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a b s t r a c t

In this paper we present a process that includes both model/mesh repair and mesh gener-
ation. The repair algorithm is based on an initial mesh that may be either an initial mesh of
a dirty CAD model or STL triangulation with many errors such as gaps, overlaps and T-junc-
tions. This initial mesh is then remeshed by computing a discrete parametrization with
Radial Basis Functions (RBF’s).

We showed in [1] that a discrete parametrization can be computed by solving Partial Dif-
ferential Equations (PDE’s) on an initial correct mesh using finite elements. Paradoxically,
the meshless character of the RBF’s makes it an attractive numerical method for solving the
PDE’s for the parametrization in the case where the initial mesh contains errors or holes. In
this work, we implement the Orthogonal Gradients method to be described in [2], as a RBF
solution method for solving PDE’s on arbitrary surfaces.

Different examples show that the presented method is able to deal with errors such as
gaps, overlaps, T-junctions and that the resulting meshes are of high quality. Moreover,
the presented algorithm can be used as a hole-filling algorithm to repair meshes with
undesirable holes. The overall procedure is implemented in the open-source mesh gener-
ator Gmsh [3].

� 2011 Elsevier Inc. All rights reserved.

1. Introduction

Using CAD data for finite element analysis has become the actual standard in the engineering practice. Yet, geometries
that come out of design offices are not free of problems: slivers, cross-overs, surfaces with multiples unnecessary patches,
super-small model entities and many other issues that are encountered in the CAD data make the meshing process a night-
mare. Those dirty geometries are still the cause of time consuming repair processes. The same kind of issues are present when
dealing with STL triangulations as the input geometry: the mesh may be noisy, self-intersecting, not watertight, with T-junc-
tions2 and have undesirable holes. Fig. 1 gives an example of such dirty CAD models or STL triangulations that need to be
repaired.

There are two approaches for cleaning dirty geometries: one acts on the CAD model and one acts on the mesh.
The first approach corrects the geometry directly by using point and edge merging algorithms [4–6]. Those approaches

provide then specific tools for model correction, controlled primarily by the user [7,8]. Presently, there are also many com-
mercial software modules that claim to be able to perform automatic geometry healing. However, these third party software
modules can only rectify common geometry problems and a successful or unsuccessful outcome is possible. Thus there is yet
no absolute solution for geometry/mesh healing of CAD models.
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Another approach is that of correcting an initial triangulation of the model through the addition of triangles and different
stitching procedures [9–11]. In the same vein, Nooruddin and Turk [12] proposed a method to repair polygonal meshes using
volumetric techniques. Unfortunately, not all of those algorithms deal with geometric intersections and/or inconsistent
topologies. Also based on an initial triangulation, some authors [13,14] suggested some specific hole-filling algorithms that
employ RBF’s as an interpolation technique to construct an implicit surface patch and to intersect this implicit surface with
the existing triangulation. However, the intersection method to reconstruct the mesh for the hole is a complex process.
Moreover, the resulting mesh may contain triangles of low quality when the holes to fill are quite small.

In this paper, an original alternative approach is presented. The repair process includes both model/mesh repair and mesh
generation. The remeshing procedure relies on a discrete parametrization. Surface parametrization techniques [15–17] orig-
inate mainly from the computer graphics community: they have been used extensively for applying textures onto surfaces
[18,19] and have more recently become a very useful and efficient tool for many mesh processing applications [17,20,21]. In
the context of remeshing procedures, the initial surface is parametrized onto a planar surface, the surface is meshed using
any standard planar mesh generation procedure and the new triangulation is then mapped back to the original surface
[22,23]. In recent papers [1,24,25], our group showed that harmonic maps can be computed efficiently by solving partial dif-
ferential equations (PDE’s) on the initial triangulation with finite elements.

