working on Eq. (5.18), one can write
it as

SL
A = ψ (I − φA)−1 , (5.19)

hence the parameter ψ is a simple multiplicative scaling which will not
change the relative similarity scores and can therefore be discarded from
the measure. If φ < ρ(A), then the solution of Eq. (5.19) always exists and
can be computed as an infinite power series

SL
A = I + φA + φ2 A2 + . . . (5.20)

156 Chapter 5. Extraction of role structure

which shows that the parameter φ serves as a scaling factor to weight the
number of long paths relatively to the number of short paths. However,
applying a constant scaling φl to Al seems inappropriate to build a pair-
wise node similarity measure based on the number of paths since high
degree nodes will necessarily be involved in more paths than low degree
nodes. Therefore Leicht et al. relaxed this constrain by allowing a different
scaling for each pair of nodes,

SL
A =

∞

∑
l=0

Cl(i, j)
[

Al
]
(i, j). (5.21)

The elements of the scaling matrix Cl(i, j) should be inversely proportional
to the expected number of paths from i to j in a random network with the
same incoming and outgoing degree sequences. This way, a pair of nodes
would be more similar if there are actually more paths between them than
what would be observed by chance. To build the scaling matrix Cl , first
observe that the number of paths of length l from i to j is given by the ith

entry of the vector pl given by

pl = Alej,

where the vector ej(t) = δ(j, t). Hence for large l, this vector converges to
the dominant eigenvector of A associated to λ := ρ(A), and

pl+1 = λpl

which shows that for large l, the number of paths increase approximately
by a factor λ when the length of the paths is increased by 1. Obviously, this
holds only in the limit of large l but will be used as a first approximation
for small l too. One can however easily correct the number of paths of
length 1 which is kout

i and the total number of paths of length l from node
i will be approximated by kout

i λl−1. Out of all those paths, only a fraction
kin

j /m are expected to end up in node j in a random network so the scaling
factor can be computed as

Cl(i, j) =
mλ1−l

kout
i kin

j
.

5.4. Neighborhood patterns based similarity 157

Finally the pairwise node similarity reads

SL
A(i, j) = δ(i, j) +

mλ

kout
i kin

j

∞

∑
l=1

(α

λ

)l [
Al
]
(i, j) (5.22)

=

[(
1− mλ

kout
i kin

j

)
I +

mλ

kout
i kin

j

(
I − α

λ
A
)−1

]
(i, j) (5.23)

where the scaling factor α < 1 is introduced to ensure the convergence of
the sequence. Leicht et al. claim that an appropriate value is α = 0.97. The
first term of Eq. (5.23) only affects how each node is similar to itself and
can be dropped from the final solution which is then given by

SL
A = mλ

(
Kout)−1

(
I − α

λ
A
)−1 (

Kin
)−1

(5.24)

where K is the diagonal matrix of in- or out-degrees K = diag(ki). In
practice, one can compute this similarity matrix as the fixed point solution
of the iteration

Kout Sk+1 Kin =
α

λ
A KoutSk Kin + I (5.25)

where one can note that the scaling mλ has been removed since it does
not change the relative similarity score.

This similarity measure has been applied to various networks contain-
ing some kind of hierarchical structures. However, it seems not suited to
analyze the type of networks that we are interested in here. We expect that
the edges of a graph will mostly connect nodes that are not similar, and
instead that the similarity between nodes lies more in their connectivity
patterns (which will be made clear in what follows), like for example in
N-partite networks where all the edges connect nodes in different classes.
In fact, the similarity measure of Leicht et al. is more suited to analyze
networks with a community structure rather than a role structure.

5.4 Neighborhood patterns based similarity

We consider that nodes sharing the same kind of behavior, i.e. having the
same role, should have similar flow patterns across the network which can
be somehow measured by comparing the neighborhood connectivity of
the nodes, as for the structural equivalence criterion. We have just shown
that this can be done using the similarity measure proposed by Blondel et
al. and that, for this measure, the similarity matrix obtained can be easily

158 Chapter 5. Extraction of role structure

and well approximated using a low rank iterative scheme. However, it
seems uneasy to interpret the measure in terms of neighborhood connec-
tivity and we mentioned that it can not be used to extract role structure
when the adjacency matrix of the graph is regular or normal, hence for
undirected graphs. Another approach introduced by Cooper & Barahona
computes an indicator vector for each node based on the number of its
neighbors but much information gets lost in the process, i.e. the origin,
the destination and the intermediate nodes involved in the transmission
of the flow. Finally, we discussed the measure of Leicht et al. which has a
clear interpretation and formalism but is much more appropriate to detect
communities than role structures. In what follows, we will present a new
pairwise node similarity measure introduced by [Denayer (2012)] which
encompasses the different assets of the previously described measures.
Our first contribution has been to precisely analyze the measure and its
convergence properties, and to compare its behavior with the other meth-
ods on specific graphs which will be the topic of this section. Our next
major contribution has been to define a low-rank approximation of the
similarity matrix to allow the extraction of role structure in very large
graphs, which will be presented in a consecutive section. Lastly, we will
apply in the next chapter our low-rank similarity measure on benchmark
and real graphs to illustrate its effectiveness.

Let us first define a neighborhood pattern of length ` for a node as a
sequence of length ` of incoming (I) and outgoing (O) edges starting from
the node, which we will call the source node. For example, the neighbor-
hood patterns of length 1 consist in exactly one edge and end up either in
a parent (pattern I) or in a child (pattern O) of the source. If we consider
neighborhood patterns of length 2, then 4 different types of nodes can be
reached: the parent of a parent (pattern I-I), the child of a parent (pattern
I-O), the parent of a child (pattern O-I) or the child of a child (pattern O-
O). One can easily see that when the length of the neighborhood patterns
is increased by 1, the total number of types of reachable nodes, which we
will call the target nodes, is doubled.

Our similarity measure should reflect that a pair of nodes is highly
similar if they have many neighborhood patterns in common. In other
words, as sources of the sequences, a pair of similar nodes should reach
many common targets with the same neighborhood patterns and do so for
patterns of various lengths. Let us illustrate this concept. Using the pat-
terns of length 1, two source nodes will be more similar if they have many
common parents (pattern I) or many common children (pattern O). If we

5.4. Neighborhood patterns based similarity 159

represent the source nodes as dark circles and the common target node as
an octagon, this means that the graph topology around two similar source
nodes should be one of the following

pattern: I
AT A

pattern: O
A AT

One can compute the number of common parents between a pair of nodes
(i, j) as

[
AT A

]
(i, j) while the the number common children is given by[

A AT] (i, j). Therefore, we can compute the number of common target
nodes between every pair of source nodes using neighborhood patterns
of length 1 as

T1 = AAT + AT A.

Similarly, using neighborhood patterns of length 2, the different graph
topologies around 2 similar source nodes are represented by

pattern: I - I
AT AT A A

pattern: I - O
AT A AT A

pattern: O - O
A A AT AT

pattern: O - I
A AT A AT

and the number of common target nodes for neighborhood patterns of
length 2 is given by

T2 = AAAT AT + AAT AAT + AT AAT A + AT AT AA.

Let us represent, as a final example, the available neighborhood pat-
terns of length 3

160 Chapter 5. Extraction of role structure

pattern: I - I - I
AT AT AT A A A

pattern: I - I - O
AT AT A AT A A

pattern: I - O - O
AT A A AT AT A

pattern: I - O - I
AT A AT A AT A

pattern: O - O - O
A A A AT AT AT

pattern: O - O - I
A A AT A AT AT

pattern: O - I - I
A AT AT A A AT

pattern: O - I - O
A AT A AT A AT

from which the number of common targets T3 can be trivially computed.

We define our pairwise node similarity measure S ∈ Rn×n as the wei-
ghted sum of the number of common target nodes using neighborhood
patterns of any length

S =
∞

∑
`=1

β2(`−1)T`, (5.26)

where β ∈ R is a scaling parameter. As in the previous similarity mea-
sures, the value of β balances the relative importance of long neighbor-
hood patterns with respect to short neighborhood patterns since the num-
ber of common targets tends to naturally grow when using longer pat-
terns. This similarity measure was briefly introduced in [Denayer (2012)]
and resembles the similarity measure of Leicht et al. given by Eq. (5.21),
although considering totally different types of node connectivity patterns
that are more appropriate to study networks containing a role structure.

Using the linear operator ΓA[.] = ΓA,A[.] defined by Eq. (5.10), one can
see that

T1 = ΓA [I] ,

T2 = ΓA [T1] = Γ2
A [I] ,

T3 = ΓA [T2] = Γ3
A [I] ,

5.4. Neighborhood patterns based similarity 161

where Γk
A[.] corresponds to applying k times the operator ΓA[.]. Therefore

S =
∞

∑
`=1

β2(`−1)Γ`
A[I], (5.27)

which can be computed as the limit when k→ ∞ of the iterative sequence

Sk+1 = ΓA

[
I + β2Sk

]
, (5.28)

since for an initial matrix S0, we have

Sk+1 = ΓA [I] + · · ·+
(

β2
)k

Γk+1
A [I] +

(
β2
)k+1

Γk+1
A [S0] (5.29)

Hence, our similarity measure is given by the fixed point solution of the
iterative sequence Eq. (5.28)

S = ΓA [I] + β2ΓA[S]. (5.30)

Note that our similarity matrix S is necessarily symmetric and positive
semidefinite since it is computed as the weighted sum of infinitely many
symmetric and positive semidefinite matrices.

The parameter β can be tuned to vary the relative weight of long neigh-
borhood patterns but must be chosen wisely to ensure the convergence of
the sequence Sk. If we initialize S0 = 0, the iterative sequence of Eq. (5.28)
can be written for k ≥ 1 as

Sk+1 = S1 + β2ΓA [Sk] , (5.31)

where
S1 = ΓA [I] = T1 = AAT + AT A, (5.32)

and the fixed point solution of Eq. (5.31) is then given by

S = S1 + β2
(

ASAT + ATSA
)

,

if the sequence converges. Using the same property of the Kronecker
product than for SB

A, this fixed point solution can be written as

vec(S) =
[

I − β2
(

A⊗ A + (A⊗ A)T
)]−1

vec (S1) .

162 Chapter 5. Extraction of role structure

A S SB = SCB

Fig. 5.2 Block cycle role structure and the associated node similarities.

It follows that, to ensure convergence, one can choose β such that

β2 <
1

ρ
(

A⊗ A + (A⊗ A)T
) (5.33)

Computing exactly this upper bound for the parameter β to ensure con-
vergence might be computationally expensive due to the Kronecker prod-
ucts A ⊗ A ∈ Rn2×n2

if A is not symmetric. However, one can easily
compute a more restrictive bound

β2 ≤ 1
ρ ((A + AT)⊗ (A + AT))

=
1

ρ ((A + AT))
2 (5.34)

which ensures that the constraint of Eq. (5.33) is satisfied. This bound is
clearly not tight to the actual upper bound, however we did not find any
closer bound which can be computed easily.

Note that our similarity measure S is somehow linked to the similarity
of Blondel et al. SB (Section 5.3.1). Indeed, the actual upper bound for the
parameter β is exactly the inverse of the dominant eigenvalue associated
the invariant subspace which defines the orthogonal projector to compute
the solution SB(s0). Moreover, one can see that the iterative sequences
are not independent, and while one can not compute SB from S (nor vice
versa), if we choose a matrix Φ such that the initial value of SB

0 = I + β2Φ,
then

SB
1 =

S1 + β2Γ [Φ]

‖S1 + β2Γ [Φ]‖F

SB
k+1 =

Sk+1 − Sk + β2(k+1)Γk+1 [Φ]

αk
→ Sk+1 − Sk

αk

5.4. Neighborhood patterns based similarity 163

where αk =
∥∥∥Sk+1 − Sk + β2(k+1)Γk+1 [Φ]

∥∥∥
F
. However, the similarity mea-

sure of Blondel et al. has some drawbacks that are avoided using our
iterative scheme defined by Eq. (5.31). First, one can see that the sequence
Sk converges for any initial matrix S0 to a unique fixed point solution.
From Eq. (5.29), it is clear that when k → ∞,

(
β2)k+1 Γk+1

A [S0] → 0 since
the spectral radius of the linear operator ρ

(
β2Γ [.]

)
< 1. This also sup-

ports our choice S0 = 0. On the other hand, SB strongly depends on the
initialization of its iterative sequence and, as we have seen, the solution
may alternate between 2 converging sequences. The choices SB

0 = 11T and
S = Seven(S0) seem very arbitrary and not based on relevant properties of
the measure. The argument brought by the authors, that is Seven(11T) is
the matrix of largest 1-norm, is unconvincing. Moreover, it is known that
the similarity score of Blondel et al. SB is of rank 1 when the adjacency
matrix A is normal. For example, let us consider a regular block cycle
graph, as represented in Fig. 5.2 along with its adjacency matrix, where
each role contains the same number of nodes and each node is connected
to all the nodes in the following role in the cycle. The similarity matrix
SB is of rank 1 for this role structure and therefore, after scaling, SB is
the matrix of all ones which makes the extraction of the role structure
impossible. On the contrary, our measure computes in this case a similar-
ity matrix of rank equal to the number of roles in the network, with an
obvious clustering that reveals the different roles.

Our similarity measure can also be seen as a generalization of the mea-
sure proposed by Cooper & Barahona for which the pairwise similarity
SCB only compares the total number of paths originating or leading to
a node, without comparing the targets nor the sources of those paths.
Furthermore, this similarity score SCB does not consider all the types of
neighborhood patterns that we introduced, but only restricts the measure
to direct paths (which are defined by the patterns I-I-...-I and O-O-...-O).
Therefore, the pairwise node similarity for the regular block cycle graph,
illustrated in Fig. 5.2, is of rank 1 because all the nodes have a constant
number of in/out neighbors at any distances. This makes the extraction
of the role structure of this network also impossible using SCB. One can
see that any 2 nodes of the same role in the input graph are isomorphic,
while any 2 nodes of different roles are not. This is accurately represented
by our measure S but not by SCB.

Unfortunately, even if β is small enough to guarantee the convergence
of the sequence given by Eq. (5.31), it might be impossible to compute

164 Chapter 5. Extraction of role structure

the fixed point solution up to a small tolerance because of the increasing
computational cost and memory requirements. Indeed, even if A is sparse,
the matrix Sk tends to fill in as k increases and the complexity of each
single iteration of Eq. (5.31) is O

(
mn2). This leads us to define a low-rank

projected iteration to approximate the pairwise node similarity matrix.

5.5 Low-rank similarity approximation

Because the full rank fixed point solution of Eq. (5.31) is often compu-
tationally too expensive to extract, let us introduce a low-rank iterative
scheme that approximates the pairwise node similarity matrix S with a
matrix S(r) of rank at most r. We will thereafter prove the convergence of
this low rank iteration.

Let us first assume that we have a low rank approximation of the so-
lution at iteration k, S(r)

k . Using the same formulation as Eq. (5.31), we
define the low rank iterative scheme as

S(r)
k+1 = Π(r)

[
S(r)

1 + β2ΓA

[
S(r)

k

]]
= Xk+1 XT

k+1 (5.35)

where Xk+1 ∈ Rn×r and Π(r) [.] is the best low-rank projector on the dom-
inant subspace of dimension at most r which can be computed using a
truncated singular value decomposition (SVD). S(r)

1 is the best low-rank
approximation of S1 which can be written as

S1 = AAT + AT A =
[

A | AT
] [

A | AT
]T

, (5.36)

for which we remind that
[
A | AT] is the horizontal concatenation of A

and AT . This allows us to efficiently compute S(r)
1 which is naturally

defined as

S(r)
1 = Π(r)

[[
A | AT

] [
A | AT

]T
]

For this, we first compute a singular value decomposition of
[
A | AT],

which can be done efficiently using sparse matrix algorithms, e.g. ARPACK,
[

A | AT
]
= U1Σ1VT

1 + U2Σ2VT
2 (5.37)

where the columns of the unitary matrix U1 ∈ Rn×r span the dominant
subspace of dimension at most r of

[
A | AT] and Σ1 ∈ Rr×r is the diag-

5.5. Low-rank similarity approximation 165

onal matrix of the dominant singular values, Σ1(i, i) > Σ2(j, j), ∀i, j. This
leads to [

A | AT
] [

A | AT
]T

= U1Σ2
1UT

1 + U2Σ2
2UT

2 (5.38)

which implies that the best low rank projection of S1 is given by

S(r)
1 = U1Σ2

1UT
1 = X1XT

1 (5.39)

To compute each iterative solution of Eq. (5.35), one can see that

S(r)
1 + β2ΓA

[
S(r)

k

]
= X1XT

1 + β2 AXkXT
k AT + β2 ATXkXT

k A

= Yk YT
k

where
Yk =

[
X1 | βAXk | βATXk

]
. (5.40)

Therefore the matrix YkYT
k is of rank at most 3r and

Xk+1XT
k+1 = Π(r)

[
YkYT

k

]
. (5.41)

Finally, to efficiently compute Xk+1, we first apply a QR factorization
of Yk

Yk = QkRk (5.42)

for which the computational cost can be reduced by keeping the first r
columns of Qk−1 and Rk−1 since those correspond to the factorization of
X1 which is constant for all k. Then, we compute a truncated SVD of rank
at most r of Rk such that

Rk ≈ UkΩkVk (5.43)

and finally compute Xk+1 as

Xk+1 = QkUkΩk. (5.44)

One can prove using perturbation theory [Stewart (1973)] that the iter-
ative scheme defined by Eq. (5.35) converges locally to a fixed point solu-

166 Chapter 5. Extraction of role structure

tion

S(r) = XXT = Π(r)
[
YYT

]
,

YYT =
[

X1 | βAX | βATX
]

.

if the spectral gap of YYT at the rth eigenvalue is sufficiently large. Let us
recall the perturbation theorem which is stated as follows:

Theorem (4.11 Stewart (1973)). Let A, E ∈ Cn×n. Let X = [X1 | X2] be unitary
with X1 ∈ Cn×r and suppose that span(X1) is an invariant subspace of A. Let
XH AX and XHEX be partitioned conformally with X in the forms

XH AX =

 A11 A12

0 A22

 ,

and

XHEX =

 E11 E12

E21 E22

 .

Let
δ = sep(A11, A22)− ‖E11‖ − ‖E22‖ ,

where sep(A, B) is the eigenvalue gap between A and B,

sep(A, B) = min |λ(A)− λ(B)|

(when A and B are hermitian matrices).
If

‖E21‖ (‖A12‖ − ‖E12‖)
δ2 ≤ 1

4
, (5.45)

then there is a matrix P satisfying

‖P‖ ≤ 2
‖E21‖

δ
, (5.46)

such that X
′
1 = (X1 + X2P)

(
I + PH P

)−1/2 span an invariant subspace of
A + E.

