
The Orthogonal Gradients Method: a Radial

Basis Functions Method for Solving Partial

Differential Equations on Arbitrary Surfaces

Cécile Piret ∗

Université Catholique de Louvain, Institute of Mechanics, Materials and Civil
Engineering (iMMC), Avenue G. Lemaitre, 4 1348 Louvain-la-Neuve, Belgium

Abstract

Much work has been done on reconstructing arbitrary surfaces using the radial
basis function (RBF) method, but one can hardly find any work done on the use
of RBFs to solve partial differential equations (PDEs) on arbitrary surfaces. In
this paper, we investigate methods to solve PDEs on arbitrary stationary surfaces
embedded in R3 using the RBF method. We present three RBF-based methods that
easily discretize surface differential operators. We take advantage of the meshfree
character of RBFs, which give us a high accuracy and the flexibility to represent the
most complex geometries in any dimension. Two out of the three methods, which
we call the orthogonal gradients (OGr) methods are the result of our work and are
hereby presented for the first time.

Key words: Radial basis functions, RBF, Closest point method, Implicit surfaces,
Level set method, Orthogonal Gradients method, OGr method

1 Introduction

We consider solving PDEs on stationary two-dimensional arbitrary manifolds
that are embedded in the three-dimensional space. Further, we study the con-
finement of differential operators to the manifolds when applied to functions
that are defined in R3. Although a discretization of the operator in R3 is
straightforward to obtain via RBFs, a restriction of this operator to the surface
can be quite tricky to compute. In differential geometry, the Laplace-Beltrami

∗ Corresponding author.
Email address: cecile.piret@uclouvain.be (Cécile Piret).

Preprint submitted to Elsevier 12 April 2012

operator can be defined on the tangential plane of any manifold embedded in
a Euclidean space. However, for a general surface, it is non-trivial to derive
the expressions for this operator.

In this paper, we will focus on two general methods, which we call the RBF
OGr method and the RBF projection method. These methods were designed
to discretize surface operators simply and efficiently. They make use of the
RBF discretization of operators in R3 and of the RBF expansion describing
the surface. We present two versions of the RBF OGr method and compare
them to the existing RBF projection method [1,2]. Fast algorithms for the
RBF OGr method, as well as extensions to a wider range of PDEs and to
higher dimensions will be subjects of follow-up papers.

PDEs on surfaces emerge from applications in a wide range of fields such as
image processing, computer graphics, mathematical physics, fluid dynamics,
or biology. We review some of the work that has been done in solving PDEs
on arbitrary surfaces. Early favored applications such as solving the reaction-
diffusion (RD) differential equations for texture synthesis, also important in
image processing or epidemiology, illustrate the range of methods for solving
PDEs on arbitrary surfaces, as well as their evolution. Section 2 contains a
short survey of the methods used for solving PDEs on arbitrary stationary
surfaces. Section 3 contains an introduction to the RBF method and to its
applications in solving PDEs, and in reconstructing surfaces. We will then in-
troduce the RBF OGr method in two of its versions and review the Projection
Method in Section 4. Section 5 will show some numerical results and we will
give a conclusion in Section 6. Finally, details of implementation will be given
in the Appendices.

We note that the surfaces in the figures were all rendered with the Matlab
routine isosurface.

2 Methods for Solving PDEs on Arbitrary Surfaces

Parametrization techniques

Developed in the 80s and 90s, one of the earliest and most common approaches
consisted in solving the PDE on a plane and to map the solution as a para-
metric texture to the surface [3]. However, the unlikelihood to find a single
parametric function to describe complex surfaces resulted in having to sew
patches of texture together. In [4], Stam was able to solve fluid flow models on
2D surfaces. He solved the PDE in curvilinear coordinates on Catmull-Clark
subdivision surfaces, a generalization to bi-cubic B-splines, which are natu-
rally sewed together and which can represent any smooth arbitrary topology.

2

In [5], Lui et al proposed to conformally map the entire surface to a rectangle
on which the PDE was solved using well-known and accurate techniques. In
general, however, a parametrization is impractical to construct and may intro-
duce artificial singularities (e.g. spherical coordinates introduce singularities
at the poles). One can find a survey of parametrization techniques in [6].

Finite difference techniques on triangulated surfaces

Another set of common methods consisted in solving the PDE on the trian-
gulated or polygonal surfaces directly, such as in [7]. Although the surface
did not need to be parametrized globally, the equations were complicated to
discretize on the polygonal grid. Furthermore, the geometric primitives such
as the curvature or the surface normals, were difficult to compute [8].

Finite element methods

In [9], a finite element (FE) technique was presented for solving elliptic equa-
tions (the same authors later extend the range of PDEs to parabolic equa-
tions in [10]). In this paper, the Laplace-Beltrami operator was represented
in terms of the tangential gradient, by projecting the space function gradient
in R3 onto the surface tangent plane via the formula ∆S = ∇S.∇S where
∇S = (I − ~n.~nT)∇. The surface was represented in terms of splines, rather
than being globally parametrized. A similar technique was recently proposed
in [11] to solve the Cahn-Hilliard equation.

Finite differences on R3 cartesian grid

In [8,12], the approach consisted in having an implicit representation of the
surface via level sets, and a surface Laplacian representation in terms of tan-
gential gradients. Furthermore, the extension of the function to nodes outside
of the surface was defined in such a way that the gradients of the level set
and of the function are orthogonal. This greatly simplified the finite difference
formulas, and the embedding into R3 allowed computations to be performed
on the fixed R3 cartesian grid, in a narrow band surrounding the surface [13].
However, the technique led to problems when solving diffusion equations. The
projected operator which is degenerate in the direction normal to the surface,
and the boundary conditions set in the band surrounding the surface can lead
to inconsistencies. In view of this issue, the method is improved in [14,13].
Some limitations persist and can be found in [15].

3

The Closest Point method

The Closest Point Method was introduced in 2006 by Ruuth and Merriman
[15]. It too consisted in embedding the surface operator into R3. The biggest
differences with the methods mentioned above are that the method was based
on a closest point function representation (versus a level set representation)
and only the cartesian differential operators were being discretized (versus
projected differential operators). The method can handle open surfaces and
filamentary objects and the limitation to narrow bands around the surface
of the computations does not impact the convergence of the algorithm. This
technique has successfully been applied to a wide range of problems ([15–19]).

The Radial Basis Function Projection method

Most recently, Fuselier and Wright in [2] used the representation of the surface
Laplacian in terms of tangential gradients in an RBF setting. The method
consists in projecting the gradient onto the plane tangent to the surface, with
the same projection operator as the techniques mentioned above. The method,
which was previously introduced in the specific case of the sphere in [1], is
extended to arbitrary surfaces.

The Radial Basis Function Orthogonal Gradients method

The orthogonal gradients method which we introduce here is also based on
an RBF representation. The surface is implicitly defined as the RBF zero-
isosurface of a ‘distance’ function defined in R3. Instead of using the gradient
projection technique mentioned above, we adopt a closest point representation
for the expansion approximating the solution. As we will see, the gradients of
the distance function and of the PDE solution are set to be normal to each
other at each point of the surface, which allows us to recover the surface
restricted operators from the standard R3 discretized operators.