However, in the context of CAD and mesh repair, the initial triangulation may contain topological errors such as holes, T-
junctions and overlaps. Classical mesh-based numerical techniques for solving PDE’s such as finite elements or finite vol-
umes cannot be used with such dirty meshes. The meshless character of the RBF’s makes them an attractive alternative
for solving those PDE’s. Although the RBF method has been used as an interpolation technique since the 1970s, it is only
in the 1990s that it was introduced as a technique to solve PDE’s [26,27]. Its high accuracy and meshless character have made
it the method of choice for problems set on complicated geometries [28]. Often overlooked for having poor stability and high
complexity issues, the method has finally gained acknowledgement. A number of studies showed the method’s great poten-
tial by solving full-scale geophysical applications, and by showing that RBF’s could compete with the most trusted numerical
techniques [29–33]. Although a good part of the RBF literature deals with surface reconstruction [34,35], or more recently
PDE’s over spheres [31,30,36], no technique has been developed to solve PDE’s on arbitrary surface, until [2], which provides
the very first methods, based on RBF’s, for solving PDE’s on completely arbitrary surfaces. In this work, we implement the
RBF’s Orthogonal Gradients method of [2] which relies on a level set representation of the initial surface.

The paper is organized as follows. In Section 2, we present the PDE’s for solving the parametrization. In Section 3, we show
how to solve the PDE’s with the RBF Orthogonal Gradients method (OGr) centered on the mesh vertices of the initial trian-
gulation. Section 4 explains how to choose the RBF parameters of the presented Ogr method. Next, we explain in Section 5
how to find the inverse mapping in order to be able to project the new points on the 3D surface. Finally, results are presented
to validate the method and to reveal the efficiency and accuracy of our proposed algorithm.

2. Discrete parametrization

The discrete parametrization aims at computing the discrete mapping u(x) that maps every mesh vertex x of an initial
triangulation of a surface C to a point u of C0 embedded in R2:

x ¼ fx; y; zg 2 C � R3 # uðxÞ ¼ fu; vg 2 C0 � R2: ð1Þ

We restrict ourselves to the parametrization of surfaces that can be mapped onto a subset of R2, which means that surfaces
we deal with have their genus equal to zero and have at least one boundary. In some recent papers [24,25], efficient tech-
niques have been developed to split objects with complex topologies into simpler ones in the context of surface remeshing.

In this work, we have chosen a harmonic mapping for the parametrization [1,22,23]. Harmonic maps u(x) can be com-
puted by solving two PDE’s that are the Laplace equations on the 3D surface C:

Fig. 1. Two examples for which a CAD and mesh repair algorithm is needed. The figure on the left shows an initial triangulation of a dirty CAD model with
topological errors: gaps (holes), overlaps and T-junctions. The right figure displays an STL triangulation of a tooth that contains undesirable holes.
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DuðxÞ ¼ 0; DvðxÞ ¼ 0; 8x 2 C; ð2Þ

with appropriate Dirichlet boundary conditions for one of the closed boundaries of the surface C,

uðlÞ ¼ cosð2pl=LÞ; vðlÞ ¼ sinð2pl=LÞ ð3Þ

and with Neumann boundary conditions for the other boundaries. In (3), l denotes the curvilinear abscissa of a point along
the boundary of total length L.

Fig. 2 shows an example of discrete parametrization of mesh model of a face. As can be seen in Fig. 2, the triangulation
contains some self-intersecting triangles and has some undesirable holes. The harmonic map u(x), computed by solving the
Laplace Eq. (2), creates a correspondence between a 3D surface mesh (here a dirty STL triangulation with self-intersecting
triangles) and a 2D mesh. Planar meshing algorithms can then be used in order to remesh and hence to repair the model
of the face.

3. Parametrization with Radial Basis Functions

Different techniques have been recently suggested to solve PDE’s on arbitrary surfaces with RBF’s [2]. In this work, we use
[2]’s Orthogonal Gradients method that relies on a level set representation of the initial surface. Let M be the number of
points on the initial triangulation (red points in Fig. 3).

We use the multiquadric radial functions / to represent the solutions (u,v) of the Laplace equations on C.3

uðxÞ ¼
XN

i¼1

ki/ðkx� xikÞ; with /ðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2r2

p
; ð4Þ

where k�k denotes the Euclidean norm, xi are the number of points N in the data set,4 ki are the RBF’s expansion coefficients,
and � is the shape parameter. All C1 smooth radial functions yield a similar accuracy, but we will limit ourselves to using mul-
tiquadric radial functions in this work as they have the advantage of allowing additional smoothing if necessary [34].