We will show that we are indeed satisfying the assumption of the the-

5.5. Low-rank similarity approximation 167

orem and use it to prove the local convergence of our low rank iterative
scheme.

First, we consider the function

f (S) = S(r)
1 + β2ΓA [S] ,

which defines the low rank iteration before the projection on the dominant
subspace. Then, let us define the function

g (β, S) = S−Π(r) [f (S)] (5.47)

with a slight abuse of notation, since f (S) depends on β, that hope-
fully will not confuse the reader. Clearly, there is at least one solution
of g (β, S) = 0 given by

g
(

0, S(r)
1

)
= S(r)

1 −Π(r)
[
S(r)

1

]
, (5.48)

= S(r)
1 − S(r)

1 = 0. (5.49)

Using the implicit function theorem [Weir, Hass, and Thomas (2013)], this
implies that there exists a low rank matrix S(r) such that, for β sufficiently
close to 0,

g
(

β, S(r)
)
= S(r) −Π(r)

[
f
(

S(r)
)]

= 0. (5.50)

This requires that the low projector Π(r) is differentiable which is the case
if there is a non-negative singular value gap at the rth singular value of
S(r)

1 . Therefore, we know that there exists a fixed point solution of our low
rank iterative scheme

S(r) = Π(r)
[

f
(

S(r)
)]

. (5.51)

Since S(r) is a symmetric positive semidefinite matrix of rank at most
r, we can express it as

S(r) = XXT = UΣ2UT (5.52)

with X, U ∈ Rn×r, UTU = I, and Σ ∈ Rr×r diagonal. Moreover, since S(r)

is a fixed point solution of the low rank iteration, it implies that U is also

168 Chapter 5. Extraction of role structure

the dominant subspace of f
(

S(r)
)

which can then be expressed as

f
(

S(r)
)
= UΣ2UT + Vσ2VT (5.53)

with V ∈ Rn×2r, σ ∈ R2r×2r diagonal, Σ(i, i) > σ(j, j) ∀i, j because we
assumed that the fixed point solution has a positive spectral gap at the rth

singular value, and UTV = 0. This can also be written in the form of the
theorem as

[U V]T f (S(r)) [U V] =

 Σ2

σ2

 (5.54)

Then, let us consider a small symmetric perturbation ∆ around the low
rank fixed point solution. Using the linearity of the operator ΓA[.], one can
write that

f (S(r) + ∆) = S(r)
1 + β2ΓA

[
S(r) + ∆

]
, (5.55)

= S(r)
1 + β2ΓA

[
S(r)

]
+ β2ΓA [∆] , (5.56)

= f (S(r)) + β2ΓA [∆] . (5.57)

Clearly, U is in general not an invariant subspace of f (S(r) + ∆) and

[U V]T
(

f (S(r)) + β2Γ[∆]
)

[U V] =

 F11 FT

21

F21 F22

 . (5.58)

with F21 6= 0. However, if the condition of the perturbation theorem holds,
then we know that there exists a unitary transformation Q ∈ Rn×n such
that the first r columns of the matrix

[U
′

V
′
] = [U V]Q

span an invariant subspace of f (S(r) + ∆). The matrix Q is given by

Q =

 I −PT

P I

 (I + PT P)−1/2 0

0 (I + PPT)−1/2

 (5.59)

5.5. Low-rank similarity approximation 169

where P is solution of the non-linear equation

P F11 − F22 P = F21 − P FT
21P. (5.60)

Equivalently, the first r columns of [U V] Q are given, as stated by the
perturbation theorem, by

U
′
= (U + VP)

(
I + PT P

)−1/2
, (5.61)

and

([U V] Q)T
(

f (S(r)) + β2Γ[∆]
)

([U V] Q) =

 F̃11 0

0 F̃22

 . (5.62)

Let us now prove that, indeed, the hypothesis of the perturbation the-
orem holds here. Since β2Γ[∆] is a small symmetric perturbation, we can
write, in the same form as the theorem,

[U V]T β2Γ[∆] [U V] =

 E11 ET

21

E21 E22

 , (5.63)

and we need to prove that
‖E21‖2

δ2 ≤ 1
4

(5.64)

since E12 = ET
21 and VT f (S(r))U = 0.

As previously stated, we need the matrix S(r) to have a non null spec-
tral gap at the rth singular value. Therefore, if the matrices Σ and σ are
sorted in decreasing order,

sep(Σ2, σ2) = Σ2
k − σ2

1 > 0,

and Eq. (5.64) can be written as

2 ‖E21‖ ≤ δ (5.65)

2 ‖E21‖+ ‖E11‖+ ‖E22‖ ≤ Σ2
k − σ2

1 (5.66)

An appropriate norm is the Frobenius norm for which we know that

170 Chapter 5. Extraction of role structure

[Horn and Johnson (1990)]

‖ABC‖F ≤ ‖A‖2 ‖B‖F ‖C‖2

and therefore

‖E21‖F =β2
∥∥∥VT Γ [∆] U

∥∥∥
F

(5.67)

≤β2 ‖V‖2 ‖Γ[∆]‖F ‖U‖2 = β2 ‖Γ[∆]‖F (5.68)

since the matrices U and V are isometries, so ‖V‖2 = ‖U‖2 = 1. The exact
same upper bound can be obtained for the other matrices Eij which leads
to an upper bound for the left hand side of equation Eq. (5.66) as

2 ‖E21‖F + ‖E11‖F + ‖E22‖F ≤4β2 ‖Γ[∆]‖F (5.69)

≤4β2
∥∥∥A⊗ A + AT ⊗ AT

∥∥∥
2
‖∆‖F (5.70)

Therefore, if ∆ is not too large, in the sense that

4β2
∥∥∥A⊗ A + AT ⊗ AT

∥∥∥
2
‖∆‖F ≤ Σ2

k − σ2
1 , (5.71)

then Eq. (5.66) holds and the upper bound on the norm of the matrix P is
given by

‖P‖ ≤ 2β2 ‖Γ[∆]‖F
s2

k − σ2
1 − 2β2 ‖Γ[∆]‖F

. (5.72)

This proves that one can compute an invariant subspace of the per-
turbed matrix f (S(r) + ∆) from the dominant and invariant subspace U of
f (S(r)) (which is unknown in practice of course). But, we can also use this
result to prove the local convergence of our low rank iterative sequence.

We know that U
′

is an invariant subspace of f (S(r) + ∆). However,
if the perturbation ∆ is not too large, the eigenvalues of f (S(r) + ∆) will
be close to the eigenvalues of f (S(r)) and the rotation matrix Q will not
perturb too much the dominant subspace of f (S(r)). Therefore, we can
safely assume that the set of eigenvalues of the perturbed low-rank fixed
point solution λ

(
f (S(r) + ∆)

)
= λ

(
F̃11

)
∪ λ

(
F̃22

)
will be such that

λi

(
F̃11

)
> λj

(
F̃22

)
, ∀i, j, (5.73)

5.5. Low-rank similarity approximation 171

i.e. F̃11 is somehow a perturbation of Σ and F̃22 a perturbation of σ. There-
fore, U

′
will not only be an invariant, but also the dominant subspace of

f (S(r) + ∆).

From this, we can write the solution of the low rank projection of
f (S(r) + ∆) as

Π(r)
[

f (S(r) + ∆)
]
= U′U′T f (S(r) + ∆)U′U′T (5.74)

where the matrix U′U′T is given by

U′U′T = (U + VP)(I + PT P)−1(UT + PTVT). (5.75)

Let us analyze separately the projections of the 2 terms of Eq. (5.57).
First, note that

(UT + PTVT) f (S(r)) (U + VP) =Σ2 + PT σ2 P (5.76)

=Σ2 + O
(
∆
)2 (5.77)

since ‖P‖ ≤ O
(
‖∆‖

)
from Eq. (5.72). Then, one can write, as a first order

approximation by dropping all the quadratic terms in P that are O
(
∆
)2,

that

U′U′T f (S(r))U′U′T =UΣ2UT + VPΣ2UT + UΣ2PTVT + O
(
∆
)2 (5.78)

Similarly, for the term β2Γ[∆] of Eq. (5.57),

(UT + PTVT) β2Γ[∆] (U + VP) = E11 + O
(
∆
)2 (5.79)

since all the terms involving Eij and P at the same time are in O
(
∆
)2. This

leads to

U′U′T β2Γ[∆]U′U′T = UE11UT + O
(
∆
)2 (5.80)

172 Chapter 5. Extraction of role structure

Finally, this shows that
∥∥∥S(r) −Π(r)

[
f (S(r) + ∆)

]∥∥∥ =
∥∥∥UΣ2UT −U′U′T f (S(r) + ∆)U′U′T

∥∥∥

=
∥∥∥VPΣ2UT + UΣ2PTVT + UE11UT + O

(
∆
)2
∥∥∥

≤‖P‖
∥∥∥Σ2

∥∥∥+ ‖P‖
∥∥∥Σ2

∥∥∥+ ‖E11‖+
∥∥∥O
(
∆
)2
∥∥∥

≤2
∥∥∥Σ2

∥∥∥ 2β2 ‖Γ[∆]‖
s2

k − σ2
1 − 2β2 ‖Γ[∆]‖ + β2 ‖Γ[∆]‖

However, we need to impose

4β2 ‖Γ[∆]‖ ≤ Σ2
k − σ2

1 (5.81)

to satisfy the hypothesis of the perturbation theorem and guarantee the
existence of a bounded matrix P. Working on this equation shows

1
Σ2

k − σ2
1 − 2β2 ‖Γ[∆]‖ ≤

2
Σ2

k − σ2
1

. (5.82)

Finally, one obtains

∥∥∥S(r) −Π(r)
[

f (S(r) + ∆)
]∥∥∥ ≤ β2

∥∥∥A⊗ A + AT ⊗ AT
∥∥∥

2

(
8
∥∥Σ2

∥∥
F

Σ2
k − σ2

1
+ 1

)
‖∆‖F .

This guarantees the convergence of the low rank iteration if β is chosen
sufficiently small, i.e.

β2 <
1

‖A⊗ A + AT ⊗ AT‖F

(
8‖Σ2‖
Σ2

k−σ2
1
+ 1
) .

Indeed, the distance between the fixed point solution S(r) and the per-
turbed matrix S(r) + ∆ is naturally ‖∆‖ while the distance between the
fixed point solution and the new iterate computed from the perturbed
matrix becomes strictly smaller than ‖∆‖.

While we had to assume that β was small enough to ensure the ex-
istence of a low-rank fixed point solution in Eq. (5.51), this final inequal-
ity ensures the existence of a value for β such that our low-rank iterative
scheme converges. Even if theoretically the convergence is not guaranteed

5.5. Low-rank similarity approximation 173

for any perturbation ∆, we never observed divergence of the low-rank se-
quence using S(r)

0 = 0 and β > 0 but small enough. In practice, the
maximal value of β will be unknown, so one has to observe the behavior
of the low-rank iterates for an initial value of β and adjust it accordingly.

We believe that our pairwise node similarity measure is informative to
analyze networks containing a role structure and will be useful in many
practical applications. In the next chapter, we will apply and compare our
full-rank and our low-rank similarity measures to benchmark and to real
graphs and show that our similarity measure allows to successfully extract
the different roles contained in the graph. We will also show that the ex-
tracted partition for the low and the full rank similarity measure are very
much alike, hence justifying the use of our low rank similarity measure in
practical context when the full rank similarity can not be computed.

6 Applications to role extraction problems

In this last chapter, we will first apply our similarity measure, introduced
in Section 5.4, and its low-rank approximation, detailed in Section 5.5, to
random graphs containing a structural block distribution of their nodes.
We will show that both measures successfully extract the different roles
within those graphs even when the graph topology is fairly noisy. We
will also provide some observations on the fact that the evolution of the
low-rank similarity matrix for increasing value of the rank can reveal the
number of roles in the network. Lastly, we will show that the accuracy of
both measures are quantitatively equivalent hence justifying the applica-
tion of our low-rank iterative scheme in practical contexts.

Then, we will apply our similarity measures to real graphs that are
supposed to contain a role structure. In Section 6.2, we will analyze a
food web of the Florida bay ecosystem and show that the clustering of
the similarity matrix reveals relevant trophic levels according to the diet
of the species living in the bay. Then, in Section 6.3, we will present
early results about the clustering of a network of reefs in a specific area
of the Great Barrier Reef in Australia. This network has already been
studied to extract communities of reefs exchanging coral larvae [Thomas,
Lambrechts, Wolanski et al. (2014)] and we will show that our low-rank
similarity measure corroborates this existence of communities of reefs.
Finally, in Section 6.4, we will investigate a graph of words built from
co-occurrence in a book. The purpose was to determine if our low-rank
similarity measure is able to correctly identify different types of words
(nouns, adjectives, adverbs, etc.) without any prior knowledge on the
structure of the language. This task is commonly known as part-of-speech
tagging and is a challenging problem of natural language processing. We
will show that, although the clustering of words is not perfect, some of
the clusters computed using our pairwise node similarity indeed extract
similar types of words sometimes with great accuracy.

176 Chapter 6. Applications to role extraction problems

6.1 Benchmark graphs

To assess the quality of our role extraction methodology, we have ana-
lyzed its accuracy on synthetic networks with built-in role structure. Our
method, extensively applied throughout this chapter, can be described in
2 steps

1. From the adjacency matrix of the input graph, compute the fixed
point solution of the pairwise node similarity S∗ using Eq. (5.31) or
its low-rank approximation S(r) using Eq. (5.35), with suitable values
for β and r.

2. Extract communities, using our algorithm described in Section 3.4
and either the modularity or the CPM objective function, on the
similarity graph, defined as the graph whose adjacency matrix is
the similarity matrix, to identify the roles in the input graph.

As we have pointed out, the extraction of role structure has received less
attention than the community detection problem and therefore, there ex-
ists much less dedicated models to build a random network containing
a role structure rather than a community structure. Hence, we will pro-
pose an Erdős-Rényi model, with 2 probability parameters, that allows
one to build a random graph with any kind of prescribed role structure.
This model will be thoroughly analyzed in Section 6.1.1. Then, in Section
6.1.2, we will apply our methodology to the model proposed by [Guimerà,
Sales-Pardo, and Amaral (2007)] which creates bipartite networks contain-
ing blocks of similar nodes in each independent set. Finally, we will ex-
amine the results of the extraction of roles on LFR benchmark graphs in
Section 6.1.3. As we have shown, this kind of random networks contains
community structure but, since communities form a particular class of
role interactions, one may expect to extract them using a role extraction
procedure.

6.1.1 Erdős-Rényi graphs

We applied our pairwise node similarity measures to extract roles in
Erdős-Rényi random graphs containing a prescribed block structure. To
build such graphs, we first choose a directed reduced graph GB(VB, EB),
i.e. each node in GB defines a role that we would like to identify. Some of
the reduced graphs that we considered are represented on the left hand
side of Fig. 6.1 to 6.4. Following the notations introduced in the previous

6.1. Benchmark graphs 177

chapter, the large gray filled rectangles represent the roles, i.e. the nodes
of the reduced graph, while the small white circles represent the nodes of
the input graph.

The reduced graph in Fig. 6.1 corresponds to a community structure
where nodes in a role interact mainly with other nodes in the same role.
Fig. 6.2 represents a block cycle reduced graph, as already presented in
Fig. 5.2, where each node in a role interacts mainly with nodes in the fol-
lowing role in the cycle. This reduced graph might be used for example
to condense the interactions between animals in a food web. Lastly, in
Fig. 6.3 and 6.4, the reduced graphs were simply chosen as representa-
tive examples for more complex role interactions without precise real life
examples in mind.

Once a reduced graph GB has been chosen, we build a random graph
GA(VA, EA) where each node of GA is assigned to a role of GB. That
is, for each node i ∈ VA, we select a role R(i) ∈ VB. Then, we add
the edges in EA using 2 probability parameters. For every pair of nodes
i, j ∈ VA, we add the edge (i, j) to EA with probability pin if there is an
edge between the corresponding roles in GB, i.e. (R(i), R(j)) ∈ EB. If there
is no edge between the corresponding roles in GB, the edge (i, j) might
still be added to EA but with a probability pout. Therefore, if pin is much
larger than pout, the reduced graph GB is an appropriate representation
of the role structure of the graph GA and we expect that our pairwise
similarities between the vertices VA should allow the extraction of those
roles. On the other hand, if pout is much larger than pin, the different
roles in GA are more accurately represented by the complement of the
reduced graph GB, whose adjacency matrix is 11T − B. However, the
role structure is still strongly existing in the graph GA and we expect
that our similarity measures should still be able to extract it. It is when
the 2 probabilities pin and pout are close to each other that extracting the
different roles becomes challenging but, at the same time, the graph GA
becomes close to a classical Erdős-Rényi random graph which is known
to be free of any structure.

Each of the figures 6.1 to 6.4 is divided into 4 panels, according to
dashed lines, corresponding to different values of pin and pout for the
same reduced graph as follows

pin = 0.9/pout = 0.1 pin = 0.8/pout = 0.2

pin = 0.7/pout = 0.3 pin = 0.6/pout = 0.4

178 Chapter 6. Applications to role extraction problems

2
4

6
8

10
12

14
10 −

1

10
0

10
1

10
2

r ∥∥∥S
∗−

S
(r) ∥∥∥

F
∥∥∥S

(r)−
S
(r+

1) ∥∥∥
F

2
4

6
8

10
12

14
10 −

1

10
0

10
1

10
2

r

2
4

6
8

10
12

14
10 −

1

10
0

10
1

10
2

r
2

4
6

8
10

12
14

10 −
1

10
0

10
1

10
2

r

Fig.6.1
Extraction

of
com

m
unities

as
roles.

6.1. Benchmark graphs 179

2
4

6
8

10
12

14
10

−
1

10
0

10
1

10
2

r∥ ∥ ∥ S
∗
−
S
(r
)∥ ∥ ∥
F

∥ ∥ ∥ S
(r
)
−

S
(r
+
1)
∥ ∥ ∥ F

2
4

6
8

10
12

14
10

−
1

10
0

10
1

10
2

r

2
4

6
8

10
12

14
10

−
1

10
0

10
1

10
2

r
2

4
6

8
10

12
14

10
−
1

10
0

10
1

10
2

r

Fi
g.

6.
2

Ex
tr

ac
ti

on
of

cy
cl

e
ro

le
st

ru
ct

ur
e.