3 RBF methodology

3.1 The form of an RBF interpolant

The basic RBF interpolant takes the form

s(~x) =
N∑
i=1

λi φ(‖~x− ~xi‖), (1)

4

Name of RBF Abbrevi- Definition

ation

Smooth, global

Multiquadric MQ
√

1 + (εr)2

Inverse multiquadric IMQ
1√

1 + (εr)2

Inverse quadratic IQ
1

1 + (εr)2

Gaussian GA e−(εr)2

Piecewise smooth, global

Cubic CU |r|3

Thin plate spline TPS r2 ln |r|
Table 1
Definitions of some types of radial functions. The shape parameter ε controls their
‘flatness’.

where || · || denotes the Euclidean norm. In order for it to take the values fi
at locations ~xi, i = 1, 2, . . . n, the expansion coefficients λi need to satisfy

A ~λ = ~f, (2)

where the entries of the matrix A are Ai,j = φ(||~xi−~xj||). We denote numerical
use of (2) followed by (1) as ‘RBF-Direct’. In this study, we will concentrate
our attention on the radial functions φ(r) listed in Table 1. The parameter ε,
included in all but the piecewise smooth global cases CU and TPS, is known
as the shape parameter.

3.2 Surface reconstruction

Rolland Hardy introduced RBFs in 1971, [20]. He originally presented the
method for the multiquadric (MQ) radial function. In 1982, Richard Franke
popularized the MQ method with his report on 32 of the most commonly used
interpolation methods [21]. He subjected those methods to thorough tests, and
found the MQ method overall to be the best one. Franke also conjectured the
unconditional non-singularity of the interpolation matrix associated with the
MQ radial function, but it was not until a few years later, in 1986, that Charles
Micchelli [22] was able to prove it, making use of work by Schoenberg from the
30s and 40s. The main feature of the MQ method is that the interpolant is a
linear combination of translations of a basis function which only depends on
the Euclidean distance from its center. This basis function is therefore radially
symmetric with respect to its center. The MQ method was generalized to other

5

radial functions, such as the thin plate spline, the gaussian, the cubic, etc. and
the method was called the Radial Basis Function method.

Implicit surfaces are difficult to specify [23]. The idea of implicitly representing
a surface as the zero-isosurface of a 3D function with distance dependent
functions has been developed in 1992 [24], then in Savchenko in 1995 [25] and
in Turk and O’Brien [26] in 1999. It is not until 1999 with the work of Turk
and O’Brien [27],[28], that the implicit representation of surfaces via global
radial functions started to show great results (variational implicit functions).
They formulated the surface reconstruction as a variational problem and they
added off-surface points, where an energy functional had to be minimized, in
order to reduce the unphysical oscillations. They realized that certain types
of RBFs solve the minimization problem inherently (the thin plate spline in
2D and the biharmonic radial function in 3D). However, a big problem in the
RBF approach is its large computational complexity. The problem has been
tackled in several papers and has led to fast RBF-based surface reconstruction
methods. Among them, [29–31] are based on compactly supported RBFs, and
[32], [33] use C∞ radial functions with a fast multipole method (FMM), and
make it possible to reliably and cheaply reconstruct surfaces of hundreds of
thousand of nodes from a 3D node cloud.

In order to apply an operator to a function defined on a surface, it is important
to have an accurate representation of this surface. Starting from a point cloud
in 3D, one can build an RBF expansion using a variational approach, defining
the surface as a level-surface. Geometric characteristics of the surface such
as normals, curvatures, etc. are thereby readily available. We use RBFs to
find a function whose zero-level surface will approximate the point cloud’s
underlying manifold.

A standard technique to represent the surface as the iso-surface of an RBF
expansion [34,32] is to append to the N -node point cloud, 2N nodes at a δ
distance in the normal direction to the surface (N nodes inside and N nodes
outside). We note that the parameter δ is important for the quality of the
interpolant. One will associate the value of 0 to the original point cloud, −1
to the points inside the manifold and +1 to the points outside.

Although one can interpolate a constant function f(~x) = c over the surface
only, and suffer the already large complexity associated with N and not 3N ,
the community seems to prefer appending extra nodes for the surface recon-
struction. Indeed, adding layers adds a fair amount of stability. In the absence
of extra layers, unnatural foldings of the 0-isosurface are frequent in the areas
where the nodes are sparse. These foldings do not appear when we introduce
the extra layers. Thankfully, several techniques have been introduced to deal
with the huge complexity resulting from interpolating on 3N nodes (e.g. the
Fast Multipole Method in [32], Partition of Unity Method in [35]).

6

As in Figure 1, we define the distance function

s(~x) =
N∑
i=1

λi φ(‖~x− ~xi‖) + µi φ(‖~x− ~xi + δ~n~xi‖) + νi φ(‖~x− ~xi − δ~n~xi‖)

where s(~xi) = 0, s(~xi + δ~n~xi) = 1 and s(~xi − δ~n~xi) = −1. The surface Γ is the
zero-isosurface of s(~x).

δ

δ

Γ
Γ

Γ
+

-

S = 0

S = 1

S = -1

x

x

x

+

-
i

i

i

Fig. 1. Illustration of the surface reconstruction via RBFs. N points are uniformly
distributed on the main surface Γ (in red). At each point, a rough approximation of
the normal ~n to the surface is computed and two new points are obtained at distance
δ from the surface, one on either side of it. The distance function is approximated
by an RBF expansion which uses all 3N points. The 0-level surface of the distance
function approximates the surface Γ and it is surrounded by the 1 and the -1-level
surfaces, Γ+ and Γ− respectively.

3.3 RBFs for PDEs

It is in the 90s that Ed Kansa presented the RBF method as a discretization
technique in the context of solving partial differential equations [36,37]. The
RBF collocation approach in space consists in solving time dependent PDEs
using the method of lines (MOL). The spatial differential operators are dis-
cretized via RBFs, by developing differentiation matrices, and the resulting
system of ODEs is solved in time using a standard ODE solver. We will use
this technique all along this paper. See the following references for instances
where this technique is used to solve PDEs, in both cases on the surface of
the sphere [1,38].

Computation of a Global Differentiation Matrix

We wish to find a matrix D that discretizes, via an RBF representation, the
continuous differential operator L. Assuming that the solution takes the func-

7

tion values f on Γ, we require that

f(~xi) =
N∑
j=1

λj φ(‖~xi − ~xj‖), (3)

for all xi, and it leads to the matrix equation A~λ = f . Analytically applying
the differential operator to the radial function gives

g(~xi) =
N∑
j=1

λj Lφ(‖~xi − ~xj‖), (4)

where g(~xi) is the value of the underlying function’s derivative at each xi. Thus

B~λ = g in matrix form, where Bi,j = Lφ(||~x−~xj||)x=xi . The collocation matrix
A is unconditionally nonsingular. This allows us to eliminate the expansion
coefficient vector ~λ leading to g = BA−1f . The differentiation matrix D =
BA−1 gives an RBF discretization of L.

4 Methods for constructing surface operators

Once δ has been fixed, and that the distance function s(~x) has been defined
as illustrated in Figure 1, surface differential operators can be computed.

One can expand ∇f in any orthonormal coordinate system. Let {~n, ~t1, ~t2} be
the normal, first tangent and second tangent directions respectively, taken at
some point ~x ∈ Γ.