Let us find a matrix D that discretizes, via an RBF representation, a continuous differential operator L. We can rewrite the
RBF interpolation (4) in matrix form for the N points:

U ¼ AK; with Aij ¼ /ðkxi � xjkÞ; Ui ¼ uðxiÞ; ð5Þ

where A is the RBF interpolation matrix of size N � N and K is the vector of expansion coefficients ki. Analytically applying
the differential operator to the radial function interpolation u(x) gives

uLðxkÞ ¼
XN

j¼1

kj L/ðkx� xjkÞx¼xk|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
BL

kj

; ð6Þ

Fig. 2. Discrete parametrization. The harmonic map u(x) creates a correspondence between a 3D surface mesh (here a dirty STL triangulation with self-
intersecting triangles) and a 2D mesh. The mapping is computed by solving the Laplace equations (2) on the 3D surface with Dirichlet boundary conditions
on the boundary nodes (nodes on the red line). Those Dirichlet conditions are such that the surface is mapped onto a unit disk. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

3 In the remainder of this section, we develop the Laplacian of u. The Laplacian of v can be developed in a similar way.
4 We show in the remainder of this section that we take either N = M, N = M + 1 or N = 3M.
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where uL is the value of the differential operator applied to u at each xk. Thus we can write the differentiation of U in matrix form:

UL ¼ BLK; ð7Þ

where matrix BL is of size K � N, and K is the set of points on which we wish to compute the differentiation. For example, the
discrete Laplacian of u at points xk can then be written as (BDK). By combining (5) and (7), we can eliminate the expansion
coefficient vector K and write:

UL ¼ BLA�1|fflffl{zfflffl}
DL

U; ð8Þ

where DL (of size K � N) is the matrix of differentiation, i.e. the discretization of L. Note that if L is the identity operator I, then
DI is an interpolation matrix that interpolates the values of u(xi) at points xk.

We wish now to compute the Laplacian operator on the 3D surface C by using the Orthogonal Gradients method of Piret
[2] (see an illustration in Fig. 3). This method is loosely inspired from the closest point method [37] in that the goal is to make
that function constant in the direction normal to the surface C. If that is the case, the Laplacian contribution from the normal
direction vanishes and leaves only the Laplacian contribution from the tangential direction, i.e. the surface Laplacian. Hence,
by canceling the derivative of u in the direction normal to the surface:

rnu ¼ 0; rn � rnu ¼ 0; ð9Þ

we only keep the surface Laplacian on C:

Du ¼ ðrn þrtÞ � ðrn þrtÞu ¼ Dtu: ð10Þ

In (10), n and t denote respectively the surface normal and tangential directions.
In order to have a reliable RBF representation of the surface C and to reliably compute the surface normals, it is now quite

usual [28,35] to introduce additional points, on either side of the surface, and to define the level set distance function as
s(x) = 0 on C, s(x) = ±1 on C±, where C± are surfaces that surround and that are parallel to C (see Fig. 3). We thus extend
the original M points of the surface inward and outward as follows:

x�i ¼ xi � dnðxÞ; ð11Þ

where n(x) is the unit normal at point xi and d is the offset parameter. The normals are computed from the differentiation of
an RBF expansion for a smooth function r(x) that is given a value of r(x) = 0 (as observed in [38], RBFs are bad at represent-
ing non-zero constants) on the M points on the surface and a value of r(x) = 1 on an additional point located far away from
the surface:5

n ¼ rr: ð12Þ

Γ 
-

Γ 

Γ +

Fig. 3. Illustration of the RBF Orthogonal Gradients method. N points are uniformly distributed on the main surface C (in red). They are the mesh vertices of
the initial triangulation. At each point, the normal n to the surface is computed and 2 new points are obtained at distance d from the surface, one on either
side of C. One can see these 2M additional points on the two gray layers (which we call C+ and C�) that surround C. We have now a set of N = 3M points for
two RBF expansions on these 3M nodes, one for the level set distance function s(x) and one for the solution to the PDE u(x). (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

5 This additional point guarantees that the normal is always well defined even on planar surface parallel to the coordinate axis.