180 Chapter 6. Applications to role extraction problems

2
4

6
8

10
12

14
10 −

1

10
0

10
1

10
2

r ∥∥∥S
∗−

S
(r) ∥∥∥

F
∥∥∥S

(r)−
S
(r+

1) ∥∥∥
F

2
4

6
8

10
12

14
10 −

1

10
0

10
1

10
2

r

2
4

6
8

10
12

14
10 −

1

10
0

10
1

10
2

r
2

4
6

8
10

12
14

10 −
1

10
0

10
1

10
2

r

Fig.6.3
Extraction

of
role

structure
w

ith
alm

ost
isom

orphic
roles.

6.1. Benchmark graphs 181

2
4

6
8

10
12

14
10

−
1

10
0

10
1

10
2

r∥ ∥ ∥ S
∗
−

S
(r
)∥ ∥ ∥
F

∥ ∥ ∥ S
(r
)
−

S
(r
+
1)
∥ ∥ ∥ F

2
4

6
8

10
12

14
10

−
1

10
0

10
1

10
2

r

2
4

6
8

10
12

14
10

−
1

10
0

10
1

10
2

r
2

4
6

8
10

12
14

10
−
1

10
0

10
1

10
2

r

Fi
g.

6.
4

Ex
tr

ac
ti

on
of

4
ro

le
s

st
ru

ct
ur

e.

182 Chapter 6. Applications to role extraction problems

In each panel, we first show the adjacency matrix of one typical realiza-
tion of the random graphs GA generated. For visual clarity, the adjacency
matrices have been permuted such that nodes in the same role are next
to each other. Then, we represent the role assignment of each node as ex-
tracted using our community detection algorithm applied to our low-rank
similarity matrix S(r) for r = 10. Since our community detection algo-
rithm may produce different hierarchical levels of clustering, we present
each level of roles when different levels were extracted from the similar-
ity graph. The role assignments are represented by the clustering matrix
σ(i, j) = 1 if node i belongs to cluster j and 0 otherwise. The last plot in
each panel represents the evolution of S(r) for increasing values of r. That
is, we compute the norm of the difference between the full-rank fixed
point solution and each low-rank fixed point solutions,

∥∥∥S∗ − S(r)
∥∥∥

F
, and

between “consecutive” low-rank fixed point solutions,
∥∥∥S(r) − S(r+1)

∥∥∥
F

for
increasing values of r. This should reveal the minimal rank required for
S(r) to be a qualitatively good approximation of S∗.

The main result is that the different roles within each network can
be well extracted by clustering our low-rank similarity graph up to some
high level of noise. For the first role structure, Fig. 6.1, each community is
perfectly extracted up to pin = 0.7 and pout = 0.3. The network starts to be
really noisy for probability parameters closer to each other, i.e. pin = 0.6
and pout = 0.4, as represented by the adjacency matrix, however the first
and the third communities are still pretty well clustered and the second
community is mostly split in 2. The same observation applies to the block
cycle reduced graph, presented in Fig. 6.2, for which all the roles are
perfectly extracted for the first three pairs of probability parameters. Note
that, for the last pair of probability parameters, two hierarchical levels
of clustering are extracted, i.e. the final level is represented on the left
hand side and the first level on the right hand side. In the final level
of clustering, the second and third roles are each essentially split in 2
different clusters and there are only a few nodes, compared to the size of
the network, with inappropriate role assignment.

Those first 2 reduced graphs define strong role structures. If two nodes
of the reduced graph are isomorphic, i.e. if they have exactly the same
incoming and outgoing neighborhoods, we say that, by extension, the
associated roles are isomorphic. Nodes belonging to different isomor-
phic roles have therefore the exact same probability distribution of their
edges across the graph and it is impossible to distinguish them and deter-

6.1. Benchmark graphs 183

pin = 0.9, pout = 0.1
pin = 0.8, pout = 0.2
pin = 0.7, pout = 0.3

Full-rank
r = 50
r = 10

500 1000 150010−1

100

101

102

103

n

ti
m
e
[s
]

500 1000 150010−1

100

101

102

103

n

ti
m
e
[s
]

500 1000 150010−1

100

101

102

103

n

ti
m
e
[s
]

500 1000 1500 200010−1

100

101

102

103

n

ti
m
e
[s
]

Fig. 6.5 Computational time required to compute S∗ and S(r) (for r = 50
and r = 10) with respect to the number of nodes in the graph.

mine their exact role. One can observe that, in the first 2 reduced graphs,
one would need to add relatively many edges to create isomorphic roles.
Therefore, our method correctly extracts the role structures even for high
level of noise. On the other hand, the third reduced graph, in Fig. 6.3,
is less strongly defined because if a single edge is added in the reduced
graph from the second block to the first block, the second and the third
roles would become isomorphic. Indeed, we observe that a small set of
nodes is incorrectly clustered from the second role to the third role for
pin = 0.7 and pout = 0.3. This might also explain why the second and
third roles are merged together in the final level of clustering for the first
two pairs of probability parameters but this might also be due to some res-
olution limit of the community detection cost function. For higher level
of noise, clustering the pairwise similarity matrix does not provide an ac-
curate partition, however, the adjacency matrix clearly indicates that the
role structure is very weak, if even existing.

Lastly, for the reduced graph in Fig. 6.4 composed of 4 distinct roles,

184 Chapter 6. Applications to role extraction problems

the results are again reasonably good. Except for an additional merge in
the last level of clustering for pin = 0.9 and pout = 0.1, all the roles are
perfectly extracted, and even for the last pair of probability parameters,
there is only a small number of nodes incorrectly classified for the first and
last roles and the second and third roles are mostly bisected as previously
observed.

One can also observe that the evolution of the low-rank similarity ma-
trix S(r), for increasing value of r, might be used to actually reveal the
number of roles in the network. Indeed, when the different roles in a
network are strongly defined, we observe an abrupt variation in the de-

cay of the norm of the differences
∥∥∥S∗ − S(r)

∥∥∥
F

and
∥∥∥S(r) − S(r+1)

∥∥∥
F
. This

abrupt variation indicates that we might not need to consider larger val-
ues of the rank to extract qualitatively good roles in this network, since
the gain in precision for the similarity matrix starts to increase very slowly
afterwards. The most interesting point is that this abrupt variation always
occurs when the rank hits the exact number of roles in the network. When
the network is highly noisy, we do not observe such an abrupt variation
which could indicate that the clustering of the nodes according to the sim-
ilarity matrix will not produce a relevant partition. Observing the evolu-
tion of the low-rank similarity matrix could become a strong indicator of
the quality of the extracted roles for real networks when the exact block
structure is unknown. Indeed, as depicted in Fig. 6.5, computing the full-
rank similarity matrix would be computationally too expensive for real
networks and, as expected, computing the low-rank similarity matrix ex-
hibits a much smaller time complexity which is mostly independent of the
parameters of the model.

Finally, we compare quantitatively the extracted clusters using our full-
rank similarity S∗ and our low-rank similarity S(r) measures. For each of
the different reduced graphs previously described, we compute the nor-
malized mutual information (Section 4.1) between the exact role structure
and the extracted role partition using S∗ or S(r) with r = 10. For each
reduced graph, we generated 20 random realizations for each couple of
probability parameters pin and pout in [0, 1] with a discretization step size
of 0.05, and we computed the average NMI on those 20 realizations. The
results are presented in Fig. 6.6. As expected, we observe that the ex-
tracted roles are accurate when either pin � pout or the opposite. As
mentioned previously, the third reduced graph seems harder to recover
due to either a resolution limit phenomenon or to the almost isomorphic

6.1. Benchmark graphs 185

NMI
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

σ (S∗) σ
(
S(r)

)

pout

pin

pout

pin

σ (S∗) σ
(
S(r)

)

pout

pin

pout

pin

σ (S∗) σ
(
S(r)

)

pout

pin

pout

pin

σ (S∗) σ
(
S(r)

)

pout

pin

pout

pin

Fig. 6.6 Comparison of the quality of the extracted partitions using S∗ or
S(r).

186 Chapter 6. Applications to role extraction problems

behavior of two of the roles. Nevertheless, we observe that the low-rank
similarity matrix S(r) produces almost identical results than the full-rank
similarity matrix S∗. This leads us to conclude that, if the rank is suffi-
ciently large, one can always use our low-rank pairwise node similarity
measure to extract the role structure in a network. The low-rank similar-
ity matrix will always be cheaper to compute and will produce analogous
partitions.

6.1.2 Guimera et al. model

We also applied our role extraction procedure on the model proposed by
[Guimerà, Sales-Pardo, and Amaral (2007)]. The networks created using
this model are bipartite and composed of a set of actors and a set of teams.
The underlying assumption behind the creation of a network is that there
exist groups of similar actors which should therefore be involved in many
teams together.

More precisely, a random network is built as follows. First, we choose
the number of groups of actors Ng and the number of actors ni in each
group i. Then, we create the teams and connect them to some actors
following the hypothesis that actors in the same group should have a high
probability to appear in the same teams. That is, we choose the number of
teams Nt and, for each team, we randomly select one preferential group
of actors. Then, we choose the number of actors that will be involved
in each team ma and for each position in a team, we select an actor of
its preferential group with a probability p or any of the actors with a
probability 1− p. Hence, the probability parameter p controls the team
homogeneity in term of groups of actors. When p = 1, each team is
composed solely of actors from its preferential group and therefore the
role structure, defined by the groups of actors, is strongly present in the
network. On the other hand, when p = 0, all the teams are composed of
actors randomly selected from all the existing groups and the prescribed
role structure is irrelevant.

In their work, [Guimerà, Sales-Pardo, and Amaral (2007)] considered
three different approaches to uncover the groups of actors. First, they
considered modularity optimization on the unweighted projection of the
graph over the set of actors. That is, they created a graph of actors where
two actors are connected if they are involved in at least one common team.
They also analyzed the weighted projection over the set of actors where
each connection between two actors is weighted by the number of teams

6.1. Benchmark graphs 187

N
M

I

p

(a) Results of Guimera et al.

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

p

N
M

I

S(r)

S∗

(b) Clustering using modularity

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

p

N
M

I

(c) Clustering of S(r) using CPM

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

p

N
M

I

(d) Clustering of S∗ using CPM

γ = 0.1 γ = 0.2 γ = 0.3 γ = 0.4 γ = 0.5

γ = 0.6 γ = 0.7 γ = 0.8 γ = 0.9

Fig. 6.7 Performance of role extraction procedures with respect to team
homogeneity. (a) reprinted from [Guimerà, Sales-Pardo, and Amaral
(2007)].

in which there are commonly involved. Finally, they proposed a cost func-
tion inspired from modularity but specifically designed to cluster nodes
in a bipartite network and which does not require any projection. The
optimization of the cost functions (either modularity on the projected net-
works or the bipartite modularity as the authors named it) was performed
using simulated annealing (see Section 3.3.2) which is known to be accu-
rate but slow.

The results of the extraction of the role structure, measured according
to the NMI between the true partition in groups of actors and the ex-
tracted partitions, for p ∈ [0, 1] is presented in Fig. 6.7. The parameters of
the model were taken as in the paper of Guimera et al. to have a fair com-

188 Chapter 6. Applications to role extraction problems

parison between their results and ours, i.e. Ng = 4 groups of actors with
ni = 32 actors each and NT = 128 teams with ma = 14 actors each. First,
Fig. 6.7a presents the results obtained by Guimera et al. for each of their
three approaches. Then, Fig. 6.7b presents the results of the optimization
of modularity on our similarity matrices S∗ and S(r) with r = 10. Finally,
we present in Fig. 6.7c and 6.7d the results obtained for the optimization
of CPM, using different values of γ, again on our similarity matrices. The
main results of Guimera et al. are that the unweighted projection performs
pretty badly and should not be used, and that the weighted projection and
their bipartite cost function perform much better and produce indistin-
guishable results. We observe that the clustering of our similarity graphs
using modularity produces accurate results for p ≥ 0.6 but starts to be-
have rather poorly for smaller values of p. In fact, for small value of p, our
algorithm clusters all the actors together which yields necessarily a NMI
of 0. We observe that, in parallel, all the teams are also clustered together
but within another cluster. Therefore, this method extracts the bipartite
nature of network but nothing more. Clearly, using either our full-rank
similarity measure or its low-rank approximation yields mostly the same
results. The results for the optimization of CPM are much better. Sur-
prisingly, the clustering of our low-rank similarity matrix produces more
accurate results than using our full-rank similarity which is unexpected.
The best results are obtained for γ = 0.6 for the low-rank measure and
for γ = 0.2 for the full-rank measure. Moreover, one can note that the
full-rank measure is much more sensitive to the value of γ and quickly
produces partitions with either all the actors together or all the actors
alone. Finally, let us note that even the best results we obtained using our
low-rank similarity measure and appropriate value of γ are slightly under
the accuracy of the method of Guimera et al.

We also analyzed the impact of the number of teams on the clustering
of the similarity matrices. To this end, the probability parameter was set
to a constant value of p = 0.5 and we let the number of teams grows
from 10 to 1500. The results are presented in Fig. 6.8 following the same
layout as in the previous figure. First, note that the number of teams af-
fects very differently each of the approaches considered by Guimera et
al. Again, the optimization of modularity on the weighted projection and
the optimization of the bipartite modularity yield extremely close results.
As the number of teams grows, the network somehow contains more in-
formation about the structure of the groups of actors and therefore both
approaches are better able to extract them. On the other hand, the un-

6.1. Benchmark graphs 189

N
M

I

Nt

(a) Results of Guimera et al.

101 102 103 104

0.2

0.4

0.6

0.8

1

Nt

N
M

I

S(r)

S∗

(b) Clustering using modularity

101 102 103 104

0.2

0.4

0.6

0.8

1

Nt

N
M

I

(c) Clustering of S(r) using CPM

101 102 103 104

0.2

0.4

0.6

0.8

1

Nt

N
M

I

(d) Clustering of S∗ using CPM

γ = 0.1 γ = 0.2 γ = 0.3 γ = 0.4 γ = 0.5

γ = 0.6 γ = 0.7 γ = 0.8 γ = 0.9

Fig. 6.8 Performance of role extraction procedures with respect to num-
ber of team. (a) reprinted from [Guimerà, Sales-Pardo, and Amaral
(2007)].

weighted projection quickly becomes unable to extract any relevant parti-
tion because when there are more teams, the projected network becomes
close to a complete graph since any pair of actors has a high probability
to appear together in at least one of the teams. In this experiment, we
observe that modularity optimization on our similarity graphs produces
extremely poor results, in fact even not better than the unweighted projec-
tion approach. Clearly, the problem comes from the cost function rather
than from our similarity graph since the optimization of CPM produces
accurate partitions. As previously, the clustering obtained using the full-
rank similarity matrix seems much more sensitive to the value of γ than

190 Chapter 6. Applications to role extraction problems

using the low-rank similarity matrix. The results show that one needs to
use γ = 0.2 for the full-rank similarity and any other value of γ produces
poor partitions. On the contrary, the clustering of the low-rank similarity
produces good partitions for γ ∈ [0.6, 0.8]. The best results are obtained
for the optimization of CPM with γ = 0.6 on the low-rank similarity graph
and it seems that the accuracy of our method in this case is extremely close
to the accuracy of the two best approaches of Guimera et al.

In the end, our method does not outperform the approach of Guimera
et al. but produces results of similar accuracy when the parameter γ is
correctly chosen. This clearly indicates that the outcome of the clustering
of the similarity matrix is strongly dependent on the choice of the cost
function. Moreover, let us note that the bipartite modularity is specifically
designed to extract partitions in bipartite networks and therefore, it makes
sense that this method is more suited here. However, it lacks the gener-
ality of our similarity measures which allow to study any other kind of
network and role structure. Moreover, Guimera et al. used simulated an-
nealing to optimize their cost functions which is known to produce better
partitions than our community detection algorithm, but is completely in-
appropriate to study larger networks. It is possible that, using simulated
annealing, the clustering of our similarity graph would produce even bet-
ter results. Finally, when using CPM, we always choose a constant value
of γ for all the networks created using a fixed set of parameters, while it
might be more appropriate to use slightly different values of γ for each
network. Although, finding an appropriate value of γ for a network under
study is a research topic in itself.

This leads us to conclude that our similarity measure seems an appro-
priate surrogate to discover the role structure within this kind of bipartite
graphs, and interestingly, the low-rank similarity measures seems even
more appropriate than its full-rank counterpart. However, a dedicated
cost function to cluster the similarity graphs should be defined. Clearly,
the similarity graphs have some specific properties that should be consid-
ered by the cost function to achieve the best possible results. That gives
an interesting direction for future research.

6.1.3 LFR model

To conclude this section about benchmark graphs, let us discuss the results
obtained for the extraction of role structure in random graphs created us-
ing the LFR benchmark presented in Section 4.1. As mentioned, commu-

6.1. Benchmark graphs 191

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

µT

N
M

I

(a) Clustering of S(r)

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

µT

N
M

I

(b) Clustering of S∗

γ = 0.1 γ = 0.2 γ = 0.3 γ = 0.4 γ = 0.5

γ = 0.6 γ = 0.7 γ = 0.8 γ = 0.9 mod

Fig. 6.9 Performance of role extraction on the LFR benchmark.

nities form a particular class of roles and therefore, one can wonder how
our similarity measures behave on this kind of graphs. The results are
presented in Fig. 6.9 for unweighted undirected LFR networks with 1000
nodes and 〈k〉 = 10 and should be compared to the results obtained in
Section 4.1.2. The quality of the partitions obtained using both CPM and
modularity are presented in Fig. 6.9a for the low-rank similarity matrix
with r = 10 and in Fig. 6.9b for the full-rank similarity matrix.

Surprisingly, the results are completely different than what we ob-
served in the previous section. The optimization of the modularity on the
low-rank similarity graph yields very accurate partitions, in fact almost
identical to the optimization of CPM with the most appropriate value of
γ. Furthermore, the optimization of modularity achieves the best perfor-
mance for the full-rank similarity graph. As for the Erdős-Rényi random
graphs presented in Section 6.1.1, the low-rank and the full-rank similarity
graphs produce partitions of equivalent accuracy.

When compared to the results presented in Fig. 4.15 for small undi-
rected networks, it is clear that our similarity measures enforce the detec-
tion of the community structure existing in the graph since our algorithm
is able to correctly partition the network for much larger values of the
topological mixing parameter µT . However, we are still not able to out-
perform what we observed to be the best community detection algorithm,
i.e. infomap. But again, it is not clear if the differences are due to the
measures of similarity or to the clustering algorithm applied to the simi-

192 Chapter 6. Applications to role extraction problems

larity graphs. It might very well be that applying infomap either on the
similarity graphs or directly on the input graph would produce results of
comparable accuracy. Though, for large networks, infomap would not be
suitable since there are always much more edges in the similarity graphs
than in the original graph and we have shown how badly this algorithm
scales with the size of the network. Finally, we can conclude that our sim-
ilarity measures, at least, do not weaken the community structure and is
therefore an appropriate way to cluster networks where the topological
node distribution is completely unknown.