∇f = ∂nf ~n+ ∂t1f ~t1 + ∂t2f ~t2

The surface gradient, ∇Γ,is the projection of ∇ on the plane tangent to the
Γ at point ~x ∈ Γ. Thus ∇Γ = ~t1 ∂t1 + ~t2 ∂t2 . We consider two approaches to
extract ∇Γf out of the computation of ∇f :

• Projection. ∇Γ = ∇f − ∂nf~n. Thus, ∇Γ = (I − ~n~nT)∇f . This technique,
used for discretizing operators restricted to arbitrary surfaces, can be com-
monly found in the literature applied to finite differences and finite element
methods [9,10,8,12,14,13], and was most recently introduced in the context
of the radial basis functions method, [2].

• Orthogonal gradients. We extend f outside of Γ, and impose that the normal
component of its gradient is nul. We thus require that ∇f be orthogonal
to ∇s, the gradient of the distance function, whose zero-level surface cor-
responds to Γ. We find this technique in the literature to simplify finite

8

difference formulas in [8], and as the core of the Closest Point Method [15].
We now introduce the latter approach in the context of RBFs, and refer to
it as the RBF Orthogonal Gradients method.

4.1 The Orthogonal Gradients method

Consider a function f defined on an arbitrary surface Γ. We have an implicit
level surface RBF representation for Γ, as in Figure 1. We define the Laplacian
of f on Γ as follows

∆f = (~n∂n + ~t1∂t1 + ~t2∂t2).(~n∂n + ~t1∂t1 + ~t2∂t2)f, (5)

which will be also the surface Laplacian if both ∂nf and ∂2
nf vanish every-

where. We will use the 2N extra nodes that were introduced in the surface
reconstruction, to add 2N restrictions on f , and impose that both partials of
f in the normal direction vanish. This is to say that physically, at each point
on Γ, f will be constant in the direction normal to the surface. The low order
version is next introduced, mostly with the purpose of better explaining the
high order version. In practice, we will rather use the high order version as it
gives much more accurate results.

4.1.1 Low order version

The approach adopted in the Closest Point method consists in imposing that
the function values outside of Γ, be f(~x) = f(cp(~x)), where cp is the ‘closest
point’ operator and maps ~x to its closest point on Γ. This insures that, to a
certain algebraic order, ∂2

nf will vanish. This is also what we do in an RBF
setting, and the positioning of our nodes is perfectly suited for it.

Figure 1 shows the N nodes ~xi located on Γ, surrounded with 2N extra nodes,
~x±i , at a small distance δ along a rough estimate of the normal direction. Taking
the R3 Laplacian of f while setting f(~x±) = f(~x) gives us a rough estimate
of the surface Laplacian of f .

We can compute the normals much more accurately. We will call the true
normal direction, the direction that is normal to the RBF approximation of
the surface. Note that it will be important from now on to use the true normal
direction rather than rough estimates, because the OGr method relies on the
perfect orthogonality between ∇f and ∇s. This true normal direction, which
is thus associated with the zero level set of the distance RBF expansion s(~x), is
readily available at each point ~xi: ~n = 1√

s2x+s2y+s2z
(sx, sy, sz). One can find nodes

~y±i along the true normals, located at a small distance γ from ~xi as shown in

9

Figure 2. Taking the R3 laplacian of f while imposing that f(~y±) = f(~x) thus
gives us a better estimate of the surface laplacian, since at ~x = ~xi, ∂nf(~x) ≈ f(~x)−f(~y±i)

γ
= 0

∂2
nf(~x) ≈ 2f(~x)−f(~y +

i)−f(~y −
i)

γ2
= 0

x i

n

γ
γ

yi
+

-
i
y

Fig. 2. Illustration of the RBF Orthogonal Gradients method. When the distance
function has been defined using the 3N nodes, the true normals (to the approxima-
tion of the surface) ~n can be obtained at each point ~xi. We define new nodes ~y+

i and
~y−i at a distance of γ from ~xi on either side of Γ, along the true normal direction.

Implementation First, notice that both f(~x) and the level set distance
function s(~x) have an RBF expansion defined on exactly the same centers.
Let the function f(~x) be defined as follows

f(~x) =
N∑
i=1

µi φ(‖~x− ~xi‖) + µ+
i φ(

∥∥∥~x− ~x+
i

∥∥∥) + µ−i φ(
∥∥∥~x− ~x−i ∥∥∥)

We follow the standard procedure laid out in Section 2.2 to find the differen-
tiation matrix D.

D =


∆Φx(x) ∆Φx+(x) ∆Φx−(x)

∆Φx(x
+) ∆Φx+(x+) ∆Φx−(x+)

∆Φx(x
−) ∆Φx+(x−) ∆Φx−(x−)




Φx(x) Φx+(x) Φx−(x)

Φx(y
+) Φx+(y+) Φx−(y+)

Φx(y
−) Φx+(y−) Φx−(y−)


−1

where x± belong to the layers Γ± as in Figure 1, where y± are the nodes
illustrated in Figure 2, and where Φv(w) is a N ×N matrix whose entries are
RBF radial functions centered at points ~v and evaluated at points ~w.

10

When applied to a function values vector, this matrix produces a vector con-
taining the approximated surface Laplacian of the underlying function f , eval-
uated at each node in Γ, Γ+, and Γ−.


D1,1 D1,2 D1,3

D2,1 D2,2 D2,3

D3,1 D3,2 D3,3




fΓ

fΓ

fΓ

 =


gΓ

gΓ+

gΓ−



Since we are only interested in the values of function gΓ, the surface Laplacian
of f(~x) on Γ, and since the function values f are identical on all three surface
layers Γ, Γ+ and Γ−, we can find the smaller sized (N × N) differentiation
matrixD = D1,1+D1,2+D1,3, such thatDfΓ = gΓ. We note that, in the context
of solving a time-dependent PDE, the inversion of the 3N × 3N matrix can
be performed in the preprocessing stage. At each time step, we will apply the
N ×N (and no longer the 3N × 3N) differentiation matrix, still leading to an
operations count of O(N2), but with a much smaller constant.

4.1.2 High Order Version

One can further improve the above algorithm by directly imposing that ∂nf =
0 and that ∂2

nf = 0. After noting that ~n ·∇f = ∂nf and that ∂2
nf = (~n ·∇)(~n ·

∇f), we require that ~n · ∇f = 0 and that (~n · ∇)(~n · ∇)f = 0, which is
equivalent to the algorithm above in the limit of γ → 0. Figure 3 shows the
error in taking the surface Laplacian of Y 3

15(x, y, z) on a unit sphere, via the
low order and the high order methods. We notice that as γ → 0, the error
induced by the low order method converges to the error induced by the high
order one. Figure 4 illustrates the core of the method and gives a justification
for its name: the ‘Orthogonal Gradients method’.

Implementation Once again, we will use the same centers as for the con-
struction of the surface. We wish to impose the following


Φ(~x)

~n · ∇Φ(~x)~x=~xi

(~n · ∇)(~n · ∇)Φ(~x)~x=~xi




λ

µ

ν

 =


~f

~0

~0



11

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18

10 5

10 4

10 3

10 2

l
 e

rro
r

=

Error due to
Ill conditioning

Error OGr High

Error OGr Low

 = 0.2
 = 0.2

Fig. 3. Error in taking the surface Laplacian on the surface of the unit sphere of the
spherical harmonic Y 3

15(x, y, z), using the MQ RBF and 900 maximum determinant
near uniformly distributed nodes. We show the error, computed via the low order
OGr in blue and the high order OGr in red, versus the low order OGr parameter
γ. As γ → 0, the lower order method would be equivalent to the higher order one,
if it weren’t for the ill-conditioning it encounters in the small γ range.

where matrix D BA 1 is the global differentiation matrix to invert. However, in Zhou et al, we
find inconsistencies. First, they set up their iterative method as

un 1
i un

i D 1
i fn

i Diu
n
i (7)

¡Expand on how does their pseudocode relates to the standard ASM.¿

4 The global matrix

4.1 Without domain decomposition, what does the spectrum look like?

• Figure

• How good is it?