E. Marchandise et al. / Journal of Computational Physics 231 (2012) 2376–2387 2379



Author's personal copy

In (12), the three components of the gradient of r are computed using Eq. (8).
We have now a set of N = 3M points on which we can define two RBF expansions on these 3M nodes, one for the level set

distance function s(x) and one for the solution to the PDE u(x).
The high order version of the RBF Orthogonal Gradients method (OGr) is used for the computation of the discrete surface

Laplacian on the 3M points. It consists of adding the two constraints (9) together with the three-dimensional RBF Laplacian
of u (see Eq. (6)). Those two constraints enable us to restrict the 3D Laplacian to the surface. We can then write the following
augmented linear system of can then be written as eBLK ¼ �0:

DUðxÞ
n:rUðxÞx¼xi

ðn:rÞðn:rÞUðxÞx¼xi

0
B@

1
CA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}eBL

K0

Kþ

K�

0
B@

1
CA

|fflfflfflffl{zfflfflfflffl}
K

¼
�0
�0
�0

0
B@

1
CA;

ð13Þ

where eBL is of size 3M � 3M, U(x) is a M � 3M matrix whose entries are RBF radial functions, and the upperscripts 0, + and �

stand for the nodes that are respectively on C, C+ and C� (see Fig. 3).
In (13), all the partial derivatives of radial functions (i.e. the BL matrixes introduced in Eq. (6)) can be computed analyt-

ically.6 We give in the next equations some details of Eq. (13):

DUðxÞ ¼ BD

n:rU ¼ sxB@x þ syB@y þ szB@z

ðn:rÞðn:rÞU ¼ ðsxÞ2B@xx þ ðsyÞ2B@yy þ ðszÞ2B@zz þ 2sxsyB@xy þ 2sxszB@xz þ 2syszB
@
yz þ ðsxsxx þ sysxy þ szsxzÞB@x

þ ðsxsxy þ sysyy þ szsyzÞB@y þ ðsxsxz þ sysyz þ szszzÞB@z :

Using (5), we can eliminate the vector of expansion coefficients K and come up with a linear system of size 3M � 3M:

ðeBLA�1ÞU ¼ F; ð14Þ

where F is the right hand side that is zero for all the 3M entries, except for the jth entries (1 < j < M) corresponding to the
boundary nodes. Indeed, the Dirichlet boundary conditions (3) on the boundary nodes of xi are applied directly on the linear
system (14) by setting the entries of the corresponding line to zero, the diagonal term to 1 and the right hand side to the
cosine value (3). The solution of this linear system is the solution of the Laplace’s equation for u (2). Following the same pro-
cedure, we can also solve Laplace’s equation for v. The solution of those two Laplace’s equations (u,v) is then the parame-
trization u(x) of the 3D surface onto a 2D surface.

In order to illustrate the parametrization with RBFs, we show in Fig. 4, the parametrization of a mesh of a dirty CAD mod-
el. As can be seen on the Fig. 4a, the mesh has T-joints with non-conforming elements. We show the solution u(x) to the
Laplacian computed by solving (14) with the M nodes of the initial triangulation. The parametrization u(x) = {u(x),v(x)} of
the initial mesh (shown in Fig. 4b) is then given to planar meshing algorithms in order to create a new mesh (see Fig. 4(c)).

Fig. 4. Parametrization with RBF’s of a mesh of a dirty CAD model. The mesh has T-joints with non-conforming elements. We show (a) the solution u(x) to
the Laplace equation, (b) the parametric space {u,v} which is the solution to both Laplace equations and (c) the new mesh of the initial CAD that has
conformity along common edges.