6.2 Florida bay food web

We now turn to the analysis of some real graphs. The first network under
study is a food web of the Florida bay ecosystem1 [Ulanowicz and DeAn-
gelis (1999)]. The 122 different biological species living in the bay can be
classified in 7 subgroups as given by Table 6.1. The network is built on
a who-eats-whom relationship such that there is a weighted edge from i
to j if species j eats species i and the weight of the edge represents the
average exchange of biomass from i to j. The purpose here is to try to find
relevant groups of animals that have the same kind of diet. Hence, we are
not interested in the absolute value of the biomass exchanges but rather
in the proportional composition of the diet of each species. Therefore,
we rescaled the weight of the edges such that each node has an incom-
ing strength of 1 (or 0 in the case of primary producers which do not eat
any other species). The weight of an edge between i and j can then be
interpreted as the proportion of species i in the diet of species j.

The reduced graph for the natural biological classification of species
is represented in Fig. 6.10a. The reduced graph is computed here as the
aggregation of the original graph according to the chosen clustering, with
the incoming edge weight rescaled by the number of species per cluster.
Therefore, the weight of an edge between 2 clusters in the reduced graph
gives the average proportion of the diet of species in one cluster that is
coming from species in another cluster. For example, one can observe that
species of the first group do not eat anything since they have no incoming
edge, and that the species of the second group have on average a diet
composed of 40% of species from the first group and of 60% of species
from their own group. For visual clarity, we do not add to the reduced
graph the edges with a weight smaller than 0.1 which explains why the

1http://www.cbl.umces.edu/~atlss/FBay001.html

http://www.cbl.umces.edu/~atlss/FBay001.html

6.2. Florida bay food web 193

1. Primary producers

2um Spherical Phytoplankton ; Synnedococcus ; Oscillatoria ; Small
Diatoms ; Big Diatoms ; Dinoflagellates ; Other Phytoplankton ; Benthic
Microalgae; Thalassia testudinum ; Halodule wrightii ; Syringodium
filiforme ; Roots ; Drift Algae ; Epiphytes

2. Microfauna

Free Bacteria ; Water-Column Flagellates ; Water-Column Cilliates ;
Acartia tonsa ; Oithona nana ; Paracalanus sp. ; Other Copepods ; Mero-
plankton ; Other Zooplankton ; Benthic Flagellates ; Benthic Cilliates ;
Meiofauna

3. Macroinvertebrates

Sponges ; Coral ; Other Cnidaria ; Echinodermata ; Bivalves ; Detritivo-
rous Gastropods ; Epiphyte Grazing Gastropods ; Predatory Gastropods
; Detritivorous Polychaetes ; Predatory Polychaetes ; Pelagic Feeding
Polychaetes ; Macrobenthos ; Benthic Crustaceans ; Detrivorous Am-
phipods ; Herbivorous Amphipods ; Isopods ; Herbivorous Shrimp ;
Predaceous Shrimp ; Pink Shrimp ; Thor floridanus ; Spiny Lobster ;
Detritivorous Crabs ; Omnivorous Crabs ; Predatory Crabs ; Callinectes
spp. ; Stone Crab

4. Fishes

Sharks ; Rays ; Tarpon and Ladyfish ; Bonefish ; Sardines ; Anchovies
; Bay Anchovy ; Lizardfish ; Catfishes ; Eels ; Toadfish ; Brotulas and
Batfishes ; Halfbeaks and Flyingfish ; Needlefishes ; Killifishes ; Floridy-
chthys carpio ; Lucania parva ; Snooks ; Poecilids ; Silversides ; Sea-
horses and Pipefishes ; Sygnathus scovelli ; Hippocampus zosterae ;
Groupers ; Jacks and Runners ; Pompano and Permits ; Snappers ; Gray
Snapper ; Mojarras and Jennies ; Grunts ; Porgies ; Pinfish ; Sciaenid
fishes ; Spotted Seatrout ; Red Drum ; Spadefish ; Parrotfishes ; Mack-
erels ; Mullets ; Barracudas ; Blennies ; Code Goby ; Clown Goby ;
Flatfishes ; Filefishes and Trigger fishes ; Puffers and Burrfishes ; Other
Pelagics ; Other Demersals

5. Herpetofauna American Crocodile ; Loggerhead Turtle ; Green Turtle ; Hawksbill Tur-
tle

6.Avifauna

Loons ; Grebes ; Pelicans ; Cormorants ; Big Herons and Egrets ; Small
Herons and Egrets ; Ibis ; Roseate Spoonbill ; Herbivorous Ducks ;
Omnivorous Ducks ; Predaceous Ducks ; Raptors ; Gruiformes ; Small
Shorebirdss ; Gulls and Terns ; Kingfishers

7. Mammals Dolphins ; Manatee

Table 6.1 Composition of biological compartments in the Florida Bay
network

incoming strength of the node representing fishes is only 0.8.

The reduced graph of the natural classification exhibits correctly the
differences between the different groups of animals. For example mam-
mals are different from reptiles and amphibians (herpetofauna): while
they both eat primary producers and fishes, mammals do not eat macroin-
vertebrates. Similarly, birds (avifauna) are classified differently from rep-
tiles because they do not eat primary producers in the bay, even though
they eat fishes and macroinvertebrates. However, one may expect to find
an even more stratified classification in the sense that animals in a group
should not eat species of their own group, i.e. one may expect to find a
reduced graph without self loops.

194 Chapter 6. Applications to role extraction problems

1

2
3

4

5

6

7

0.4 0.5

0.25
0.42

0.220.6
0.27

0.55

0.60.3

0.2

0.2
0.62

0.48

(a) Natural classification.

A

D

C B

E

F

0.67
0.95

0.2

0.45
0.45

0.36
0.39

0.76

(b) Role partition.

Fig. 6.10 Reduced graphs for the natural partition and the extracted role
structure.

We have applied our pairwise node similarity measure to this ecolog-
ical network of the Florida bay and clustered the similarity graph using
our community detection algorithm and to the modularity cost function.
We also applied the CPM cost function but the results look extremely sen-
sitive to the value of γ and a stability analysis should be done to select
a correct value. We used both our full-rank and our low-rank similar-
ity with r = 20 and observed very similar results. The reduced graph
that we obtained for the extraction of the role structure, using our low-
rank similarity measure with r = 20, is represented in Fig. 6.10b and it
seems to be accurately capturing most of the biomass exchanges in the
bay. Note that, using our methodology, we did not find any self loop in
the reduced graph, i.e. each group eats animals coming mainly from other

6.2. Florida bay food web 195

A

2um Spherical Phytoplankton ; Synnedococcus ; Oscillatoria ; Small Diatoms ; Big Di-
atoms ; Dinoflagellates ; Other Phytoplankton ; Benthic Microalgae; Thalassia testudinum
; Halodule wrightii ; Syringodium filiforme ; Roots ; Drift Algae ; Epiphytes ; Free Bacteria
; Water-Column Flagellates ;

B
Water-Column Cilliates; Acartia tonsa ; Oithona nana; Paracalanus sp.; Other Copepods;
Other Zooplankton; Sponges; Bivalves; Detritivorous Gastropods; Detritivorous Poly-
chaetes; Pelagic Feeding Polychaetes;

C

Benthic Flagellates; Echinodermata; Epiphyte Grazing Gastropods; Predatory Polychaetes
; Macrobenthos ; Herbivorous Amphipods ; Isopods; Herbivorous Shrimp ; Predaceous
Shrimp ; Pink Shrimp; Thor floridanus; Spiny Lobster; Detritivorous Crabs; Omnivorous
Crabs; Halfbeaks and Flyingfish ; Poecilids ; Parrotfishes ; Mullets ; Other Demersals ;
Green Turtle ; Herbivorous Ducks ; Omnivorous Ducks ; Manatee;

D

Meroplankton; Coral; Other Cnidaria; Predatory Gastropods; Stone Crab; Rays ; Bonefish
; Sardines ; Anchovies ; Bay Anchovy ; Catfishes ; Killifishes ; Floridychthys carpio ;
Lucania parva ; Silversides ; Seahorses and Pipefishes ; Sygnathus scovelli ; Hippocampus
zosterae ; Pompano and Permits ; Mojarras and Jennies ; Grunts ; Porgies ; Pinfish ;
Blennies ; Code Goby ; Clown Goby ; Filefishes and Trigger fishes ; Puffers and Burrfishes
; Hawksbill Turtle ;

E

Predatory Crabs; Callinectes spp.; Sharks ; Tarpon and Ladyfish ; Lizardfish ; Eels ;
Toadfish ; Brotulas and Batfishes ; Needlefishes ; Snooks ; Groupers ; Jacks and Runners
; Snappers ; Gray Snapper ; Sciaenid fishes ; Spotted Seatrout ; Red Drum ; Spadefish
; Mackerels ; Barracudas; Flatfishes ; Other Pelagics ; American Crocodile ; Loggerhead
Turtle ; Loons ; Grebes ; Pelicans ; Cormorants ; Big Herons and Egrets ; Small Herons
and Egrets ; Ibis ; Roseate Spoonbill ; Predaceous Ducks; Raptors ; Gruiformes ; Small
Shorebirdss ; Gulls and Terns ; Kingfishers ; Dolphins;

F Benthic Cilliates; Meiofauna; Benthic Crustaceans; Detrivorous Amphipods;

Table 6.2 Composition of roles in the Florida Bay network

groups (at least, more than 90% of their diet). This is a clear improvement
over the reduced graph of the natural classification. However, note that
we may capture less information for some particular species. For exam-
ple, we observe that 67% of the diet of species in group B is coming from
species of group A and the rest is spread over the reduced graph and we
do not capture it. On the other hand, we also observe that some groups
are particularly well clustered like group B from which animals have a
diet composed of 95% of species in group A. None of the natural groups
achieves such a high weight on any of its edges.

Let us comment the composition of each cluster according to our role
extraction procedure which is detailed in Table 6.2. Cluster A is com-
posed of all the primary producers (perfectly clustered together) and 2
species of the microfauna, the free bacteria, which do not eat anything
in the network and therefore really look like primary producers, and the
water-column flagellates, which eat mostly one primary producer and free
bacteria but, at the same time, feed only species of cluster B and none of
the other species, so are therefore better classified in A. Cluster B is com-
posed of 6 species of microfauna and 5 species of macroinvertebrates that

196 Chapter 6. Applications to role extraction problems

have the particularity to feed almost exclusively species of the cluster D
and to eat only primary producers. Cluster C contains a large portion
of the remaining macroinvertabrates. However, this cluster also contains
some fishes, the green turtle, two types of ducks, and the manatee which
makes sense since those animals are mainly herbivorous and eat mostly
primary producers as the macroinvertebrates of this cluster (the green tur-
tle and the manatee eat in fact only primary producers). Let us note that
this cluster is different than cluster B because it feeds also cluster E and
F. Cluster D is composed mainly of small fishes, like Sardines, that eat
macroinvertebrates and species of cluster B. Cluster E contains the rest of
the large fishes, like Sharks or Barracudas, and the birds that are eating
macroinvertebrates but also the small fishes of cluster D. Note that due
to their diet, the Dolphins are classified as large fishes. Finally, cluster F
contains only 2 species of microfauna and 2 species of macroinvertebrates
which seems to have a different diet than the others.

In conclusion, our role structure is accurately partitioning the network
in groups of animals having the same diet, although they may be very
different like large birds and sharks. This is mostly due to our rescaling
of the incoming edge weight such that animals are more similar if the
have the same kind of diet. If we had rescaled the edges according to the
outgoing strength, then we might have observed that groups of similar
species have instead the same kind of predators.

6.3 Great Barrier Reef network

Our low-rank similarity measure has also been applied to a simulated
network of reefs in the Great Barrier Reef of Australia, previously stud-
ied in [Thomas, Lambrechts, Wolanski et al. (2014)]. By analyzing this
network, one is interested in understanding how the coral larvae spread
between reefs during the early phases of their existence. Once a larvae
has fixated onto a reef, it will spend its entire life on this reef so analyzing
the reefs connectivity is essential to provide better conservation policies
of the Marine Protected Areas. However, it remains extremely difficult to
directly observe or measure the transport and exchange of larvae between
reefs because of the small size of the larvae, the distance between the reefs
and their dispersal or the variability in the time before fixation for each
larva. Therefore, an oceanic model has been proposed to simulate the ex-
change of larvae between roughly 1000 reefs (see [Thomas, Lambrechts,
Wolanski et al. (2014)] for details about the model or its numerical reso-

6.4. Part-of-speech tagging 197

lution). Based on the simulated network topology, communities of reefs
exchanging larvae mostly with each others were detected using the CPM
cost function.

The question was then to know whether a community structure is re-
ally the most representative distribution of reefs, and therefore, we ap-
plied our role structure identification methodology to this network. The
results are presented in Fig. 6.11 and, what we observed is that, for each
resolution level defining a stable partition of the network in communi-
ties, we found a corresponding resolution parameter γ that clusters the
similarity graph such that the extracted roles are indeed communities.

More precisely, in each row of Fig. 6.11, we first represent a stable
partition obtained by clustering the graph in communities, then we repre-
sent the partition obtained by clustering our similarity graph, and finally,
we represent the inter-reefs total connectivity in our role partition, i.e. the
edges of the reduced graph that are not self loops. The first row cor-
responds to the most coarse-grained resolution of communities and the
last row to the finest stable resolution obtained. Each reef in the map is
placed at its exact position in the Great Barrier Reef and the color indi-
cates the partition. Unexpectedly, the results obtained for the extraction
of roles are extremely similar to the results obtained using community de-
tection. In the first and second rows, one can observe that both partitions
are very much alike and when looking at the inter-reefs connectivity in
the role partition, one can note that only a very small fraction of larvae is
exchanged between different clusters of reefs. Therefore, those role struc-
tures are indeed community structures. We observed some differences in
the partitions only for the finest resolution level, i.e. some of the commu-
nities in the top left corner of the figure are more or less bisected in the
role partition which produces exchanges of around 50% of larvae between
each component of the community. While this indicates that the partition-
ing results may be slightly improved using our role structure identification
methodology, the community structure seems indeed very representative
of the actual distribution of reefs.

6.4 Part-of-speech tagging

We conclude this chapter with an experiment on the automatic classifica-
tion of words in a text. Our basic assumption is that most of the gram-
matically correct sentences should have roughly the same kind of struc-
ture and therefore one can expect to extract the type of a word as its role

198 Chapter 6. Applications to role extraction problems

Arrow size=0.015*ConnWrtSrc , Head=0.1

Low- gamma c omms/roles most similar
More differenc es at higher gamma
 - > At Sim0.0348, more variable ICCs than Plain0.000543

 - > Total ICC for Sim0.004=0.97%, Plain0.000117=0.96%
 - > Total ICC for Sim0.02=4.3%, Plain0.000117=3.4%
 - > Total ICC for Sim0.0348=6.7%, Plain0.000543=8.1%

0 75 150 km

N

(a) Communities,
γ = 5.9e−4

Arrow size=0.015*ConnWrtSrc , Head=0.1

Low- gamma c omms/roles most similar
More differenc es at higher gamma
 - > At Sim0.0348, more variable ICCs than Plain0.000543

 - > Total ICC for Sim0.004=0.97%, Plain0.000117=0.96%
 - > Total ICC for Sim0.02=4.3%, Plain0.000117=3.4%
 - > Total ICC for Sim0.0348=6.7%, Plain0.000543=8.1%

0 75 150 km

N

(b) Roles,
γ = 4.2e−3

Arrow size=0.015*ConnWrtSrc , Head=0.1

Low- gamma c omms/roles most similar
More differenc es at higher gamma
 - > At Sim0.0348, more variable ICCs than Plain0.000543

 - > Total ICC for Sim0.004=0.97%, Plain0.000117=0.96%
 - > Total ICC for Sim0.02=4.3%, Plain0.000117=3.4%
 - > Total ICC for Sim0.0348=6.7%, Plain0.000543=8.1%

0 75 150 km

N

(c) Roles,
γ = 4.2e−3

Arrow size=0.015*ConnWrtSrc , Head=0.1

Low- gamma c omms/roles most similar
More differenc es at higher gamma
 - > At Sim0.0348, more variable ICCs than Plain0.000543

 - > Total ICC for Sim0.004=0.97%, Plain0.000117=0.96%
 - > Total ICC for Sim0.02=4.3%, Plain0.000117=3.4%
 - > Total ICC for Sim0.0348=6.7%, Plain0.000543=8.1%

0 75 150 km

N

(d) Communities,
γ = 1.2e−3

Arrow size=0.015*ConnWrtSrc , Head=0.1

Low- gamma c omms/roles most similar
More differenc es at higher gamma
 - > At Sim0.0348, more variable ICCs than Plain0.000543

 - > Total ICC for Sim0.004=0.97%, Plain0.000117=0.96%
 - > Total ICC for Sim0.02=4.3%, Plain0.000117=3.4%
 - > Total ICC for Sim0.0348=6.7%, Plain0.000543=8.1%

0 75 150 km

N

(e) Roles,
γ = 2e−2

Arrow size=0.015*ConnWrtSrc , Head=0.1

Low- gamma c omms/roles most similar
More differenc es at higher gamma
 - > At Sim0.0348, more variable ICCs than Plain0.000543

 - > Total ICC for Sim0.004=0.97%, Plain0.000117=0.96%
 - > Total ICC for Sim0.02=4.3%, Plain0.000117=3.4%
 - > Total ICC for Sim0.0348=6.7%, Plain0.000543=8.1%

0 75 150 km

N

(f) Roles,
γ = 2e−2

Arrow size=0.015*ConnWrtSrc , Head=0.1

Low- gamma c omms/roles most similar
More differenc es at higher gamma
 - > At Sim0.0348, more variable ICCs than Plain0.000543

 - > Total ICC for Sim0.004=0.97%, Plain0.000117=0.96%
 - > Total ICC for Sim0.02=4.3%, Plain0.000117=3.4%
 - > Total ICC for Sim0.0348=6.7%, Plain0.000543=8.1%

0 75 150 km

N

(g) Communities,
γ = 5.4e−3

Arrow size=0.015*ConnWrtSrc , Head=0.1

Low- gamma c omms/roles most similar
More differenc es at higher gamma
 - > At Sim0.0348, more variable ICCs than Plain0.000543

 - > Total ICC for Sim0.004=0.97%, Plain0.000117=0.96%
 - > Total ICC for Sim0.02=4.3%, Plain0.000117=3.4%
 - > Total ICC for Sim0.0348=6.7%, Plain0.000543=8.1%

0 75 150 km

N

(h) Roles,
γ = 3.5e−2

Arrow size=0.015*ConnWrtSrc , Head=0.1

Low- gamma c omms/roles most similar
More differenc es at higher gamma
 - > At Sim0.0348, more variable ICCs than Plain0.000543

 - > Total ICC for Sim0.004=0.97%, Plain0.000117=0.96%
 - > Total ICC for Sim0.02=4.3%, Plain0.000117=3.4%
 - > Total ICC for Sim0.0348=6.7%, Plain0.000543=8.1%

0 75 150 km

N

(i) Roles,
γ = 3.5e−2

Fig. 6.11 Communities and roles extracted in the Great Barrier Reef net-
work.