4.2 Zhou’s method on the sphere

Zhou’s scheme can be described by the following pseudocode

while tol δ do
for each subdomain do

�un 1
Ωj

�un 1
Γj

DΩj ,Ωj DΩj ,Γj

0 I

1 �fΩj

�un
Γj

end for
end while

DΩj ,Ωj DΩj ,Γj

0 I

�un 1
Ωj

�un 1
Γj

�fΩj

�un
Γj

(8)

4.3 Our global matrix on the sphere

Adding to the operator 1
n
�1.�1T will have the effect of translating the eigenvalue of value 0 to 1 and

subtracting will have the effect of translating that value to 1.

4.4 Comparison of the spectra

4.5 Notes

One great thing is that, the Spherical Harmonics are solutions of the Laplacian on the sphere. As
� gets small, we should get a better and better approximation.

• Generalize Zhou on a domain split: RBC? And sudy the behavior of the eigenvalues

• Generalize our algorithm on a domain split?

• How do we know that Zhou’s algorithm really converges towards the true Laplacian?

∇u 0 ∇s 0

2

where matrix D BA 1 is the global differentiation matrix to invert. However, in Zhou et al, we
find inconsistencies. First, they set up their iterative method as

un 1
i un

i D 1
i fn

i Diu
n
i (7)

¡Expand on how does their pseudocode relates to the standard ASM.¿

4 The global matrix

4.1 Without domain decomposition, what does the spectrum look like?

• Figure

• How good is it?

4.2 Zhou’s method on the sphere

Zhou’s scheme can be described by the following pseudocode

while tol δ do
for each subdomain do

�un 1
Ωj

�un 1
Γj

DΩj ,Ωj DΩj ,Γj

0 I

1 �fΩj

�un
Γj

end for
end while

DΩj ,Ωj DΩj ,Γj

0 I

�un 1
Ωj

�un 1
Γj

�fΩj

�un
Γj

(8)

4.3 Our global matrix on the sphere

Adding to the operator 1
n
�1.�1T will have the effect of translating the eigenvalue of value 0 to 1 and

subtracting will have the effect of translating that value to 1.

4.4 Comparison of the spectra

4.5 Notes

One great thing is that, the Spherical Harmonics are solutions of the Laplacian on the sphere. As
� gets small, we should get a better and better approximation.

• Generalize Zhou on a domain split: RBC? And sudy the behavior of the eigenvalues

• Generalize our algorithm on a domain split?

• How do we know that Zhou’s algorithm really converges towards the true Laplacian?

∇u.∇s 0 u u1 u u2 u u3 s 0 s 1 s 1

2

where matrix D BA 1 is the global differentiation matrix to invert. However, in Zhou et al, we
find inconsistencies. First, they set up their iterative method as

un 1
i un

i D 1
i fn

i Diu
n
i (7)

¡Expand on how does their pseudocode relates to the standard ASM.¿

4 The global matrix

4.1 Without domain decomposition, what does the spectrum look like?

• Figure

• How good is it?

4.2 Zhou’s method on the sphere

Zhou’s scheme can be described by the following pseudocode

while tol δ do
for each subdomain do

�un 1
Ωj

�un 1
Γj

DΩj ,Ωj DΩj ,Γj

0 I

1 �fΩj

�un
Γj

end for
end while

DΩj ,Ωj DΩj ,Γj

0 I

�un 1
Ωj

�un 1
Γj

�fΩj

�un
Γj

(8)

4.3 Our global matrix on the sphere

Adding to the operator 1
n
�1.�1T will have the effect of translating the eigenvalue of value 0 to 1 and

subtracting will have the effect of translating that value to 1.

4.4 Comparison of the spectra

4.5 Notes

One great thing is that, the Spherical Harmonics are solutions of the Laplacian on the sphere. As
� gets small, we should get a better and better approximation.

• Generalize Zhou on a domain split: RBC? And sudy the behavior of the eigenvalues

• Generalize our algorithm on a domain split?

• How do we know that Zhou’s algorithm really converges towards the true Laplacian?

∇u.∇s 0 u u1 u u2 u u3 s 0 s 1 s 1

2

where matrix D BA 1 is the global differentiation matrix to invert. However, in Zhou et al, we
find inconsistencies. First, they set up their iterative method as

un 1
i un

i D 1
i fn

i Diu
n
i (7)

¡Expand on how does their pseudocode relates to the standard ASM.¿

4 The global matrix

4.1 Without domain decomposition, what does the spectrum look like?

• Figure

• How good is it?

4.2 Zhou’s method on the sphere

Zhou’s scheme can be described by the following pseudocode

while tol δ do
for each subdomain do

�un 1
Ωj

�un 1
Γj

DΩj ,Ωj DΩj ,Γj

0 I

1 �fΩj

�un
Γj

end for
end while

DΩj ,Ωj DΩj ,Γj

0 I

�un 1
Ωj

�un 1
Γj

�fΩj

�un
Γj

(8)

4.3 Our global matrix on the sphere

Adding to the operator 1
n
�1.�1T will have the effect of translating the eigenvalue of value 0 to 1 and

subtracting will have the effect of translating that value to 1.

4.4 Comparison of the spectra

4.5 Notes

One great thing is that, the Spherical Harmonics are solutions of the Laplacian on the sphere. As
� gets small, we should get a better and better approximation.

• Generalize Zhou on a domain split: RBC? And sudy the behavior of the eigenvalues

• Generalize our algorithm on a domain split?

• How do we know that Zhou’s algorithm really converges towards the true Laplacian?

∇u.∇s 0 u u1 u u2 u u3 s 0 s 1 s 1

2

where matrix D BA 1 is the global differentiation matrix to invert. However, in Zhou et al, we
find inconsistencies. First, they set up their iterative method as

un 1
i un

i D 1
i fn

i Diu
n
i (7)

¡Expand on how does their pseudocode relates to the standard ASM.¿

4 The global matrix

4.1 Without domain decomposition, what does the spectrum look like?

• Figure

• How good is it?

4.2 Zhou’s method on the sphere

Zhou’s scheme can be described by the following pseudocode

while tol δ do
for each subdomain do

�un 1
Ωj

�un 1
Γj

DΩj ,Ωj DΩj ,Γj

0 I

1 �fΩj

�un
Γj

end for
end while

DΩj ,Ωj DΩj ,Γj

0 I

�un 1
Ωj

�un 1
Γj

�fΩj

�un
Γj

(8)

4.3 Our global matrix on the sphere

Adding to the operator 1
n
�1.�1T will have the effect of translating the eigenvalue of value 0 to 1 and

subtracting will have the effect of translating that value to 1.

4.4 Comparison of the spectra

4.5 Notes

One great thing is that, the Spherical Harmonics are solutions of the Laplacian on the sphere. As
� gets small, we should get a better and better approximation.

• Generalize Zhou on a domain split: RBC? And sudy the behavior of the eigenvalues

• Generalize our algorithm on a domain split?

