Contents

Preface

0 Introduction

1 The Laplacian
 1.1 Laplace and Poisson equations
 1.2 Mean value property
 1.3 Quantitative maximum principle

2 Poisson equation
 2.1 Finite measures
 2.2 Distributional solutions
 2.3 Superharmonic functions

3 Integrable versus measure data
 3.1 Linear Dirichlet problem
 3.2 Nonlinear Dirichlet problem

4 Variational approach
 4.1 Sobolev spaces
 4.2 Minimizers and the Euler–Lagrange equation
 4.3 Thomas–Fermi energy functional

5 Linear regularity theory
 5.1 Embedding in Sobolev spaces
 5.2 Weak Lebesgue functions
 5.3 Critical estimates
 5.4 Compactness in Sobolev spaces

6 Comparison tools
 6.1 Weak maximum principle
 6.2 Variants of Kato’s inequality
 6.3 Localization properties
 6.4 Inverse maximum principle

Preface

0 Introduction

1 The Laplacian
 1.1 Laplace and Poisson equations
 1.2 Mean value property
 1.3 Quantitative maximum principle

2 Poisson equation
 2.1 Finite measures
 2.2 Distributional solutions
 2.3 Superharmonic functions

3 Integrable versus measure data
 3.1 Linear Dirichlet problem
 3.2 Nonlinear Dirichlet problem

4 Variational approach
 4.1 Sobolev spaces
 4.2 Minimizers and the Euler–Lagrange equation
 4.3 Thomas–Fermi energy functional

5 Linear regularity theory
 5.1 Embedding in Sobolev spaces
 5.2 Weak Lebesgue functions
 5.3 Critical estimates
 5.4 Compactness in Sobolev spaces

6 Comparison tools
 6.1 Weak maximum principle
 6.2 Variants of Kato’s inequality
 6.3 Localization properties
 6.4 Inverse maximum principle
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Balayage</td>
<td>111</td>
</tr>
<tr>
<td>7.1</td>
<td>Weak normal derivative</td>
<td>111</td>
</tr>
<tr>
<td>7.2</td>
<td>Finite charge up to the boundary</td>
<td>117</td>
</tr>
<tr>
<td>8</td>
<td>Precise representative</td>
<td>123</td>
</tr>
<tr>
<td>8.1</td>
<td>Lebesgue’s differentiation theorem</td>
<td>123</td>
</tr>
<tr>
<td>8.2</td>
<td>Sobolev functions</td>
<td>128</td>
</tr>
<tr>
<td>8.3</td>
<td>Potentials</td>
<td>131</td>
</tr>
<tr>
<td>8.4</td>
<td>Kato’s inequality revisited</td>
<td>134</td>
</tr>
<tr>
<td>9</td>
<td>Maximal inequalities</td>
<td>139</td>
</tr>
<tr>
<td>9.1</td>
<td>Integral estimate</td>
<td>139</td>
</tr>
<tr>
<td>9.2</td>
<td>Energy estimate</td>
<td>143</td>
</tr>
<tr>
<td>9.3</td>
<td>Total charge estimate</td>
<td>150</td>
</tr>
<tr>
<td>10</td>
<td>Sobolev and Hausdorff capacities</td>
<td>155</td>
</tr>
<tr>
<td>10.1</td>
<td>Comparison properties</td>
<td>155</td>
</tr>
<tr>
<td>10.2</td>
<td>Estimating the Sobolev capacity</td>
<td>156</td>
</tr>
<tr>
<td>10.3</td>
<td>Estimating the Hausdorff content</td>
<td>162</td>
</tr>
<tr>
<td>11</td>
<td>Removable singularities</td>
<td>171</td>
</tr>
<tr>
<td>11.1</td>
<td>Schwarz’s principle</td>
<td>171</td>
</tr>
<tr>
<td>11.2</td>
<td>Polar sets of second order</td>
<td>175</td>
</tr>
<tr>
<td>11.3</td>
<td>Carleson’s condition</td>
<td>176</td>
</tr>
<tr>
<td>12</td>
<td>Obstacle problems</td>
<td>181</td>
</tr>
<tr>
<td>12.1</td>
<td>Comparison between capacities</td>
<td>181</td>
</tr>
<tr>
<td>12.2</td>
<td>Perron–Remak method</td>
<td>188</td>
</tr>
<tr>
<td>12.3</td>
<td>Total charge and energy minimizations</td>
<td>195</td>
</tr>
<tr>
<td>13</td>
<td>Families of solutions</td>
<td>205</td>
</tr>
<tr>
<td>13.1</td>
<td>Bounded functions</td>
<td>205</td>
</tr>
<tr>
<td>13.2</td>
<td>Lebesgue integrable classes</td>
<td>207</td>
</tr>
<tr>
<td>13.3</td>
<td>Hölder-continuous solutions</td>
<td>209</td>
</tr>
<tr>
<td>14</td>
<td>Strong approximation of measures</td>
<td>215</td>
</tr>
<tr>
<td>14.1</td>
<td>Capacitary and density bounds</td>
<td>215</td>
</tr>
<tr>
<td>14.2</td>
<td>Radon–Nikodým and Lebesgue decompositions</td>
<td>219</td>
</tr>
<tr>
<td>14.3</td>
<td>Perturbation of diffuse measures</td>
<td>225</td>
</tr>
<tr>
<td>14.4</td>
<td>Precise density bound</td>
<td>227</td>
</tr>
</tbody>
</table>
Contents

15 **Traces of Sobolev functions** 235
 15.1 Existence of the trace 235
 15.2 Fractional Sobolev embedding 241
 15.3 Range of the trace operator 251

16 **Trace inequality** 257
 16.1 Capacitary, geometric and pointwise interpretations 257
 16.2 Hölder continuity revisited 263
 16.3 Delocalization of capacitary measures 271

17 **Critical embedding** 275
 17.1 Bounded mean oscillation 275
 17.2 Brezis–Merle inequality and beyond 278
 17.3 Exponential Sobolev embedding 287
 17.4 $W^{1,2}$ and $W^{2,1}$ capacities 291

18 **Quasicontinuity** 299
 18.1 Continuous potentials 299
 18.2 Lusin property 303
 18.3 Continuity principle 306

19 **Nonlinear problems with diffuse measures** 311
 19.1 Unconditional existence 311
 19.2 Measures must be diffuse 315

20 **Extremal solutions** 321
 20.1 Boundary data revisited 321
 20.2 Method of sub- and supersolutions 327
 20.3 Nonlinear Perron–Remak method 332

21 **Absorption problems** 337
 21.1 Subcritical case 337
 21.2 Contraction and stability 341
 21.3 Polynomial growth 344
 21.4 Exponential growth 347

22 **The Schrödinger operator** 351
 22.1 Strong maximum principle 351
 22.2 Existence of solutions with measure data 356
 22.3 The bridge 360
Appendices

A Sobolev capacity 367
 A.1 Finite semi-additivity 367
 A.2 Outer capacity and pointwise convergence 371
 A.3 Strong additivity 376
 A.4 Measures on dual Sobolev spaces 381

B Hausdorff measure 385
 B.1 Density estimate 385
 B.2 Frostman’s lemma 388
 B.3 Regularity and uniform approximation 391

C Solutions and hints to the exercises 395

Bibliography 415

Index 449