6.4. Part-of-speech tagging 199

in the sentence. For example one would expect that most sentences are
in the form “subject”⇒“verb”⇒“agreement” or that adjectives are mostly
followed by nouns, etc.

This kind of automatic text analysis is known as natural language pro-
cessing and in particular, finding the type of a word (noun, verb, adjective,
adverb, etc.) is known as part-of-speech (POS) tagging. The most clever
algorithms for POS tagging use the structure of the sentence but also the
definition of the words, some descriptive tags and constraints between
words and often prior knowledge on the possible tags for each word com-
ing from a corpus. For example, the Brown corpus is a collection of more
than 1.000.000 words that were manually tagged and improved over many
years. Obviously, some words can have different meanings and therefore
different tags depending on the semantics which largely hardens the task.

We were interested in knowing how our similarity measure would be-
have on this particular problem because it has the nice property to not
require any prior knowledge and only use the topology of the graph to
identify groups of nodes having the same role. Our method could po-
tentially be used as a preprocessing of any text to cluster together similar
words which in turn could largely help linguistics studies. Naturally, the
actual type of words in a cluster could not be determined by our method
but we let that responsibility to linguists.

We considered a graph of words built by automatically reading the
book “Language, an introduction to the study of speech” by [Sapir (1921)].
This book is freely available on the Project Gutenberg website (http://www.
gutenberg.org/) and was chosen simply because we believed that its title
fits appropriately our subject. The graph contains one node per word
found in the book and there is a weighted edge from a word i to a word
j if the word j followed the word i in a sentence. The weight of each
edge encodes the number of times the two words co-occurred. To have
some sort of ground truth to evaluate the quality of our partitioning, we
used the Stanford POS tagger [Toutanova, Klein, Manning et al. (2003)]
and the natural language processing toolbox available in Python (NLTK,
http://www.nltk.org/). Fig. 6.12 shows the distribution of words per
type according to the classification of the Stanford POS tagger. One can
see that around 90% of the words are tagged as either nouns (singular
and plural being differentiated), adjectives, verbs (with different type of
conjugation) or adverbs.

We applied our low-rank similarity measure with r = 100 on the graph
of words which contains around 7000 words and the results are repre-

http://www.gutenberg.org/
http://www.gutenberg.org/
http://www.nltk.org/

200 Chapter 6. Applications to role extraction problems

24.2%

20.5%

11.5%

9.0%

7.6%

7.5%

5.1%

4.0%

3.6%

1.2%

1.2%

0.9%

3.7%

Word Types Occurence

Noun (sing.)
Adjective
Noun (plu.)
Verb (Past P.)

Adverb
Verb
Verb (Present P.)

Verb (Present 3.P)
Noun (proper)
Preposition

Verb (Past)
Verb (Present)
Others (< 1%)

Fig. 6.12 Distribution of types of words in [Sapir (1921)].

sented in Fig. 6.13. In the figure, each pie chart corresponds to a cluster
of similar words as extracted by our method and the distribution within a
pie chart corresponds to the distribution of types of words in that cluster
according to the Stanford POS tagger. We also give a list of the 15 most
frequent words per cluster in Table 6.3.

First, note that the areas in the pie charts are not scaled by the num-
ber of times each word appears in the text. This means that the word
"of" that appears 3636 times takes exactly the same area in a pie chart as
any other word. If rescaled by the number of occurrences, the pie charts
could have looked very differently. Let us now discuss the content of each
cluster. Cluster 1 contains mainly adjectives but does not seem to be as
well separated as it could be. Although containing some misplaced pro-
nouns (“him” and “me”), cluster 2 is strikingly good and contains mostly
verbs. Cluster 3 is also very good and contains adjectives and proper
nouns that often serve the same purpose. Note that, surprisingly, this
cluster contains all the adjectives related to countries (“greek”, “cambod-
gian”, “siamese”,etc.). An explanation behind the fact that this cluster is

6.4. Part-of-speech tagging 201

54.36

18.91
14.18

8.36

3.64

91.93

3.10

87.84

12.16

48.95

26.95
9.27

6.89

30.95
18.38

11.51

10.44
7.93

7.06

6.77

3.48

62.08

11.64 10.90

7.46

3.27

49.28

34.23 5.54
3.92
3.88

57.14

42.86

76.67

23.33

69.57

30.43

34.40

32.21

15.52

10.27

3.63

72.17

16.87

9.39

82.61

17.39

Noun (sing.)
Adjective
Noun (plu.)
Verb (Past P.)

Adverb
Verb
Verb (Present P.)

Verb (Present 3.P)
Noun (proper)
Preposition

Verb (Past)
Verb (Present)
Others (< 1%)

Fig. 6.13 Distribution of types of words per role extracted.

composed of adjectives and proper nouns is that some of those country
related adjectives are in fact categorized as proper nouns by the Stanford
POS tagger. Cluster 4 contains mainly prepositions and nouns that ap-
pear just before verbs (“it”, “one”, “there”) and its composition is actually
better than it looks from the pie chart. Cluster 5 is clearly not a good
cluster and contains many different types of words. Cluster 6 is again
very satisfying and contains mostly short preposition. However, it also
contains some verbs (“is”, “are”, “have”). Our guess is that this is due to
some interrogative sentences present in the book that reverse the order of
the words (“Is it. . . ?”, “Are you. . . ?”). Clusters 7 and 9 are composed of
nouns and adjectives and we do not have a clear explanation why those
words are cluster together, although they are better partitioned than clus-
ter 5 since their content is much more uniform. Cluster 8 contains the
adjectives and adverbs that often have the same position in a sentence.
Cluster 10 also contains adverbs but that are more resembling past par-
ticiples. By looking at the pie chart, cluster 11 seems mostly spread but,
in fact, its structure is much more uniform and it contains mostly small

202 Chapter 6. Applications to role extraction problems

articles (“the”, “a”, “this”). The pie chart could again be biased by the
Stanford tagger. Finally, cluster 12 contains mostly adverbs that seem
correctly grouped together and cluster 13 contains only nouns which is
excellent.

All those results indicate that, even if the clustering of words is far
from perfect, most of the clusters extracted with our low-rank similarity
are relevant and contain uniform types of words. Potentially, this could be
of great interests for people working in the natural language processing
field.

6.4. Part-of-speech tagging 203

C
lu

st
er

1
C

lu
st

er
2

C
lu

st
er

3
C

lu
st

er
4

C
lu

st
er

5
C

lu
st

er
6

C
lu

st
er

7

lit
tl

e
(5

7)
be

(5
82

)
gr

ee
k

(4
8)

it
(8

02
)

w
el

l(
47

)
of

(3
63

6)
la

ng
ua

ge
(4

47
)

si
m

pl
e

(4
1)

sa
y

(1
28

)
el

us
iv

e
(1

0)
la

ng
ua

ge
s

(3
00

)
re

la
te

d
(4

7)
to

(1
82

0)
m

or
e

(2
62

)

fu
rt

he
r

(3
9)

go
(3

7)
ca

m
bo

dg
ia

n
(9

)
on

e
(2

52
)

po
ss

ib
le

(4
3)

in
(1

64
7)

en
gl

is
h

(2
54

)

gi
ve

n
(3

4)
be

co
m

e
(3

3)
ar

ch
ai

c
(7

)
th

er
e

(2
22

)
lik

el
y

(3
6)

is
(1

55
7)

ot
he

r
(2

44
)

gr
ea

te
r

(3
0)

hi
m

(2
8)

sa
ti

sf
yi

ng
(5

)
fo

rm
(1

84
)

di
ffi

cu
lt

(3
3)

an
d

(1
51

4)
w

or
d

(2
43

)

de
fin

it
e

(2
4)

sh
ow

(2
4)

gr
ou

pe
d

(4
)

el
em

en
ts

(1
79

)
kn

ow
n

(3
2)

th
at

(1
22

0)
ph

on
et

ic
(1

41
)

th
in

g
(2

4)
be

lie
ve

(2
3)

si
am

es
e

(4
)

el
em

en
t

(1
76

)
ne

ed
(3

1)
as

(1
10

0)
ra

di
ca

l(
13

5)

di
al

ec
t

(2
4)

m
e

(1
7)

no
w

he
re

(4
)

fo
rm

s
(1

35
)

se
em

(2
7)

or
(7

95
)

tw
o

(1
18

)

go
od

(2
2)

an
im

at
e

(1
7)

in
cl

us
iv

e
(4

)
ty

pe
(1

07
)

no
th

in
g

(2
7)

ar
e

(7
66

)
so

un
ds

(1
07

)

fe
w

(2
1)

in
di

ca
te

(1
6)

ex
pl

ic
it

(4
)

ex
pr

es
si

on
(1

04
)

ac
co

rd
in

g
(2

6)
no

t
(6

07
)

se
nt

en
ce

(1
05

)

pe
rf

ec
tl

y
(1

6)
lo

ok
(1

5)
re

lig
io

us
(4

)
nu

m
be

r
(1

02
)

ne
ce

ss
ar

y
(2

6)
by

(4
11

)
ve

rb
(1

04
)

co
ns

id
er

ab
le

(1
5)

fa
ll

(1
4)

in
fix

es
(4

)
gr

ou
p

(9
5)

co
nt

ra
st

(2
5)

w
it

h
(3

91
)

m
os

t
(1

00
)

sl
ig

ht
(1

3)
ob

se
rv

e
(1

4)
tr

ea
te

d
(4

)
ex

pr
es

se
d

(8
8)

co
m

e
(2

3)
bu

t
(3

87
)

dr
if

t
(9

7)

po
ly

sy
nt

he
ti

c
(1

3)
se

rv
e

(1
2)

fo
rm

le
ss

(4
)

fa
r

(8
0)

be
lo

ng
(2

1)
fo

r
(3

66
)

sa
m

e
(9

5)

re
ad

ily
(1

3)
ru

n
(1

2)
sy

lla
bi

c
(3

)
ty

pe
s

(7
9)

sa
id

(1
9)

ha
ve

(3
64

)
lo

ng
(9

2)

Ta
bl

e
6.

3
15

m
os

t
fr

eq
ue

nt
w

or
ds

pe
r

cl
us

te
r

(w
it

h
nu

m
be

r
of

oc
cu

rr
en

ce
s)

.

204 Chapter 6. Applications to role extraction problems

C
luster

8
C

luster
9

C
luster

10
C

luster
11

C
luster

12
C

luster
13

otherw
ise

(9)
indefinite

(9)
looked

(16)
the

(4934)
only

(137)
nouns

(32)

fem
inine

(6)
infixed

(8)
conveniently

(7)
a

(1673)
still(64)

im
agery

(8)

indirect
(6)

abstraction
(7)

enorm
ously

(4)
w

e
(604)

too
(60)

classifications
(6)

six
(4)

integral(6)
rapidly

(4)
an

(363)
entirely

(34)
sing

(5)

instrum
ental(4)

adequate
(5)

elim
inated

(4)
this

(304)
never

(33)
agglutination

(4)

intuitively
(3)

exclusive
(5)

term
ed

(4)
all(299)

hardly
(31)

autom
atic

(4)

techniques
(3)

im
m

ense
(5)

barely
(4)

its
(292)

identical(25)
plan

(4)

partial(3)
apple

(4)
obsolete

(3)
such

(281)
really

(22)
radically

(4)

label(3)
all-im

portant
(3)

sleeping
(3)

w
hich

(272)
clear

(16)
release

(4)

tsim
shian

(3)
entering

(3)
sw

ept
(2)

w
ords

(229)
concerned

(15)
guinea

(3)

doer
(3)

uncom
fortable

(3)
subdivided

(2)
they

(227)
red

(13)
pre-verbal(3)

continuously
(3)

absolutive
(3)

m
ultiplied

(2)
these

(218)
obvious

(12)
sw

eeping
(3)

lax
(2)

unlim
ited

(3)
diffused

(2)
speech

(216)
indicated

(11)
vanished

(3)

sister
(2)

abbreviated
(3)

tired
(2)

i(212)
constantly

(10)
sim

ilarities
(3)

im
peded

(2)
im

itative
(2)

abundantly
(1)

no
(191)

done
(10)

behavior
(3)

Table
6.3(cont’d)

15
m

ost
frequent

w
ords

per
cluster

(w
ith

num
ber

of
occurrences).

7 Conclusion

Graph theory can be used to represent basically any complex system
and we hope to have successfully convinced the reader that cluster-

ing is a topic of main interest in the study of modern networks. When
one wants to extract information out of a mobile phone database, when
one wants to analyze friendships or business relationships over online so-
cial networks with their millions of users, when one wants to study the
topology of the internet or peer-to-peer networks containing billions of
routers,. . . All these examples put the emphasis on the need for fast, effi-
cient and dedicated algorithms and methods to cluster massive networks.

We have seen that one way to partition a network is to extract com-
munities, i.e. groups of densely connected nodes that are supposed to
share the same characteristics and features. Community detection is a
challenging task but it provides powerful insights about the structure of
networks and allows to analyze complex phenomena at different scales.
After introducing the problem and presenting different existing methods,
we have proposed a fast and highly parallelizable algorithm which pro-
duces partitions that are quantitatively similar to some of its competitors
but clearly outperforms them in terms of speed and, for the first time,
offers the possibility to study massive networks. We have shown that, in
our framework, the only persistent elements in a network are its nodes
and therefore developed our algorithm based on the assignment of each
node to another node rather than to a partitioning set as done in most
other methods. We have also shown that our algorithm is independent
on the choice of the cost function that describes what one wants to iden-
tify as a community. We have proposed two types of local corrections of
the node assignments based on global measures; however our framework
is not constrained by those rules and other types of corrections could
be introduced. This gives interesting opportunities for future research
where corrections of the node assignments based on prior knowledge of
the structure of the network could be developed. We have extensively
tested our algorithm on benchmark graphs and also applied it to some
real graphs. This has highlighted that the potential applications of our

206 Chapter 7. Conclusion

method are extremely wide but also that dedicated cost functions should
be developed in order to obtain the best possible clustering results in prac-
tical contexts. We hope that our community detection algorithm can help
future scholars in their investigation on network properties.

But, communities are not always representative of the actual structure
of a graph and we have presented different examples where the node
similarity is somehow hidden in the graph topology. In this case, we
have shown that the node distribution can be accurately represented by
a role structures which form a generalization of the concept of commu-
nities. We have then introduced a pairwise node similarity measure with
the hypothesis that nodes having the same role, i.e. being similar, should
have the same kind of connectivity patterns across the graph. Our sim-
ilarity measure computes the weighted sum of the number of common
neighbors at any distance between every pair of nodes. However, we have
shown that computing the exact similarity matrix can be computationally
expensive for large graphs. Therefore, we proposed a low-rank approx-
imation computed as the fixed point solution of an iterative scheme and
proved its convergence when the weighting parameter is not too large. In
our works, we have always applied a constant weighting parameter and
previous studies have shown that sometimes a more appropriate scaling
can be obtained by taking into account the length of the neighborhood
patterns. Additional work in this direction could be done to improve the
quality of the similarity measure; however, it seems much harder to com-
pute the expected number of common neighbors rather than the expected
number of paths in a graph.

Finally, we described how our pairwise node similarity measure, or
its low-rank approximation, allows to correctly extract a partition using
our community detection algorithm on the similarity graph. We applied
our methodology to Erdős-Rényi graphs and to other models of random
graphs containing a block structure and showed that, if the noise level
is not too large and the block structure correctly represents the different
roles of the nodes in the network, our similarity measures correctly extract
these roles. We also observed that analyzing the evolution of the low-rank
similarity measure might reveal the number of roles in a network and
might also indicate if the extracted clusters are relevant. We demonstrated
that both measures produce very similar results, hence justifying the use
of our low-rank approximation in practical examples when computing the
full rank measure is computationally too expensive. Lastly, we applied
our low-rank similarity measure to three different real world examples.

207

First, we have seen that one can correctly extract different trophic levels
in an ecological food web and that the associated partition can even make
more sense than the natural biological classification. Then, we explained
how our similarity measure has been used to validate the existence of a
community structure in a simulated network of reefs in the Great Barrier
Reef of Australia. Lastly, we studied the partition obtained for a network
of co-occurrence of words in a book which reveals similar types of words
without prior knowledge on the structure of language. All those analyses
have shown that additional research towards an appropriate cost function
to partition the similarity graph are required. Yet, our results give a strong
framework to tackle the network partitioning problem.

Perspective and future works

Our works open different interesting directions for future research and
some open questions remain. We already stated some possible modifi-
cations of our fast community extraction algorithm in Section 3.4.6 but
there are still a few properties of the method that are worth being investi-
gated. First, a parallel implementation of the algorithm is still lacking and
might reveal some sort of limitations because, as most community detec-
tion algorithms, our method requires mainly memory access rather than
processing power. Therefore, at a certain point, increasing the number of
processors might not speed up the computation of the communities since
a bottleneck in the memory reading could emerge. This might constrain
the size of the networks that can be analyzed and the actual behavior of
a parallel implementation of the algorithm is worth studying. Regarding
the partitioning problem in itself, a clear mathematical formalism to de-
scribe what are good communities is still to be discovered. We believe
that the actual definition of the optimal community partition in a given
network will always be dependent on the particular application one is
interested in. This highlights another unstudied aspect of our algorithm
which is its application on real graphs (and possibly using specific cost
functions). However, different collaborations have been initiated with the
development of our community extraction procedure and it starts to at-
tract the attention of researchers and could lead to interesting results.