• How do we know that Zhou’s algorithm really converges towards the true Laplacian?

∇u 0 ∇s 0

2

where matrix D BA 1 is the global differentiation matrix to invert. However, in Zhou et al, we
find inconsistencies. First, they set up their iterative method as

un 1
i un

i D 1
i fn

i Diu
n
i (7)

¡Expand on how does their pseudocode relates to the standard ASM.¿

4 The global matrix

4.1 Without domain decomposition, what does the spectrum look like?

• Figure

• How good is it?

4.2 Zhou’s method on the sphere

Zhou’s scheme can be described by the following pseudocode

while tol δ do
for each subdomain do

�un 1
Ωj

�un 1
Γj

DΩj ,Ωj DΩj ,Γj

0 I

1 �fΩj

�un
Γj

end for
end while

DΩj ,Ωj DΩj ,Γj

0 I

�un 1
Ωj

�un 1
Γj

�fΩj

�un
Γj

(8)

4.3 Our global matrix on the sphere

Adding to the operator 1
n
�1.�1T will have the effect of translating the eigenvalue of value 0 to 1 and

subtracting will have the effect of translating that value to 1.

4.4 Comparison of the spectra

4.5 Notes

One great thing is that, the Spherical Harmonics are solutions of the Laplacian on the sphere. As
� gets small, we should get a better and better approximation.

• Generalize Zhou on a domain split: RBC? And sudy the behavior of the eigenvalues

• Generalize our algorithm on a domain split?

• How do we know that Zhou’s algorithm really converges towards the true Laplacian?

∇u.∇s 0 u u1 u u2 u u3 s 0 s 1 s 1

2

where matrix D BA 1 is the global differentiation matrix to invert. However, in Zhou et al, we
find inconsistencies. First, they set up their iterative method as

un 1
i un

i D 1
i fn

i Diu
n
i (7)

¡Expand on how does their pseudocode relates to the standard ASM.¿

4 The global matrix

4.1 Without domain decomposition, what does the spectrum look like?

• Figure

• How good is it?

4.2 Zhou’s method on the sphere

Zhou’s scheme can be described by the following pseudocode

while tol δ do
for each subdomain do

�un 1
Ωj

�un 1
Γj

DΩj ,Ωj DΩj ,Γj

0 I

1 �fΩj

�un
Γj

end for
end while

DΩj ,Ωj DΩj ,Γj

0 I

�un 1
Ωj

�un 1
Γj

�fΩj

�un
Γj

(8)

4.3 Our global matrix on the sphere

Adding to the operator 1
n
�1.�1T will have the effect of translating the eigenvalue of value 0 to 1 and

subtracting will have the effect of translating that value to 1.

4.4 Comparison of the spectra

4.5 Notes

One great thing is that, the Spherical Harmonics are solutions of the Laplacian on the sphere. As
� gets small, we should get a better and better approximation.

• Generalize Zhou on a domain split: RBC? And sudy the behavior of the eigenvalues

• Generalize our algorithm on a domain split?

• How do we know that Zhou’s algorithm really converges towards the true Laplacian?

∇u.∇s 0 u u1 u u2 u u3 s 0 s 1 s 1

2

where matrix D BA 1 is the global differentiation matrix to invert. However, in Zhou et al, we
find inconsistencies. First, they set up their iterative method as

un 1
i un

i D 1
i fn

i Diu
n
i (7)

¡Expand on how does their pseudocode relates to the standard ASM.¿

4 The global matrix

4.1 Without domain decomposition, what does the spectrum look like?

• Figure

• How good is it?

4.2 Zhou’s method on the sphere

Zhou’s scheme can be described by the following pseudocode

while tol δ do
for each subdomain do

�un 1
Ωj

�un 1
Γj

DΩj ,Ωj DΩj ,Γj

0 I

1 �fΩj

�un
Γj

end for
end while

DΩj ,Ωj DΩj ,Γj

0 I

�un 1
Ωj

�un 1
Γj

�fΩj

�un
Γj

(8)

4.3 Our global matrix on the sphere

Adding to the operator 1
n
�1.�1T will have the effect of translating the eigenvalue of value 0 to 1 and

subtracting will have the effect of translating that value to 1.

4.4 Comparison of the spectra

4.5 Notes

One great thing is that, the Spherical Harmonics are solutions of the Laplacian on the sphere. As
� gets small, we should get a better and better approximation.

• Generalize Zhou on a domain split: RBC? And sudy the behavior of the eigenvalues

• Generalize our algorithm on a domain split?

• How do we know that Zhou’s algorithm really converges towards the true Laplacian?

∇u.∇s 0 u u1 u u2 u u3 s 0 s 1 s 1

2

Fig. 4. Schema of the ‘Orthogonal Gradients method’. On the left, the level-set
distance function s(~x) is constant over Γ. This implies that, at each node on Γ, its
gradient points in the direction normal to the surface at that point. Now consider
function u(~x) on the right. Heuristically, by requiring that function u(~x) be constant
in the direction normal to the surface (∇s), we impose that the gradients of functions
s(~x) and u(~x) be orthogonal, and thus that the normal component of derivatives of
u(~x) be null.

12

The differentiation matrix thus takes the form

D =


∆Φx(x) ∆Φx+(x) ∆Φx−(x)

∆Φx(x
+) ∆Φx+(x+) ∆Φx−(x+)

∆Φx(x
−) ∆Φx+(x−) ∆Φx−(x−)




Φx(x)

~n · ∇Φ(~x)~x=~xi

(~n · ∇)(~n · ∇)Φ(~x)~x=~xi


−1

and 
D1,1 D1,2 D1,3

D2,1 D2,2 D2,3

D3,1 D3,2 D3,3




fΓ

0

0

 =


gΓ

gΓ+

gΓ−


which reduces to D1,1fΓ = gΓ. One can thus instead use the N × N differen-
tiation matrix D = D1,1. We note like in Section 4.1.1, that in the context of
solving a time-dependent problem, although the operations count for comput-
ing the 3N × 3N differentiation matrix is of O(N3) with a large constant, it
can be performed in the preprocessing stage. Each time step will only involve
the application of a N×N (and not a 3N×3N) matrix. The operations count
will thus be still of O(N2), but with a much smaller constant. Another form
of the differentiation matrix is given in Appendix 1, while Appendix 2 gives
details on how to compute ~n · ∇Φ(~x)~x=~xi and (~n · ∇)(~n · ∇)Φ(~x)~x=~xi .

4.2 The Operator Projection Method on Surfaces

For the sake of comparison, we give a brief overview of the method of projec-
tion, which was introduced in the context of RBFs in [1,2]. It consists, for each
point on the surface, in projecting the gradient of the function defined on the
surface onto the plane that is tangent to the surface, by applying (I − ~n~nT)
to the operator.