The role extraction problem suffers from the same drawbacks because
it is somehow the same problem as for community detection with the ad-
ditional constraint that the reduced graph is unknown. This makes the
extraction of roles even harder and naturally leads to even more open

208 Chapter 7. Conclusion

questions. First, it would be very interesting to describe a network model
which will spontaneously lead the graphs created to have a role struc-
ture. Indeed, we used some random graph models to analyze the effi-
ciency of our pairwise node similarity measure but these were fairly arti-
ficial. A model of growth, like the preferential attachment which creates
small world networks with a power-law degree distribution, would be ex-
tremely interesting to study although rather hard to define. Regarding our
similarity measure and our role extraction procedure, there also remains
a few questions to consider. A thorough comparison of our results with
other existing similarity measures should be conducted to confirm the ef-
ficiency of our role extraction method. Although, the appropriate choice
of the similarity measure may depend on the type of network to study.
Another issue is that the role extraction problem is tackled using two dif-
ferent procedure, i.e. first the computation of the pairwise node similar-
ity measure and then the detection of communities within the similarity
graph. Therefore, it could be interesting to study how the performance are
affected by a modification of one or another of those procedures. Finally,
we have studied some spectral properties of the low-rank similarity ma-
trix to prove the convergence of our low-rank iterative scheme. One may
have observed that we did not make any use of the singular vectors in
the decomposition of Eq. (5.44). However, it is easy to see that if the simi-
larity matrix is of sufficiently small rank then those singular vectors may
indicate an appropriate partition of the network in roles and one would
not require to apply a community detection method. The spectral proper-
ties of the similarity matrix may give further insights on the existing role
structure.

Bibliography

Ahn, YY, Bagrow, JP, and Lehmann, S (2010). Link communities reveal
multiscale complexity in networks. Nature, 466. doi: 10.1038/na-
ture09182.

Albert, R and Barabási, AL (2002). Statistical mechanics of complex net-
works. Rev. Mod. Phys., 74:47–97. doi: 10.1103/RevModPhys.74.47.

Albert, R, Jeong, H, and Barabási, AL (1999). Internet: Diameter of the
world-wide web. Nature, 401(6749):130–131. doi: 10.1038/43601.

Aldecoa, R and Marín, I (2013). Surprise maximization reveals the com-
munity structure of complex networks. Scientific Reports, 3:1060. doi:
10.1038/srep01060.

Aldecoa, R and Marín, I (2011). Deciphering network community
structure by surprise. PLoS ONE, 6(9):e24195. doi: 10.1371/jour-
nal.pone.0024195.

Alzate, C and Suykens, JAK (2008). Sparse kernel models for spectral
clustering using the incomplete cholesky decomposition. In IEEE Inter-
national Joint Conference on Neural Networks (IJCNN), 2008, pages 3556–
3563. doi: 10.1109/IJCNN.2008.4634306.

Alzoubi, H and Pan, WD (2008). Fast and accurate global motion
estimation algorithm using pixel subsampling. Information Sciences,
178(17):3415 – 3425. doi: 10.1016/j.ins.2008.05.004.

Anteneodo, C, Malmgren, RD, and Chialvo, DR (2010). Poissonian bursts
in e-mail correspondence. The European Physical Journal B, 75(3):389–394.
doi: 10.1140/epjb/e2010-00139-9.

Arbelaez, P, Maire, M, Fowlkes, C, and Malik, J (2011). Con-
tour detection and hierarchical image segmentation. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 33(5):898–916. doi:
10.1109/TPAMI.2010.161.

http://dx.doi.org/10.1038/nature09182
http://dx.doi.org/10.1038/nature09182
http://dx.doi.org/10.1103/RevModPhys.74.47
http://dx.doi.org/10.1038/43601
http://dx.doi.org/10.1038/srep01060
http://dx.doi.org/10.1371/journal.pone.0024195
http://dx.doi.org/10.1371/journal.pone.0024195
http://dx.doi.org/10.1109/IJCNN.2008.4634306
http://dx.doi.org/10.1016/j.ins.2008.05.004
http://dx.doi.org/10.1140/epjb/e2010-00139-9
http://dx.doi.org/10.1109/TPAMI.2010.161

210 BIBLIOGRAPHY

Arenas, A, Fernández, A, Fortunato, S, and Gómez, S (2008). Motif-based
communities in complex networks. Journal of Physics A: Mathematical
and Theoretical, 41(22):224001. doi: 10.1088/1751-8113/41/22/224001.

Arenas, A, Fernández, A, and Gómez, S (2008). Analysis of the structure of
complex networks at different resolution levels. New Journal of Physics,
10(5):053039. doi: 10.1088/1367-2630/10/5/053039.

Arnau, V, Mars, S, and Marín, I (2005). Iterative cluster analysis of protein
interaction data. Bioinformatics, 21(3):364–378. doi: 10.1093/bioinfor-
matics/bti021.

Bagrow, JP (2012). Communities and bottlenecks: Trees and tree-
like networks have high modularity. Phys. Rev. E, 85:066118. doi:
10.1103/PhysRevE.85.066118.

Balcan, D, Colizza, V, Gonçalves, B, Hu, H, Ramasco, JJ, et al. (2009).
Multiscale mobility networks and the spatial spreading of infec-
tious diseases. Proceedings of the National Academy of Sciences. doi:
10.1073/pnas.0906910106.

Barabási, AL (2005). The origin of bursts and heavy tails in human dy-
namics. Nature, 435(7039):207–11. doi: 10.1038/nature03459.

Barabási, AL and Albert, R (1999). Emergence of Scaling in Ran-
dom Networks. Science, 286(5439):509–512. doi: 10.1126/sci-
ence.286.5439.509.

Barrat, A, Barthélemy, M, Pastor-Satorras, R, and Vespignani, A (2004).
The architecture of complex weighted networks. Proceedings of the Na-
tional Academy of Sciences of the United States of America, 101(11):3747–
3752. doi: 10.1073/pnas.0400087101.

Beguerisse-Díaz, M, Garduño-Hernández, G, Vangelov, B, Yaliraki, SN,
and Barahona, M (2013). Communities, roles, and informational organ-
igrams in directed networks: the Twitter network of the UK riots. ArXiv
e-prints. arXiv:physics.soc-ph/1311.6785.

Beguerisse-Diaz, M, Vangelov, B, and Barahona, M (2013). Finding role
communities in directed networks using role-based similarity, markov
stability and the relaxed minimum spanning tree. ArXiv e-prints.
arXiv:1309.1795.

http://dx.doi.org/10.1088/1751-8113/41/22/224001
http://dx.doi.org/10.1088/1367-2630/10/5/053039
http://dx.doi.org/10.1093/bioinformatics/bti021
http://dx.doi.org/10.1093/bioinformatics/bti021
http://dx.doi.org/10.1103/PhysRevE.85.066118
http://dx.doi.org/10.1073/pnas.0906910106
http://dx.doi.org/10.1038/nature03459
http://dx.doi.org/10.1126/science.286.5439.509
http://dx.doi.org/10.1126/science.286.5439.509
http://dx.doi.org/10.1073/pnas.0400087101
http://arxiv.org/abs/physics.soc-ph/1311.6785
http://arxiv.org/abs/1309.1795

BIBLIOGRAPHY 211

Beguerisse-Díaz, M, Vangelov, B, and Barahona, M (2013). Finding role
communities in directed networks using role-based similarity, markov
stability and the relaxed minimum spanning tree. In Global Conference on
Signal and Information Processing (GlobalSIP), 2013 IEEE, pages 937–940.
doi: 10.1109/GlobalSIP.2013.6737046.

Berry, JW, Hendrickson, B, LaViolette, RA, and Phillips, CA (2011). Tol-
erating the community detection resolution limit with edge weighting.
Phys. Rev. E, 83:056119. doi: 10.1103/PhysRevE.83.056119.

Beucher, S et al. (1991). The watershed transformation applied to image
segmentation. In Scanning Microscopy International, pages 299–314.

Bhowmick, S and Srinivasan, S (2013). A template for parallelizing the
louvain method for modularity maximization. In Mukherjee, A, Choud-
hury, M, Peruani, F, Ganguly, N, and Mitra, B, editors, Dynamics On and
Of Complex Networks, Volume 2, Modeling and Simulation in Science,
Engineering and Technology, pages 111–124. Springer New York. doi:
10.1007/978-1-4614-6729-8_6.

Blondel, V, Deville, P, Morlot, F, Smoreda, Z, Van Dooren,
P, et al. (2011). Voice on the border: Do cellphones re-
draw the maps? http://www.paristechreview.com/2011/11/15/
voice-border-cellphones-redraw-maps/. [online].

Blondel, V, Gajardo, A, Heymans, M, Senellart, P, and Van Dooren, P
(2004). A measure of similarity between graph vertices: Applications
to synonym extraction and web searching. SIAM Review, 46(4):647–666.
doi: 10.1137/S0036144502415960.

Blondel, V, Krings, G, and Thomas, I (2010). Regions and borders of mo-
bile telephony in belgium and in the brussels metropolitan zone. Brus-
sels Studies, 42(4). http://www.brusselsstudies.be/publications/
index/index/id/129/lang/en.

Blondel, VD, Guillaume, JL, Lambiotte, R, and Lefebvre, E (2008). Fast
unfolding of communities in large networks. Journal of Statistical Me-
chanics: Theory and Experiment, 2008(10):P10008. doi: 10.1088/1742-
5468/2008/10/P10008.

Bollobás, B (2001). Random Graphs. Number 4 in Wiley Series in Disc.
Math. and Opt. Cambridge University Press. ISBN 0521797225. doi:
10.1214/aoms/1177706098.

http://dx.doi.org/10.1109/GlobalSIP.2013.6737046
http://dx.doi.org/10.1103/PhysRevE.83.056119
http://dx.doi.org/10.1007/978-1-4614-6729-8_6
http://www.paristechreview.com/2011/11/15/voice-border-cellphones-redraw-maps/
http://www.paristechreview.com/2011/11/15/voice-border-cellphones-redraw-maps/
http://dx.doi.org/10.1137/S0036144502415960
http://www.brusselsstudies.be/publications/index/index/id/129/lang/en
http://www.brusselsstudies.be/publications/index/index/id/129/lang/en
http://dx.doi.org/10.1088/1742-5468/2008/10/P10008
http://dx.doi.org/10.1088/1742-5468/2008/10/P10008
http://books.google.be/books?isbn=0521797225
http://dx.doi.org/10.1214/aoms/1177706098

212 BIBLIOGRAPHY

Borgatti, SP and Everett, MG (1993). Two algorithms for comput-
ing regular equivalence. Social Networks, 15(4):361 – 376. doi:
http://dx.doi.org/10.1016/0378-8733(93)90012-A.

Brandes, U, Delling, D, Gaertler, M, Gorke, R, Hoefer, M, et al. (2008). On
Modularity Clustering. IEEE Transactions on Knowledge and Data Engi-
neering, 20(2):172–188. doi: 10.1109/TKDE.2007.190689.

Brandes, U, Delling, D, Gaertler, M, Görke, R, Hoefer, M, et al. (2006). On
modularity – np-completeness and beyond.

Brandes, U, Gaertler, M, and Wagner, D (2003). Experiments on graph
clustering algorithms. In Battista, G and Zwick, U, editors, Algorithms -
ESA 2003, volume 2832 of Lecture Notes in Computer Science, pages 568–
579. Springer Berlin Heidelberg. doi: 10.1007/978-3-540-39658-1_52.

Browet, A (2011). Community detection for hierarchical video segmenta-
tion. 10th IMACS International Symposium on Iterative Methods in Scientific
Computing, page 22.

Browet, A, Absil, PA, and Van Dooren, P (2011). Community detection for
hierarchical image segmentation. In Aggarwal, J, Barneva, R, Brimkov,
V, Koroutchev, K, and Korutcheva, E, editors, Combinatorial Image Anal-
ysis, volume 6636 of Lecture Notes in Computer Science, pages 358–371.
Springer Berlin Heidelberg. doi: 10.1007/978-3-642-21073-0_32.

Browet, A, Absil, PA, and Van Dooren, P (2013). Fast community detection
using local neighbourhood search. ArXiv e-prints. arXiv:1308.6276.

Browet, A and Van Dooren, P (2013). Low-rank Similarity Measure for
Role Model Extraction. ArXiv e-prints. arXiv:1312.4860.

Burt, RS (1976). Positions in networks. Social forces, 55(1):93–122. doi:
10.2307/2577097.

Carli, R, Fagnani, F, Frasca, P, and Zampieri, S (2010). Gossip consensus
algorithms via quantized communication. Automatica, 46(1):70 – 80. doi:
http://dx.doi.org/10.1016/j.automatica.2009.10.032.

Cason, TP (2012). Role Extraction in Networks. Ph.D. thesis, Institute of
Information and Communication Technologies, Electronics and Applied
Mathematics, Université catholique de Louvain. http://hdl.handle.
net/2078.1/114511.

http://dx.doi.org/http://dx.doi.org/10.1016/0378-8733(93)90012-A
http://dx.doi.org/10.1109/TKDE.2007.190689
http://dx.doi.org/10.1007/978-3-540-39658-1_52
http://dx.doi.org/10.1007/978-3-642-21073-0_32
http://arxiv.org/abs/1308.6276
http://arxiv.org/abs/1312.4860
http://dx.doi.org/10.2307/2577097
http://dx.doi.org/http://dx.doi.org/10.1016/j.automatica.2009.10.032
http://hdl.handle.net/2078.1/114511
http://hdl.handle.net/2078.1/114511

BIBLIOGRAPHY 213

Cason, TP, Absil, PA, and Van Dooren, P (2013). Iterative methods for low
rank approximation of graph similarity matrices. Linear Algebra and its
Applications, 438(4):1863 – 1882. doi: 10.1016/j.laa.2011.12.004.

Clauset, A and Eagle, N (2007). Persistence and periodicity in a dynamic
proximity network. October.

Clauset, A, Newman, MEJ, and Moore, C (2004). Finding commu-
nity structure in very large networks. Phys. Rev. E, 70:066111. doi:
10.1103/PhysRevE.70.066111.

Clauset, A, Shalizi, C, and Newman, M (2009). Power-law distributions in
empirical data. SIAM Review, 51(4):661–703. doi: 10.1137/070710111.

Condon, A and Karp, RM (2001). Algorithms for graph partitioning on the
planted partition model. Random Structures & Algorithms, 18(2):116–140.
doi: 10.1002/1098-2418(200103)18:2<116::AID-RSA1001>3.0.CO;2-2.

Conover, MD, Davis, C, Ferrara, E, McKelvey, K, Menczer, F, et al. (2013).
The Geospatial Characteristics of a Social Movement Communication
Network. PLoS ONE, 8(3):e55957. doi: 10.1371/journal.pone.0055957.

Cooper, K and Barahona, M (2011). Role-similarity based comparison of
directed networks. ArXiv e-prints. arXiv:1103.5582.

Cour, T, Benezit, F, and Shi, J (2005). Spectral segmentation with multiscale
graph decomposition. In IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR) 2005., volume 2, pages 1124–1131
vol. 2. doi: 10.1109/CVPR.2005.332.

Cover, TM and Thomas, JA (2012). Elements of information theory. John
Wiley & Sons. ISBN 0471241954.

Cox, IJ, Rao, S, and Zhong, Y (1996). “Ratio regions”: a tech-
nique for image segmentation. In Proceedings of the 13th Interna-
tional Conference on Pattern Recognition, volume 2, pages 557–564. doi:
10.1109/ICPR.1996.546886.

Csardi, G and Nepusz, T (2006). The igraph software package for complex
network research. InterJournal, Complex Systems(1695):1695.

Csáji, BC, Browet, A, Traag, V, Delvenne, JC, Huens, E, et al.
(2013). Exploring the mobility of mobile phone users. Physica

http://dx.doi.org/10.1016/j.laa.2011.12.004
http://dx.doi.org/10.1103/PhysRevE.70.066111
http://dx.doi.org/10.1137/070710111
http://dx.doi.org/10.1002/1098-2418(200103)18:2<116::AID-RSA1001>3.0.CO;2-2
http://dx.doi.org/10.1371/journal.pone.0055957
http://arxiv.org/abs/1103.5582
http://dx.doi.org/10.1109/CVPR.2005.332
http://books.google.be/books?isbn=0471241954
http://dx.doi.org/10.1109/ICPR.1996.546886

214 BIBLIOGRAPHY

A: Statistical Mechanics and its Applications, 392(6):1459 – 1473. doi:
10.1016/j.physa.2012.11.040.

Danon, L, Díaz-Guilera, A, and Arenas, A (2006). The effect of size het-
erogeneity on community identification in complex networks. Journal of
Statistical Mechanics: Theory and Experiment, 2006(11):P11010.

Danon, L, Díaz-Guilera, A, Duch, J, and Arenas, A (2005). Com-
paring community structure identification. Journal of Statistical Me-
chanics: Theory and Experiment, 2005(09):P09008. doi: 10.1088/1742-
5468/2005/09/P09008.

De Domenico, M, Solé-Ribalta, A, Cozzo, E, Kivelä, M, Moreno, Y, et al.
(2013). Mathematical formulation of multilayer networks. Phys. Rev. X,
3:041022. doi: 10.1103/PhysRevX.3.041022.

Delvenne, JC, Schaub, M, Yaliraki, SN, and Barahona, M (2013). The sta-
bility of a graph partition: A dynamics-based framework for commu-
nity detection. In Mukherjee, A, Choudhury, M, Peruani, F, Ganguly,
N, and Mitra, B, editors, Dynamics On and Of Complex Networks, Vol-
ume 2, Modeling and Simulation in Science, Engineering and Technol-
ogy, pages 221–242. Springer New York. ISBN 978-1-4614-6728-1. doi:
10.1007/978-1-4614-6729-8_11.

Delvenne, JC, Yaliraki, SN, and Barahona, M (2010). Stability of graph
communities across time scales. Proceedings of the National Academy of
Sciences, 107(29):12755–12760. doi: 10.1073/pnas.0903215107.

Denayer, D (2012). Modélisation par rôles de grands graphes. Master’s thesis,
Institute of Information and Communication Technologies, Electronics
and Applied Mathematics, Université catholique de Louvain.

Diestel, R (2005). Graph theory. Springer, 4 edition. ISBN 978-3-642-
14278-9.

Doreian, P, Batagelj, V, and Ferligoj, A (2005). Generalized blockmodeling.
25. Cambridge University Press. ISBN 9780521840859.

Erdős, P and Rényi, A (1960). On the evolution of random graphs. In Pub-
lication of the Mathematical Institute of the Hungarian Academy of Sciences,
pages 17–61.

http://dx.doi.org/10.1016/j.physa.2012.11.040
http://dx.doi.org/10.1088/1742-5468/2005/09/P09008
http://dx.doi.org/10.1088/1742-5468/2005/09/P09008
http://dx.doi.org/10.1103/PhysRevX.3.041022
http://books.google.be/books?isbn=978-1-4614-6728-1
http://dx.doi.org/10.1007/978-1-4614-6729-8_11
http://dx.doi.org/10.1073/pnas.0903215107
http://books.google.be/books?isbn=978-3-642-14278-9
http://books.google.be/books?isbn=978-3-642-14278-9
http://books.google.be/books?isbn=9780521840859

BIBLIOGRAPHY 215

Euler, L (1741). Solutio problematis ad geometriam situs pertinentis. Com-
mentarii academiae scientiarum Petropolitanae, 8:128–140.