(I − ~n~nT)∇f = (I − ~n~nT)(∂nf ~n+ ∂t1f ~t1 + ∂t2f ~t2)

= ∂t1f ~t1 + ∂t2f ~t2

=∇Γf

Implementation We define the projection operator at a point ~xi as Pt,~xi =
I − ~ni~nTi , where ~ni is the unit vector that is normal to the surface at node ~xi.
We can thus represent the differential operators restricted to the surface Γ, as

13

a linear combination of differential operators in 3D.
∂Γ,x

∂Γ,y

∂Γ,z


~x=~xi

=

 I − ~ni~nTi




∂x

∂y

∂z


~x=~xi

Thus, the differentiation matrix approximating the surface restricted partial
derivative in the x-direction ∂Γ,x can be written as DΓ,x = C1Dx+C2Dy+C3Dz

where C1 = diag(1 − nx(1)2), C2 = diag(nx(1)nx(2)), C3 = diag(nx(1)nx(3))
and where Dx, Dy and Dz are the differentiation matrices approximating ∂x,
∂y and ∂z respectively. The differentiation matrices DΓ,y and DΓ,z are similarly
computed.

4.3 Fundamental Difference Between the Techniques

The OGr and projection methodologies are fundamentally different. While
the OGr method relies on modifying the RBF expansion of the solution, by
adding requirements on its derivatives, the projection method modifies the
operator only. Both techniques have been applied to different methods (FEM,
FD,CPM). In the contexts of FEM and FD methods, the technique of projec-
tion has lead to problems in solving diffusion problems. Indeed, the operator
to which it leads is degenerate in the direction normal to the surface [39].
Difficulties have been encountered while trying to solve as simple problems
as the heat equation[14]. Furthermore, the coupling of these two techniques
[8,12] has also led, in certain circumstances, to large errors. It is actually the
subject of [14,13]. In the latter, a different projection operator is proposed,
which still does not produce optimal results [15].

4.4 Parameters

In the above methods, the parameters need to be properly defined to guarantee
a good accuracy. These are the shape parameter ε and the offset parameter δ.
Both of these parameters have a direct impact on both the accuracy and the
conditioning of the differentiation matrix. A lot of work has been done on the
search for an optimal shape parameter ε. Since the topology and the nodes’
distribution and density also impact the conditioning, finding a formula for this
optimal’ ε is near impossible. As ε gets smaller, the accuracy improves but the
conditioning worsens [34,40]. Unless one uses one of the algorithms that bypass
the small shape parameter conditioning issue [41,42,38,43], the emphasis in
setting the parameters has to be put on keeping a good conditioning. Since we

14

know the smallest distance between two nodes (dmin), and that the nodes are
near uniformly distributed, we can normalize the shape parameter as ε = ε∗

dmin
.

In order to keep a good conditioning, we will increase parameter ε∗ when the
total number of nodes gets larger. A lot less work has been made in finding
an optimal δ. In order to avoid level sets crossing, we set δ = dmin × δ∗,
where 0 < δ∗ < 1. Figure 5 shows, for different values of δ∗, the l∞ norm
of the error, versus ε∗, in applying the Laplacian to the spherical harmonic
Y 3

15(x, y, z) on the unit sphere. We notice the error behavior described above,
in which the error decreases with ε∗ until the error abruptly grows due to the
bad conditioning associated with very small shape parameters. We also notice
that neither the value of δ nor the choice of the smooth radial function do
seem to have a big influence on the error. For the remaining of this work, we
will use the MQ RBF.

10 1 10010 6

10 4

10 2

100

102

104

l
 e

rro
r

Fig. 5. Error in taking the surface Laplacian on the surface of the unit sphere of
the spherical harmonic Y 3

15(x, y, z), using 900 maximum determinant near uniformly
distributed nodes. We show the error computed via the high order OGr method, for
several values of the parameter δ, ranging from 0 to 1. We see that the effect of the
parameter on the error is minimal.

5 Numerical Results

5.1 The Heat Equation

We solve the heat equation ut = ∆Γu where Γ is the surface of the unit
sphere. In Figure 6, we compare results from both the high order OGr and

15

the projection methods, with spherical harmonics of orders 1 and 3 as initial
conditions. Since the eigenfunctions of the Laplace-Beltrami operator on the
surface of the sphere are the spherical harmonics, we can easily analytically
find the true solution to the problem and compute the error. It should be
mentioned that the node distribution ranged from 64 to 900 nodes and that
the solution was evaluated on a dense node set of 2500 points, on which the
relative l∞ error was finally computed.

The figure on the left also shows the error obtained on the same exercise
via the Closest Point Method, reported in Table IV of [15]. We notice that
the rate of error decay is about the same for both RBF methods. We note
also that the decay seems to follow a straight line in the log-linear plots,
indicating the expected spectral accuracy in both RBF methods. The error
obtained via the Closest Point Method, however, decays algebraically asO(h2).
This result makes sense since the OGr method is nothing but the Closest
Point core idea with an RBF discretization instead of a FD discretization.
We can therefore argue that, although the computational complexity of the
Closest Point Method is smaller than the complexity of RBFs, a lot more nodes
will be necessary than with RBFs, to obtain a same accuracy. For example,
in Figure 6, we obtain an accuracy of about 5 × 10−5 with a node set of
h = 0.147 with RBFs and with a node set of h = 0.0125 with the Closest
Point Method. This means that, in order to obtain the same accuracy, one
should use 64 nodes with RBFs and about 70, 000 nodes with the Closest Point
Method. Furthermore, the time steps obtained via an RBF discretization are
often much larger than time steps obtained via FD techniques. Thus, despite
their very large computational complexity, RBFs would require all together
a smaller amount of computations than the Closest Point Method. However,
the scattered nature of the nodes makes it difficult to predict the exact rate
of convergence of the RBF method, so the above calculation might not hold
on different geometries or on different node sets, with different parameters. As
for the superiority in accuracy of the Projection method over the OGr method
in this particular instance (Figure 6), practice indicates that it should not be
generalized to different geometries. For instance, the projection method only
gives a lousy discretization of surface operators on rougher surfaces such as
the femur in the following case.

The high order OGr method was used for the remainder of the test cases.
Figure 7 shows the solution of the heat equation on the surface of a femur, at
times t = 0.04, 0.08, 0.12 and 0.16. The initial condition is the gaussian bell
f(x, y, z) = e−4((x−x1)2+(y−y1)2+(z−z1)2), centered at (x1, y1, z1).

16

0.1 0.2 0.3 0.4
10 10

10 5

h

l
 e

rro
r

RBF OGr
RBF Projection
Closest Point *

0.15 0.2 0.25 0.3 0.35 0.4

10 4

10 2

h

l
 e

rro
r

RBF OGr
RBF Projection

Fig. 6. Relative l∞ error accrued after time t=1, using as an initial condition the
spherical harmonic Y 0

1 (x, y, z) on the left and Y 3
3 (x, y, z) on the right. We show by

the blue × the error produced when using the OGr method, and by the red o, the
error produced by the projection method. We also show, by the green +, the error
obtained on the same exercise via the Closest Point Method reported in Table IV
of [15].

Fig. 7. Heat equation on the surface of a femur. The initial condition is the gaus-
sian bell f(x, y, z) = e−4((x−x1)2+(y−y1)2+(z−z1)2), centered at one of the nodes
(x1, y1, z1). The function at time t = 0 is shown on the left, along with the set
of 512 nodes.

17

5.2 Eigenfunctions of the Laplace-Beltrami Operator

Finding a good discretization for the Laplace-Beltrami operator allows us to
compute shape-dependent eigenfunctions and eigenvalues of the operator. In
Figure 8, we show the torus and its distribution of 169 nodes, as well as the
spectrum of the Laplace-Beltrami operator. We expect a set of purely real
negative eigenvalues. We also reproduce Figure 4 from [44] in Figure 9, and
show the eigenfunctions corresponding to λ4 to λ15.