Evans, T, Lambiotte, R, and Panzarasa, P (2011). Community structure
and patterns of scientific collaboration in business and management.
Scientometrics, 89(1):381–396. doi: 10.1007/s11192-011-0439-1.

Everett, MG and Borgatti, SP (1994). Regular equivalence: Gen-
eral theory. The Journal of Mathematical Sociology, 19(1):29–52. doi:
10.1080/0022250X.1994.9990134.

Everett, MG and Borgatti, SP (1996). Exact colorations of
graphs and digraphs. Social Networks, 18(4):319 – 331. doi:
http://dx.doi.org/10.1016/0378-8733(95)00286-3.

Fan, Y, Li, M, Zhang, P, Wu, J, and Di, Z (2007). Accuracy and preci-
sion of methods for community identification in weighted networks.
Physica A: Statistical Mechanics and its Applications, 377(1):363 – 372. doi:
10.1016/j.physa.2006.11.036.

Farkas, I, Ábel, D, Palla, G, and Vicsek, T (2007). Weighted network mod-
ules. New Journal of Physics, 9(6):180. doi: 10.1088/1367-2630/9/6/180.

Felzenszwalb, P and Huttenlocher, D (2004). Efficient graph-based image
segmentation. International Journal of Computer Vision, 59(2):167–181. doi:
10.1023/B:VISI.0000022288.19776.77.

Fiedler, M (1973). Algebraic connectivity of graphs. Czechoslovak
Mathematical Journal, 23(98):298–305. permalink: http://dml.cz/dmlcz/
101168.

Fortunato, S (2010). Community detection in graphs. Physics Reports,
486(3-5):75–174. doi: 10.1016/j.physrep.2009.11.002.

Fortunato, S and Barthélemy, M (2007). Resolution limit in community
detection. Proceedings of the National Academy of Sciences, 104(1):36–41.
doi: 10.1073/pnas.0605965104.

Frederix, K and Barel, MV (2013). Sparse spectral clustering method based
on the incomplete cholesky decomposition. Journal of Computational and
Applied Mathematics, 237(1):145 – 161. doi: 10.1016/j.cam.2012.07.019.

Garlaschelli, D (2009). The weighted random graph model. New Journal of
Physics, 11(7):073005. doi: 10.1088/1367-2630/11/7/073005.

http://dx.doi.org/10.1007/s11192-011-0439-1
http://dx.doi.org/10.1080/0022250X.1994.9990134
http://dx.doi.org/http://dx.doi.org/10.1016/0378-8733(95)00286-3
http://dx.doi.org/10.1016/j.physa.2006.11.036
http://dx.doi.org/10.1088/1367-2630/9/6/180
http://dx.doi.org/10.1023/B:VISI.0000022288.19776.77
http://dml.cz/dmlcz/101168
http://dml.cz/dmlcz/101168
http://dx.doi.org/10.1016/j.physrep.2009.11.002
http://dx.doi.org/10.1073/pnas.0605965104
http://dx.doi.org/10.1016/j.cam.2012.07.019
http://dx.doi.org/10.1088/1367-2630/11/7/073005

216 BIBLIOGRAPHY

Geuzaine, C and Remacle, J (2009). Gmsh: A 3-D finite element mesh
generator with built-in pre- and post-processing facilities. International
Journal for Numerical Methods in Engineering, 79(11):1309–1331. doi:
10.1002/nme.2579.

Girvan, M and Newman, MEJ (2002). Community structure in social
and biological networks. Proceedings of the National Academy of Sciences,
99(12):7821–7826. doi: 10.1073/pnas.122653799.

González, MC and Barabási, AL (2007). Complex networks: From data to
models. Nature Physics, 3(4):224–225. doi: 10.1038/nphys581.

Gonzalez, MC, Hidalgo, CA, and Barabasi, AL (2008). Understanding
individual human mobility patterns. Nature, 453(7196):479–482. doi:
10.1038/nature06958.

Good, BH, de Montjoye, YA, and Clauset, A (2010). Performance of mod-
ularity maximization in practical contexts. Phys. Rev. E, 81:046106. doi:
10.1103/PhysRevE.81.046106.

Granovetter, M (1973). The Strength of Weak Ties. American Journal of
Sociology, 78(6):1360–1380. doi: 10.1086/225469.

Granovetter, M (1983). The strength of weak ties: A network theory revis-
ited. Sociological Theory, 1:201–233. doi: 10.2307/202051.

Guimerà, R, Mossa, S, Turtschi, A, and Amaral, LAN (2005). The world-
wide air transportation network: Anomalous centrality, community
structure, and cities’ global roles. Proceedings of the National Academy
of Sciences, 102(22):7794–7799. doi: 10.1073/pnas.0407994102.

Guimera, R and Amaral, LAN (2005). Functional cartography of com-
plex metabolic networks. Nature, 433(7028):895–900. doi: 10.1038/na-
ture03288.

Guimerà, R, Sales-Pardo, M, and Amaral, LAN (2004). Modularity from
fluctuations in random graphs and complex networks. Phys. Rev. E,
70:025101. doi: 10.1103/PhysRevE.70.025101.

Guimerà, R, Sales-Pardo, M, and Amaral, LAN (2007). Module identifi-
cation in bipartite and directed networks. Phys. Rev. E, 76:036102. doi:
10.1103/PhysRevE.76.036102.

http://dx.doi.org/10.1002/nme.2579
http://dx.doi.org/10.1073/pnas.122653799
http://dx.doi.org/10.1038/nphys581
http://dx.doi.org/10.1038/nature06958
http://dx.doi.org/10.1103/PhysRevE.81.046106
http://dx.doi.org/10.1086/225469
http://dx.doi.org/10.2307/202051
http://dx.doi.org/10.1073/pnas.0407994102
http://dx.doi.org/10.1038/nature03288
http://dx.doi.org/10.1038/nature03288
http://dx.doi.org/10.1103/PhysRevE.70.025101
http://dx.doi.org/10.1103/PhysRevE.76.036102

BIBLIOGRAPHY 217

Guimerà, R, Stouffer, DB, Sales-Pardo, M, Leicht, EA, Newman, MEJ,
et al. (2010). Origin of compartmentalization in food webs. Ecology,
91(10):2941–2951. doi: 10.1890/09-1175.1.

Hagen, L and Kahng, A (1992). New spectral methods for ratio cut parti-
tioning and clustering. IEEE Transactions on Computer-Aided Design of In-
tegrated Circuits and Systems, 11(9):1074–1085. doi: 10.1109/43.159993.

Halevy, A, Norvig, P, and Pereira, F (2009). The unreasonable effectiveness
of data. Intelligent Systems, IEEE, 24(2):8–12. doi: 10.1109/MIS.2009.36.

Haynes, J and Perisic, I (2009). Mapping search relevance to so-
cial networks. In Proceedings of the 3rd Workshop on Social Network
Mining and Analysis, pages 1–7. ACM, New York, NY, USA. doi:
10.1145/1731011.1731013.

Ho, J, Lee, KC, Yang, MH, and Kriegman, D (2004). Visual tracking using
learned linear subspaces. In Proceedings of IEEE Computer Society Confer-
ence on Computer Vision and Pattern Recognition (CVPR), volume 1, pages
I–782–I–789 Vol.1. doi: 10.1109/CVPR.2004.1315111.

Holme, P, Kim, BJ, Yoon, CN, and Han, SK (2002). Attack vulnerabil-
ity of complex networks. Phys. Rev. E, 65:056109. doi: 10.1103/Phys-
RevE.65.056109.

Horn, RA and Johnson, CR (1990). Matrix Analysis. Cambridge University
Press. ISBN 0521386322.

Hu, D, Ronhovde, P, and Nussinov, Z (2012). Replica inference approach
to unsupervised multiscale image segmentation. Phys. Rev. E, 85:016101.
doi: 10.1103/PhysRevE.85.016101.

Hu, Y, Chen, H, Zhang, P, Li, M, Di, Z, et al. (2008). Comparative definition
of community and corresponding identifying algorithm. Phys. Rev. E,
78:026121. doi: 10.1103/PhysRevE.78.026121.

Huffman, D (1952). A method for the construction of minimum-
redundancy codes. Proceedings of the IRE, 40(9):1098–1101. doi:
10.1109/JRPROC.1952.273898.

Janson, S, Luczak, T, and Kolchin, V (2000). Random graphs. Cambridge
Univ Press. ISBN 978-0-471-17541-4.

http://dx.doi.org/10.1890/09-1175.1
http://dx.doi.org/10.1109/43.159993
http://dx.doi.org/10.1109/MIS.2009.36
http://dx.doi.org/10.1145/1731011.1731013
http://dx.doi.org/10.1109/CVPR.2004.1315111
http://dx.doi.org/10.1103/PhysRevE.65.056109
http://dx.doi.org/10.1103/PhysRevE.65.056109
http://books.google.be/books?isbn=0521386322
http://dx.doi.org/10.1103/PhysRevE.85.016101
http://dx.doi.org/10.1103/PhysRevE.78.026121
http://dx.doi.org/10.1109/JRPROC.1952.273898
http://books.google.be/books?isbn=978-0-471-17541-4

218 BIBLIOGRAPHY

Jeong, H, Tombor, B, Albert, R, Oltvai, ZN, and Barabasi, AL (2000). The
large-scale organization of metabolic networks. Nature, 407(6804):651–
654. doi: 10.1038/35036627.

Kang, U, Tsourakakis, C, Appel, AP, Faloutsos, C, and Leskovec, J (2008).
HADI: Fast diameter estimation and mining in massive graphs with Hadoop.
Carnegie Mellon University, School of Computer Science, Machine
Learning Department.

Kashtan, N and Alon, U (2005). Spontaneous evolution of mod-
ularity and network motifs. Proceedings of the National Academy
of Sciences of the United States of America, 102(39):13773–8. doi:
10.1073/pnas.0503610102.

Kass, M, Witkin, A, and Terzopoulos, D (1988). Snakes: Active con-
tour models. International Journal of Computer Vision, 1(4):321–331. doi:
10.1007/BF00133570.

Kim, J, Krapivsky, PL, Kahng, B, and Redner, S (2002). Infinite-order per-
colation and giant fluctuations in a protein interaction network. Physical
Review E, 66:055101+. doi: 10.1103/physreve.66.055101.

Kirkpatrick, S, Gelatt, CD, and Vecchi, MP (1983). Optimization by
simulated annealing. Science, 220(4598):671–680. doi: 10.1126/sci-
ence.220.4598.671.

Kivelä, M, Arenas, A, Barthelemy, M, Gleeson, JP, Moreno, Y, et al. (2014).
Multilayer networks. Journal of Complex Networks. doi: 10.1093/com-
net/cnu016.

Klein, D (2010). Centrality measure in graphs. Journal of Mathematical
Chemistry, 47(4):1209–1223. doi: 10.1007/s10910-009-9635-0.

Kleinberg, JM (1999). Authoritative sources in a hyperlinked environment.
Journal of the ACM, 46(5):604–632. doi: 10.1145/324133.324140.

Kolaczyk, ED (2009). Statistical Analysis of Network Data. Network,
66(2):123–152. doi: 10.1007/978-0-387-88146-1.

Krings, G, Dabin, D, and Blondel, V (2011). Communities in a crime
network. In NetSci2011.

http://dx.doi.org/10.1038/35036627
http://dx.doi.org/10.1073/pnas.0503610102
http://dx.doi.org/10.1007/BF00133570
http://dx.doi.org/10.1103/physreve.66.055101
http://dx.doi.org/10.1126/science.220.4598.671
http://dx.doi.org/10.1126/science.220.4598.671
http://dx.doi.org/10.1093/comnet/cnu016
http://dx.doi.org/10.1093/comnet/cnu016
http://dx.doi.org/10.1007/s10910-009-9635-0
http://dx.doi.org/10.1145/324133.324140
http://dx.doi.org/10.1007/978-0-387-88146-1

BIBLIOGRAPHY 219

Kumpula, JM, Kivelä, M, Kaski, K, and Saramäki, J (2008). Sequential
algorithm for fast clique percolation. Phys. Rev. E, 78:026109. doi:
10.1103/PhysRevE.78.026109.

Lambiotte, R, Delvenne, JC, and Barahona, M (2008). Laplacian Dy-
namics and Multiscale Modular Structure in Networks. ArXiv e-prints.
arXiv:0812.1770.

Lancichinetti, A and Fortunato, S (2009a). Benchmarks for testing com-
munity detection algorithms on directed and weighted graphs with
overlapping communities. Phys. Rev. E, 80:016118. doi: 10.1103/Phys-
RevE.80.016118.

Lancichinetti, A and Fortunato, S (2009b). Community detection al-
gorithms: A comparative analysis. Phys. Rev. E, 80:056117. doi:
10.1103/PhysRevE.80.056117.

Lancichinetti, A, Fortunato, S, and Radicchi, F (2008). Benchmark graphs
for testing community detection algorithms. Phys. Rev. E, 78:046110.
doi: 10.1103/PhysRevE.78.046110.

Lancichinetti, A, Radicchi, F, Ramasco, JJ, and Fortunato, S (2011).
Finding statistically significant communities in networks. PLoS ONE,
6(4):e18961. doi: 10.1371/journal.pone.0018961.

Lazer, D, Pentland, A, Adamic, L, Aral, S, Barabasi, AL, et al. (2009). Com-
putational Social Science. Science, 323(5915):721–723. doi: 10.1126/sci-
ence.1167742.

Leicht, EA, Holme, P, and Newman, MEJ (2006). Vertex similarity in net-
works. Phys. Rev. E, 73:026120. doi: 10.1103/PhysRevE.73.026120.

Leicht, EA and Newman, MEJ (2008). Community structure in di-
rected networks. Phys. Rev. Lett., 100:118703. doi: 10.1103/Phys-
RevLett.100.118703.

Leskovec, J, Adamic, LA, and Huberman, BA (2006). The dynamics of
viral marketing. In Proceedings of the 7th ACM conference on Electronic
commerce, pages 228–237. ACM Press. doi: 10.1145/1134707.1134732.

Liu, Z and Hu, B (2005). Epidemic spreading in community networks.
Europhysics Letters, 72(2):315–321. doi: 10.1209/epl/i2004-10550-5.

http://dx.doi.org/10.1103/PhysRevE.78.026109
http://arxiv.org/abs/0812.1770
http://dx.doi.org/10.1103/PhysRevE.80.016118
http://dx.doi.org/10.1103/PhysRevE.80.016118
http://dx.doi.org/10.1103/PhysRevE.80.056117
http://dx.doi.org/10.1103/PhysRevE.78.046110
http://dx.doi.org/10.1371/journal.pone.0018961
http://dx.doi.org/10.1126/science.1167742
http://dx.doi.org/10.1126/science.1167742
http://dx.doi.org/10.1103/PhysRevE.73.026120
http://dx.doi.org/10.1103/PhysRevLett.100.118703
http://dx.doi.org/10.1103/PhysRevLett.100.118703
http://dx.doi.org/10.1145/1134707.1134732
http://dx.doi.org/10.1209/epl/i2004-10550-5

220 BIBLIOGRAPHY

Lorrain, F and White, HC (1971). Structural equivalence of individuals in
social networks. The Journal of Mathematical Sociology, 1(1):49–80. doi:
10.1080/0022250X.1971.9989788.

Luczak, T (1989). Sparse random graphs with a given degree sequence. In
Proceedings of the Symposium on Random Graphs, Poznan, pages 165–182.

Luczkovich, JJ, Borgatti, SP, Johnson, JC, and Everett, MG (2003). Defin-
ing and measuring trophic role similarity in food webs using regu-
lar equivalence. Journal of Theoretical Biology, 220(3):303 – 321. doi:
http://dx.doi.org/10.1006/jtbi.2003.3147.

Lupu, Y and Traag, VA (2012). Trading communities, the networked struc-
ture of international relations, and the kantian peace. Journal of Conflict
Resolution. doi: 10.1177/0022002712453708.

MacKay, DJ (2003). Information theory, inference and learning algorithms.
Cambridge university press. ISBN 978-0521642989.

Maggio, DE and Cavallaro, DA (2011). Video Tracking: Theory and Practice.
Wiley Publishing, 1st edition. ISBN 978-0-470-74964-7.

Martin, D, Fowlkes, C, Tal, D, and Malik, J (2001). A database of human
segmented natural images and its application to evaluating segmen-
tation algorithms and measuring ecological statistics. In Proceedings of
IEEE International Conference on Computer Vision (ICCV), volume 2, pages
416–423. doi: 10.1109/ICCV.2001.937655.

Meilă, M (2007). Comparing clusterings—an information based dis-
tance. Journal of Multivariate Analysis, 98(5):873 – 895. doi:
10.1016/j.jmva.2006.11.013.

Milenković, T, Filippis, I, Lappe, M, and Pržulj, N (2009). Optimized
null model for protein structure networks. PLoS ONE, 4(6):e5967. doi:
10.1371/journal.pone.0005967.

Milo, R, Shen-Orr, S, Itzkovitz, S, Kashtan, N, Chklovskii, D, et al. (2002).
Network motifs: Simple building blocks of complex networks. Science,
298(5594):824–827. doi: 10.1126/science.298.5594.824.

Molloy, M and Reed, B (1995). A critical point for random graphs with a
given degree sequence. Random Structures & Algorithms, 6(2-3):161–180.
doi: 10.1002/rsa.3240060204.

http://dx.doi.org/10.1080/0022250X.1971.9989788
http://dx.doi.org/http://dx.doi.org/10.1006/jtbi.2003.3147
http://dx.doi.org/10.1177/0022002712453708
http://books.google.be/books?isbn=978-0521642989
http://books.google.be/books?isbn=978-0-470-74964-7
http://dx.doi.org/10.1109/ICCV.2001.937655
http://dx.doi.org/10.1016/j.jmva.2006.11.013
http://dx.doi.org/10.1371/journal.pone.0005967
http://dx.doi.org/10.1126/science.298.5594.824
http://dx.doi.org/10.1002/rsa.3240060204

BIBLIOGRAPHY 221

Mondragón, RJ (2014). Network null-model based on maximal entropy
and the rich-club. Journal of Complex Networks, 2(3):288–298. doi:
10.1093/comnet/cnu006.

de Montgolfier, F, Soto, M, and Viennot, L (2011). Asymptotic modularity
of some graph classes. In Proceedings of the 22Nd International Confer-
ence on Algorithms and Computation, pages 435–444. Springer-Verlag. doi:
10.1007/978-3-642-25591-5_45.