Fig. 8. The 169 nodes distributed on a torus are shown on the left, while the right
picture displays the spectrum of the Laplace-Beltrami operator on the torus.

5.3 A Reaction-Diffusion Scheme

Reaction-diffusion theory has become an important field of research for its
applications in morpheogenesis or epidemiology, ever since Alan Turing’s 1952
paper [45] . The Brusselator is a non-linear reaction-diffusion scheme that
was introduced in Brussels by Ilya Prigogine and his team. The Brusselator
equations are the following ∂tu = a− (b+ 1)u+ u2v +Du∆u

∂tv = bu− u2v +Dv∆v

In Figure 10, we display the steady state solution of the Brusselator on the
surface of a frog, for two different sets of parameters.

18

Fig. 9. We computed and display a reproduction of Figure 4 in [44], showing the
eigenfunctions corresponding to λ4 to λ15.

Fig. 10. Steady state solution of the Brusselator on the surface of a 560-node frog.
The patterns are outcomes of two different sets of parameters in the Brusselator
equations. (Figure on the left : du = 5, dv = 12, a = 4, b = 14. Figure on the right
: du = 5, dv = 12, a = 3, b = 11)

5.4 An Application in Mesh Generation and Repair (using the software Gmsh)

Gmsh is an unstructured mesh generator [46]. It is sometimes difficult to cre-
ate or repair mesh on complex manifolds. One way to produce a mesh is to
create a discrete parametrization of the object, by solving Laplace’s equation
on its surface. In [47], the OGr method was shown to be a powerful tech-
nique and has been incorporated in Gmsh. Figures 11 and 12 show the mesh
of a cat figurine respectively before and after the repair by our technique. In
[47], we give the details of a mesh repair technique which consists in solving
Laplace’s equation on the surface with appropriate Dirichlet boundary condi-

19

tions, thereby finding a 1-to-1 map between the surface embedded in R3 and
the unit disk. The mesh is then repaired on the unit disk and mapped back
(via RBF interpolation) to the surface. It should be noted here that both the
high version OGr and the Projection methods were coded and that the high
version OGr gave significantly better results on most geometries.

u

v

Fig. 11. A damaged mesh of a cat figurine is shown on the left. We want to find a
1-to-1 map between the surface embedded in R3 and the unit disk. We use the OGr
method to find the solutions u and v of Laplace’s equation with Dirichlet boundary
conditions spanning both a period of the cosine function (displayed by the color on
the left figure) and a period of the sine function. On the right, we plot the solutions
(u, v) and therefore display the mesh mapped on the unit disk.

6 Conclusion

In this paper, we have introduced a new method, similar in essence to MacDon-
ald and Ruuth’s Closest Point Method, but brought to the realm of RBFs. We
chose to define the surface implicitly via a level-set representation of three lay-
ers, as is often done in surface reconstruction problems. We are able, with only
a point cloud given, to find an accurate discretization of the Laplace-Beltrami
operator on the underlying surface. We showed the efficiency of the method
on diverse problems, including on solving Laplace’s equation on very complex
geometries. This paper is intended to introduce the OGr method. Its numer-
ical complexity limited us in the amount of nodes in each of the examples

20

Fig. 12. Once the mesh has been mapped on the unit disk, it is repaired and mapped
back to the original surface. This figure shows the repaired mesh of the cat figurine.
More details on this procedure can be found in [47].

given. The surfaces described were therefore rather smooth. An adaptation
of this method with fast algorithms, with different types of operators and in
higher dimensions is in preparation. This upcoming version of the method will
be able to handle much rougher features in the manifold, given that enough
resolution is given in those areas.

Acknowledgements

The work of this author was supported by a FSR post-doctoral grant from
the catholic University of Louvain. Part of the present work was conducted
when the author was a Visiting Post-Doctoral Research Assistant at OCCAM
(Oxford Centre for Collaborative Applied Mathematics) under support pro-
vided by Award No. KUK-C1-013-04 to the University of Oxford, UK, by King
Abdullah University of Science and Technology (KAUST).

21

7 Appendix 1

We are showing here an alternate form of the differentiation matrix given in
Section 4.1.2. We wish to impose the following


∆Φ(~x)

~n · ∇Φ(~x)~x=~xi

(~n · ∇)(~n · ∇)Φ(~x)~x=~xi




λ

µ

ν

 =


~g

~0

~0



The differentiation matrix takes the form

D =


∆Φx(x)

~n · ∇Φ(~x)~x=~xi

(~n · ∇)(~n · ∇)Φ(~x)~x=~xi




Φx(x) Φx+(x) Φx−(x)

Φx(x
+) Φx+(x+) Φx−(x+)

Φx(x
−) Φx+(x−) Φx−(x−)


−1

which can be use to solve Laplace’s equation as follows


fΓ

fΓ+

fΓ−

 =


D1,1 D1,2 D1,3

D2,1 D2,2 D2,3

D3,1 D3,2 D3,3


−1

gΓ

0

0



Like before, one can reduce this equation to a system only containing values
on the surface. One obtains fΓ = D̃gΓ.

8 Appendix 2

Below, we give the details on how to compute ~n · ∇Φ(~x)~x=~xi and (~n · ∇)(~n ·
∇)Φ(~x)~x=~xi from Section 4.1.2. Assume that we have an RBF expansion for
the level-set distance function s(~x) whose zero-level set is the surface Γ. All
the partial derivatives of radial functions can be computed analytically (see
[34] for a few formulas). We can thus approximate and evaluate the derivatives

22

of s and of f quite easily by computing the derivatives of the radial functions.

~n · ∇ = sx∂x + sy∂y + sz∂z

(~n · ∇)(~n · ∇) = (sx)
2∂xx + (sy)

2∂yy + (sz)
2∂zz

+2sxsy∂xy + 2sxsz∂xz + 2sysz∂yz

+(sxsxx + sysxy + szsxz)∂x

+(sxsxy + sysyy + szsyz)∂y

+(sxsxz + sysyz + szszz)∂z

References

[1] N. Flyer, G. Wright, A radial basis function method for the shallow water
equations on a sphere, Proceedings of the Royal Society A: Mathematical,
Physical and Engineering Science 465 (2106) (2009) 1949–1976.

[2] E. Fuselier, G. Wright, Scattered data interpolation on embedded submanifolds
with restricted positive definite kernels: Sobolev error estimates, SIAM J.
Numer. Anal (2011), In Revision.

[3] A. Witkin, M. Kass, Reaction-diffusion textures, Computer Graphics 25 (1991)
299–308.

[4] J. Stam, Flows on surfaces of arbitrary topology, in: ACM Transactions On
Graphics (TOG), Vol. 22, ACM, 2003, pp. 724–731.

[5] L. Lui, Y. Wang, T. Chan, Solving pdes on manifolds with global conformal
parametrization, Variational, Geometric, and Level Set Methods in Computer
Vision (2005) 307–319.

[6] M. Floater, K. Hormann, Surface parameterization: a tutorial and survey,
Advances in multiresolution for geometric modelling (2005) 157–186.

[7] G. Turk, Generating textures on arbitrary surfaces using reaction-diffusion, in:
ACM SIGGRAPH Computer Graphics, Vol. 25, ACM, 1991, pp. 289–298.

[8] M. Bertalmio, L. Cheng, S. Osher, G. Sapiro, Variational problems and partial
differential equations on implicit surfaces, Journal of Computational Physics
174 (2001) 759–780.

[9] G. Dziuk, Finite elements for the beltrami operator on arbitrary surfaces,
Partial Differential Equations and Calculus of Variations (1988) 142–155.

[10] G. Dziuk, C. Elliott, Surface finite elements for parabolic equations, Journal of
Computational Mathematics 25 (4) (2007) 385–407.

23

[11] Q. Du, L. Ju, L. Tian, Finite element approximation of the cahn-
hilliard equation on surfaces, Computer Methods in Applied Mechanics and
Engineering.

[12] F. Mémoli, G. Sapiro, P. Thompson, Implicit brain imaging, Neuroimage
23 (Supplement 1) (2004) 179–188.

[13] J. Greer, An improvement of a recent eulerian method for solving pdes on
general geometries, Journal of Scientific Computing 29 (3) (2006) 321–352.

[14] J. Greer, Fourth order partial differential equations on general geometries, Tech.
rep., DTIC Document (2005).

[15] S. Ruuth, B. Merriman, A simple embedding method for solving partial
differential equations on surfaces, Journal of Computational Physics 227 (3)
(2008) 1943–1961.

[16] B. Merriman, S. Ruuth, Diffusion generated motion of curves on surfaces,
Journal of Computational Physics 225 (2) (2007) 2267–2282.

[17] L. Tian, C. Macdonald, S. Ruuth, Segmentation on surfaces with the closest
point method, in: Image Processing (ICIP), 2009 16th IEEE International
Conference on, IEEE, 2009, pp. 3009–3012.

[18] C. Macdonald, S. Ruuth, Level set equations on surfaces via the closest point
method, Journal of Scientific Computing 35 (2) (2008) 219–240.

[19] C. Macdonald, J. Brandman, S. Ruuth, Solving eigenvalue problems on curved
surfaces using the closest point method, Journal of Computational Physics
230 (22) (2011) 7944–7956.

[20] R. Hardy, Multiquadric equations of topography and other irregular surfaces,
Journal of Geophysical Research 76 (8) (1971) 1905–1915.

[21] R. Franke, Scattered data interpolation: Tests of some methods., Math.
Comput. 38 (157) (1982) 181–200.

[22] C. Micchelli, Interpolation of scattered data: distance matrices and conditionally
positive definite functions, Constructive Approximation 2 (1) (1986) 11–22.

[23] A. Witkin, P. Heckbert, Using particles to sample and control implicit surfaces,
Computer Graphics 28 (Annual Conference Series) (1994) 269–277.

[24] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, W. Stuetzle, Surface
reconstruction from unorganized points, Computer graphics -New York-
Association for computing machinery 26 (1992) 71–71.

[25] V. Savchenko, A. Pasko, O. Okunev, T. Kunii, Function representation of
solids reconstructed from scattered surface points and contours, in: Computer
Graphics Forum, Vol. 14, Wiley Online Library, 1995, pp. 181–188.

[26] G. Turk, J. O’Brien, Variational implicit surfaces, Techical Reports GIT-GVU-
99-15.

24

[27] G. Turk, J. O’Brien, Shape transformation using variational implicit functions,
Computer Graphics 33 (Annual Conference Series) (1999) 335–342.

[28] G. Turk, J. O’brien, Modelling with implicit surfaces that interpolate, ACM
Trans. Graph. 21 (4) (2002) 855–873.

[29] B. Morse, T. Yoo, P. Rheingans, D. Chen, K. Subramanian, Interpolating
implicit surfaces from scattered surface data using compactly supported radial
basis functions, in: Shape Modeling and Applications, SMI 2001 International
Conference on., IEEE, 2001, pp. 89–98.

[30] Y. Ohtake, A. Belyaev, H. Seidel, A multi-scale approach to 3d scattered data
interpolation with compactly supported basis functions, in: Proceedings of the
Shape Modeling International 2003, IEEE Computer Society, 2003, pp. 153–161.

[31] A. Corrigan, H. Dinh, Computing and rendering implicit surfaces composed of
radial basis functions on the gpu, in: Poster proceedings of the International
Workshop on Volume Graphics, 2005.

[32] J. Carr, R. Beatson, J. Cherrie, T. Mitchell, W. Fright, B. McCallum, T. Evans,
Reconstruction and representation of 3d objects with radial basis functions, in:
Proceedings of the 28th annual conference on Computer graphics and interactive
techniques, ACM, 2001, pp. 67–76.

[33] J. Carr, R. Beatson, B. McCallum, W. Fright, T. McLennan, T. Mitchell,
Smooth surface reconstruction from noisy range data, ACM GRAPHITE 3
(2003) 119–126.

[34] G. Fasshauer, Meshfree approximation methods with MATLAB,
Interdisciplinary mathematical sciences, World Scientific, 2007.

[35] H. Wendland, Fast evaluation of radial basis functions: Methods based on
partition of unity, in: Approximation Theory X: Wavelets, Splines, and
Applications, Vanderbilt University Press, 2002, pp. 473–483.

[36] E. Kansa, Multiquadrics–a scattered data approximation scheme with
applications to computational fluid-dynamics–ii solutions to parabolic,
hyperbolic and elliptic partial differential equations, Computers & mathematics
with applications 19 (8-9) (1990) 147–161.

[37] E. Kansa, Multiquadrics–a scattered data approximation scheme with
applications to computational fluid-dynamics–i surface approximations and
partial derivative estimates, Computers & Mathematics with Applications
19 (8-9) (1990) 127–145.

[38] B. Fornberg, C. Piret, On choosing a radial basis function and a shape parameter
when solving a convective pde on a sphere, Journal of Computational Physics
227 (5) (2008) 2758–2780.

[39] C. Elliott, B. Stinner, V. Styles, R. Welford, Numerical computation of
advection and diffusion on evolving diffuse interfaces, IMA Journal of Numerical
Analysis 31 (3) (2011) 786–812.

25

[40] B. Fornberg, G. Wright, E. Larsson, Some observations regarding interpolants
in the limit of flat radial basis functions, Computers & Mathematics with
Applications 47 (1) (2004) 37–55.

[41] B. Fornberg, G. Wright, Stable computation of multiquadric interpolants for all
values of the shape parameter, Comput. Math. Appl. 48 (2004) 853–867.

[42] B. Fornberg, C. Piret, A stable algorithm for flat radial basis functions on a
sphere, SIAM J. Sci. Comput 30 (1) (2007) 60–80.

[43] B. Fornberg, E. Larsson, N. Flyer, Stable computations with gaussian radial
basis functions, SIAM Journal of Scientific Computing 33 (2011) 869–892.

[44] R. Glowinski, D. Sorensen, Computing the eigenvalues of the laplace-beltrami
operator on the surface of a torus: A numerical approach, Partial Differential
Equations (2008) 225–232.

[45] A. Turing, The chemical basis of morphogenesis, Philosophical Transactions of
the Royal Society of London. Series B, Biological Sciences 237 (641) (1952)
37–72.

[46] C. Geuzaine, J.-F. Remacle, Gmsh: A 3-d finite element mesh generator with
built-in pre- and post-processing facilities, International Journal for Numerical
Methods in Engineering 79 (11) (2009) 1309–1331.

[47] E. Marchandise, C. Piret, J.-F. Remacle, Cad and mesh repair with radial basis
functions., J. Comput. Physics 231 (5) (2012) 2376–2387.

26