Mucha, PJ, Richardson, T, Macon, K, Porter, MA, and Onnela, JP (2010).
Community structure in time-dependent, multiscale, and multiplex net-
works. Science, 328(5980):876–878. doi: 10.1126/science.1184819.

Newman, M (2003). The structure and function of complex networks.
SIAM Review, 45(2):167–256. doi: 10.1137/S003614450342480.

Newman, M (2010). Networks: An Introduction. Oxford University Press,
Inc., New York, NY, USA. ISBN 0199206651.

Newman, MEJ (2001). The structure of scientific collaboration networks.
Proceedings of the National Academy of Sciences, 98(2):404–409. doi:
10.1073/pnas.98.2.404.

Newman, MEJ (2004a). Analysis of weighted networks. Phys. Rev. E,
70:056131. doi: 10.1103/PhysRevE.70.056131.

Newman, MEJ (2004b). Fast algorithm for detecting community structure
in networks. Phys. Rev. E, 69:066133. doi: 10.1103/PhysRevE.69.066133.

Newman, MEJ (2006). Finding community structure in networks using the
eigenvectors of matrices. Phys. Rev. E, 74:036104. doi: 10.1103/Phys-
RevE.74.036104.

Newman, MEJ and Girvan, M (2004). Finding and evaluating community
structure in networks. Phys. Rev. E, 69:026113. doi: 10.1103/Phys-
RevE.69.026113.

Newman, MEJ, Strogatz, SH, and Watts, DJ (2001). Random graphs
with arbitrary degree distributions and their applications. Phys. Rev.
E, 64:026118. doi: 10.1103/PhysRevE.64.026118.

Nowak, MA (2006). Evolutionary dynamics: exploring the equations of life.
Harvard University Press. ISBN 0674023382.

http://dx.doi.org/10.1093/comnet/cnu006
http://dx.doi.org/10.1007/978-3-642-25591-5_45
http://dx.doi.org/10.1126/science.1184819
http://dx.doi.org/10.1137/S003614450342480
http://books.google.be/books?isbn=0199206651
http://dx.doi.org/10.1073/pnas.98.2.404
http://dx.doi.org/10.1103/PhysRevE.70.056131
http://dx.doi.org/10.1103/PhysRevE.69.066133
http://dx.doi.org/10.1103/PhysRevE.74.036104
http://dx.doi.org/10.1103/PhysRevE.74.036104
http://dx.doi.org/10.1103/PhysRevE.69.026113
http://dx.doi.org/10.1103/PhysRevE.69.026113
http://dx.doi.org/10.1103/PhysRevE.64.026118
http://books.google.be/books?isbn=0674023382

222 BIBLIOGRAPHY

Olszewska, JI (2009). Unified framework for multi-feature active contour. Ph.D.
thesis, Universite catholique de Louvain, Ecole polytechnique.

Page, L, Brin, S, Motwani, R, and Winograd, T (1999). The pagerank
citation ranking: Bringing order to the web. Technical Report 1999-66,
Stanford InfoLab.

Palla, G, Derényi, I, Farkas, I, and Vicsek, T (2005). Uncovering the over-
lapping community structure of complex networks in nature and soci-
ety. Nature, 435(7043):814–818. doi: 10.1038/nature03607.

Perry, PO and Wolfe, PJ (2012). Null models for network data. ArXiv
e-prints. arXiv:math.ST/1201.5871.

Porter, MA, Onnela, JP, and Mucha, PJ (2009). Communities in networks.
Notices of the AMS, 56(9):1082–1097. http://www.ams.org/notices/
200909/rtx090901082p.pdf.

Radicchi, F, Castellano, C, Cecconi, F, Loreto, V, and Parisi, D (2004).
Defining and identifying communities in networks. Proceedings of the
National Academy of Sciences of the United States of America, 101(9):2658–
2663. doi: 10.1073/pnas.0400054101.

Raghavan, UN, Albert, R, and Kumara, S (2007). Near linear time algo-
rithm to detect community structures in large-scale networks. Phys. Rev.
E, 76:036106. doi: 10.1103/PhysRevE.76.036106.

Rath, B (2010). Asymptotic behavior of random graphs evolving in time. Ph.D.
thesis, Institute of Mathematics, Budapest University of Technology and
Economics.

Ratti, C, Sobolevsky, S, Calabrese, F, Andris, C, Reades, J, et al. (2010).
Redrawing the Map of Great Britain from a Network of Human Inter-
actions. PLoS ONE, 5(12). doi: 10.1371/journal.pone.0014248.

Reichardt, J and Bornholdt, S (2006). Statistical mechanics of community
detection. Phys. Rev. E, 74:016110. doi: 10.1103/PhysRevE.74.016110.

Reichardt, J and White, DR (2007). Role models for complex networks. The
European Physical Journal B, 60(2):217–224. doi: 10.1140/epjb/e2007-
00340-y.

Richardson, T, Mucha, PJ, and Porter, MA (2009). Spectral tripartitioning
of networks. Phys. Rev. E, 80:036111. doi: 10.1103/PhysRevE.80.036111.

http://dx.doi.org/10.1038/nature03607
http://arxiv.org/abs/math.ST/1201.5871
http://www.ams.org/notices/200909/rtx090901082p.pdf
http://www.ams.org/notices/200909/rtx090901082p.pdf
http://dx.doi.org/10.1073/pnas.0400054101
http://dx.doi.org/10.1103/PhysRevE.76.036106
http://dx.doi.org/10.1371/journal.pone.0014248
http://dx.doi.org/10.1103/PhysRevE.74.016110
http://dx.doi.org/10.1140/epjb/e2007-00340-y
http://dx.doi.org/10.1140/epjb/e2007-00340-y
http://dx.doi.org/10.1103/PhysRevE.80.036111

BIBLIOGRAPHY 223

Ronhovde, P and Nussinov, Z (2009). Multiresolution community detec-
tion for megascale networks by information-based replica correlations.
Phys. Rev. E, 80:016109. doi: 10.1103/PhysRevE.80.016109.

Ronhovde, P and Nussinov, Z (2010). Local resolution-limit-free potts
model for community detection. Phys. Rev. E, 81:046114. doi:
10.1103/PhysRevE.81.046114.

Rosvall, M and Bergstrom, CT (2008). Maps of random walks on com-
plex networks reveal community structure. Proceedings of the National
Academy of Sciences, 105(4):1118–1123. doi: 10.1073/pnas.0706851105.

Rosvall, M and Bergstrom, CT (2010). Mapping change in large networks.
PLoS ONE, 5(1):e8694. doi: 10.1371/journal.pone.0008694.

Rosvall, M and Bergstrom, CT (2011). Multilevel compression of random
walks on networks reveals hierarchical organization in large integrated
systems. PLoS ONE, 6(4):e18209. doi: 10.1371/journal.pone.0018209.

Sapir, E (1921). Language: an introduction to the study of speech. New York:
Harcourt, Brace and company. ISBN 1108063780.

Sarlette, A, Tuna, SE, Blondel, V, and Sepulchre, R (2008). Global synchro-
nization on the circle. In Proceedings of the 17th IFAC World Congress.

Schaub, MT, Delvenne, JC, Yaliraki, SN, and Barahona, M (2012). Markov
dynamics as a zooming lens for multiscale community detection:
Non clique-like communities and the field-of-view limit. PLoS ONE,
7(2):e32210. doi: 10.1371/journal.pone.0032210.

Schaub, MT, Lambiotte, R, and Barahona, M (2012). Encoding dynamics
for multiscale community detection: Markov time sweeping for the map
equation. Phys. Rev. E, 86:026112. doi: 10.1103/PhysRevE.86.026112.

Schuetz, P and Caflisch, A (2008). Efficient modularity optimization by
multistep greedy algorithm and vertex mover refinement. Phys. Rev. E,
77:046112. doi: 10.1103/PhysRevE.77.046112.

Scott, J (2000). Social Network Analysis: A Handbook. Sage Publications.
ISBN 0761963391.

Shannon, CE (1948). A mathematical theory of communication.
Bell System Technical Journal, 27(3):379–423. doi: 10.1002/j.1538-
7305.1948.tb01338.x.

http://dx.doi.org/10.1103/PhysRevE.80.016109
http://dx.doi.org/10.1103/PhysRevE.81.046114
http://dx.doi.org/10.1073/pnas.0706851105
http://dx.doi.org/10.1371/journal.pone.0008694
http://dx.doi.org/10.1371/journal.pone.0018209
http://books.google.be/books?isbn=1108063780
http://dx.doi.org/10.1371/journal.pone.0032210
http://dx.doi.org/10.1103/PhysRevE.86.026112
http://dx.doi.org/10.1103/PhysRevE.77.046112
http://books.google.be/books?isbn=0761963391
http://dx.doi.org/10.1002/j.1538-7305.1948.tb01338.x
http://dx.doi.org/10.1002/j.1538-7305.1948.tb01338.x

224 BIBLIOGRAPHY

Shaw, L and Tunc, I (2012). Epidemic spread in adaptive social networks
with community structure. In Bio-Inspired Models of Network, Informa-
tion, and Computing Systems, volume 87, pages 519–520. Springer. doi:
10.1007/978-3-642-32615-8_49.

Shi, J and Malik, J (2000). Normalized cuts and image segmentation.
IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI),
22(8):888–905. doi: 10.1109/34.868688.

Simon, HA and Ando, A (1961). Aggregation of variables in dynamic
systems. Econometrica, 29(2):111–138.

Skillicorn, D and Talia, D (2012). Mining large data sets on grids: Issues
and prospects. Computing and Informatics, 21:347–362. http://www.cai.
sk/ojs/index.php/cai/article/viewArticle/488.

Staudt, C and Meyerhenke, H (2013). Engineering high-performance com-
munity detection heuristics for massive graphs. In Parallel Process-
ing (ICPP), 2013 42nd International Conference on, pages 180–189. doi:
10.1109/ICPP.2013.27.

Stewart, G (1973). Error and perturbation bounds for subspaces associated
with certain eigenvalue problems. SIAM Review, 15(4):727–764. doi:
10.1137/1015095.

Sundaramoorthi, G, Mennucci, A, Soatto, S, and Yezzi, A (2009). Tracking
deforming objects by filtering and prediction in the space of curves.
In Proceedings of the 48th IEEE Conference on Decision and Control (CDC),
pages 2395–2401. doi: 10.1109/CDC.2009.5400786.

Thomas, CJ, Lambrechts, J, Wolanski, E, Traag, VA, Blondel, VD, et al.
(2014). Numerical modelling and graph theory tools to study ecological
connectivity in the great barrier reef. Ecological Modelling, 272(0):160 –
174. doi: 10.1016/j.ecolmodel.2013.10.002.

Tibély, G and Kertész, J (2008). On the equivalence of the label propagation
method of community detection and a potts model approach. Physica
A: Statistical Mechanics and its Applications, 387(19–20):4982 – 4984. doi:
10.1016/j.physa.2008.04.024.

Tizzoni, M, Bajardi, P, Decuyper, A, King, GKK, Schneider, CM, et al.
(2013). On the use of human mobility proxy for the modeling of epi-
demics. ArXiv e-prints. arXiv:1309.7272.

http://dx.doi.org/10.1007/978-3-642-32615-8_49
http://dx.doi.org/10.1109/34.868688
http://www.cai.sk/ojs/index.php/cai/article/viewArticle/488
http://www.cai.sk/ojs/index.php/cai/article/viewArticle/488
http://dx.doi.org/10.1109/ICPP.2013.27
http://dx.doi.org/10.1137/1015095
http://dx.doi.org/10.1109/CDC.2009.5400786
http://dx.doi.org/10.1016/j.ecolmodel.2013.10.002
http://dx.doi.org/10.1016/j.physa.2008.04.024
http://arxiv.org/abs/1309.7272

BIBLIOGRAPHY 225

Torralba, A, Fergus, R, and Freeman, W (2008). 80 million tiny im-
ages: A large data set for nonparametric object and scene recognition.
IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI),
30(11):1958–1970. doi: 10.1109/TPAMI.2008.128.

Toutanova, K, Klein, D, Manning, CD, and Singer, Y (2003). Feature-rich
part-of-speech tagging with a cyclic dependency network. In Proceed-
ings of the Conference of the North American Chapter of the Association for
Computational Linguistics on Human Language Technology, pages 173–180.
Association for Computational Linguistics, Stroudsburg, PA, USA. doi:
10.3115/1073445.1073478.

Traag, V (2013). Groups and Reputation in Social Networks Graph Theoretic
Algorithms and Dynamical Models. Ph.D. thesis, Institute of Information
and Communication Technologies, Electronics and Applied Mathemat-
ics, Université catholique de Louvain. http://dial.academielouvain.
be/handle/boreal:134615.

Traag, V, Krings, G, and Van Dooren, P (2013). Significant scales in com-
munity structure. Scientific Reports, 3:2930. doi: 10.1038/srep02930.

Traag, VA, Browet, A, Calabrese, F, and Morlot, F (2011). Social event de-
tection in massive mobile phone data using probabilistic location infer-
ence. In IEEE 3rd International Conference on Social Computing (socialcom),
pages 625–628. doi: 10.1109/PASSAT/SocialCom.2011.133.

Traag, VA, Van Dooren, P, and De Leenheer, P (2013). Dynamical mod-
els explaining social balance and evolution of cooperation. PLoS ONE,
8(4):e60063. doi: 10.1371/journal.pone.0060063.

Traag, VA, Van Dooren, P, and Nesterov, Y (2011). Narrow scope for
resolution-limit-free community detection. Phys. Rev. E, 84:016114. doi:
10.1103/PhysRevE.84.016114.

Ulanowicz, RE and DeAngelis, DL (1999). Network analysis of trophic
dynamics in south florida ecosystems. In Proceedings of the South Florida
Restoration Science Forum, pages 114–115.

Wakita, K and Tsurumi, T (2007). Finding community structure in mega-
scale social networks: [extended abstract]. In Proceedings of the 16th
International Conference on World Wide Web, pages 1275–1276. ACM, New
York, NY, USA. doi: 10.1145/1242572.1242805.

http://dx.doi.org/10.1109/TPAMI.2008.128
http://dx.doi.org/10.3115/1073445.1073478
http://dial.academielouvain.be/handle/boreal:134615
http://dial.academielouvain.be/handle/boreal:134615
http://dx.doi.org/10.1038/srep02930
http://dx.doi.org/10.1109/PASSAT/SocialCom.2011.133
http://dx.doi.org/10.1371/journal.pone.0060063
http://dx.doi.org/10.1103/PhysRevE.84.016114
http://dx.doi.org/10.1145/1242572.1242805

226 BIBLIOGRAPHY

Wang, G, Shen, Y, and Ouyang, M (2008). A vector partitioning
approach to detecting community structure in complex networks.
Computers & Mathematics with Applications, 55(12):2746 – 2752. doi:
10.1016/j.camwa.2007.10.028.

Wang, S and Siskind, J (2001). Image segmentation with minimum mean
cut. In IEEE International Conference on Computer Vision (ICCV), volume 1,
pages 517–524 vol.1. doi: 10.1109/ICCV.2001.937560.

Wasserman, S and Faust, K (1994). Social Network Analysis: Methods and
Applications. Cambridge University Press. ISBN 0521387078.

Watts, DJ and Strogatz, SH (1998). Collective dynamics of ‘small-world’
networks. Nature, 393(6684):440–442. doi: 10.1038/30918.

Weir, MD, Hass, J, and Thomas, GB (2013). Thomas’ calculus. Pearson
Education. ISBN 9780321878960.

Werman, M, Peleg, S, and Rosenfeld, A (1985). A distance metric for multi-
dimensional histograms. Computer Vision, Graphics, and Image Processing,
32(3):328 – 336. doi: 10.1016/0734-189X(85)90055-6.

West, DB (2001). Introduction to Graph Theory. Dover books on advanced
mathematics. Prentice Hall. ISBN 0130144002.

White, DR and Reitz, KP (1983). Graph and semigroup homomor-
phisms on networks of relations. Social Networks, 5(2):193 – 234. doi:
10.1016/0378-8733(83)90025-4.

Wu, X and Liu, Z (2008). How community structure influences epidemic
spread in social networks. Physica A: Statistical Mechanics and its Appli-
cations, 387(2-3):623–630. doi: 10.1016/j.physa.2007.09.039.

Wu, Z and Leahy, R (1993). An optimal graph theoretic approach to
data clustering: theory and its application to image segmentation.
IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI),
15(11):1101–1113. doi: 10.1109/34.244673.

Zaslavsky, T (1982). Signed graphs. Discrete Applied Mathematics, 4(1):47–
74. doi: 10.1016/0166-218x(82)90033-6.

http://dx.doi.org/10.1016/j.camwa.2007.10.028
http://dx.doi.org/10.1109/ICCV.2001.937560
http://books.google.be/books?isbn=0521387078
http://dx.doi.org/10.1038/30918
http://books.google.be/books?isbn=9780321878960
http://dx.doi.org/10.1016/0734-189X(85)90055-6
http://books.google.be/books?isbn=0130144002
http://dx.doi.org/10.1016/0378-8733(83)90025-4
http://dx.doi.org/10.1016/j.physa.2007.09.039
http://dx.doi.org/10.1109/34.244673
http://dx.doi.org/10.1016/0166-218x(82)90033-6

	Acknowledgment
	Contents
	Symbols and Notations
	Introduction
	Elements of Graph Theory
	Fundamentals
	Graph structures
	Random graphs
	Graph partitioning

	Community detection
	Communities in networks
	Quality functions
	Reichardt & Bornholdt: energy of a partition
	Newman & Girvan: Modularity
	Resolution limit free models
	The Map equation
	Surprise
	Summary

	Algorithms for Community Detection
	Spectral optimization
	Simulated Annealing
	Newman
	Schuetz & Caflisch
	Label propagation
	Louvain Method
	Infomap

	Fast community extraction
	Definition of communities
	Positive correction
	Storage of communities
	Maximal correction
	Convergence
	Concluding remarks

	Performance of algorithms and applications
	LFR benchmark model
	Weighted networks
	Unweighted networks
	Analysis of the probability parameter

	Image Processing
	Picture graph
	Windowed configuration null model
	Video tracking and 3D Segmentation
	Boundary of inclusion in microstructure

	Extraction of role structure
	Role model in network
	Quality function: Reichardt & White
	Pairwise node similarity measures
	Blondel et al.
	Cooper & Barahona
	Leicht, Holme & Newman

	Neighborhood patterns based similarity
	Low-rank similarity approximation

	Applications to role extraction problems
	Benchmark graphs
	Erdos-Rényi graphs
	Guimera et al. model
	LFR model

	Florida bay food web
	Great Barrier Reef network
	Part-of-speech tagging

	Conclusion
	Bibliography