6 See [28] for a few formulas.
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4. RBF parameters

The only two parameters that need to be properly defined are the shape parameter � defined in (4) and the offset param-
eter d defined in (11). Both of these parameters have a direct impact on both the accuracy and the conditioning of the dif-
ferentiation matrix. A lot of work has been done on the search for an ‘optimal’ shape parameter �. Since the topology and the
nodes’ distribution and density also impact the conditioning, finding a formula for this ‘optimal’ � is near impossible. As �
gets smaller, the accuracy improves but the conditioning worsens [28,39]. Unless one uses one of the algorithms that bypass
the small shape parameter conditioning issue [36,40,41], the emphasis in setting the parameters has to be put on keeping a
good conditioning. Since we know the smallest distance between two nodes (dmin), and that the nodes are uniformly distrib-
uted, we can ‘normalize’ the shape parameter as � ¼ ��

dmin
. Parameter �⁄will vary with the total number of nodes (global meth-

od) or with the number of nodes in a cluster (local method). A lot less work has been made in finding an optimal d. In order to
avoid level sets crossing, we set d = dmin � d⁄, where 0 < d⁄ < 1. For our examples, which feature relatively small sets of nodes,
we set d⁄ = 0.33 and �⁄ = 0.5. If M were to be much larger, �⁄ would need to grow with M. Fig. 5 shows, for different values of
d⁄, the l1 norm of the error, versus �⁄, in applying the Laplacian to the spherical harmonic Y3

15ðx; y; zÞ. We notice the error
behavior described above, in which the error decreases with �⁄ until the error abruptly grows due to the bad conditioning
associated with very small shape parameters. We also notice that the value of d does not have a big influence on the error in
this case.

5. Inverse mapping x(u)

Once the harmonic map u(x) has been computed, it can be used as input for planar surface meshers (delaunay, frontal,
etc.) to produce high quality triangulations [1]. This is illustrated in Fig. 6. The top figures show a mesh of a CAD model with
topological and geometrical errors such as gaps, overlaps and T-junctions together with its parametrization u(x). The bottom
figures of Fig. 6 show the remeshing procedure. We can see an intermediate step of the frontal mesh algorithm7 in the para-
metric space as well as the resulting mesh in the 3D space.

The only information we need to provide to those meshers is the inverse map x(u) and the Jacobians of the mapping xu

and xv for very new point ui to be inserted by the planar mesh algorithms (see the blue and green point in Fig. 6). For exam-
ple, the jacobians are used by the meshing algorithms for computing edge lengths, angles and areas from the metric tensor

M ¼ xT
uxu ¼

xu � xu xu � xv

xv � xu xv � xv

� �
: ð15Þ

In this section, we explain how to compute the inverse mapping. We already have the solution of the harmonic map at the
M points of the mesh: ui(xi). The planar mesh algorithm needs to insert a new point up in the parametric space and needs
therefore to know xp(up) as well as the mesh metric in order to have edge length and angle measures. Fig. 6 (right) shows
such an example of two point insertions (blue and green points) during the frontal mesh algorithm: the green point belongs
to a parametrized triangle and the blue point lies inside a hole.

Fig. 5. Relative l1 error, versus the shape parameter �⁄, in applying the surface Laplacian on the unit sphere to the spherical harmonic Y3
15ðx; y; zÞ. We show

the error versus �⁄, for a set of d⁄ values, such that 0 < d⁄ < 1. The experiment was conducted on a set of 900 nodes, near-uniformly distributed on the surface
of the sphere.

7 The gray triangles are the resolved layers, the red the active layers and the white the waiting layers.
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Let suppose that our first mesh is obtained by meshing different CAD patches that have a given parametric description
uCAD. In the case the new mesh point to be inserted by the meshing algorithm, lies within a mesh triangle Tj (green point
in Fig. 6), then the inverse mapping can be found as follows [1].

1. Find the unique triangle Tj of the parametric space C0 that contains point u (yellow triangle in Fig. 6); Note that in the case
the parametrization contains overlaps or intersections that come from the dirty model, then any of the triangles contain-
ing the point u can be chosen;

2. Compute local coordinates n = (n,g) of point u inside triangle Tj;
3. Compute the parametric coordinate of the CAD patch as follows: uCADðn;gÞ ¼ ð1� n� gÞuCAD

1 þ nuCAD
2 þ guCAD

3 :

4. Use the CAD model to obtain the inverse mapping x(uCAD) and the derivatives of this mapping.

Suppose now that the point to be inserted does not lie within any parametrized triangle (i.e. a point inside a hole such as
the blue point in Fig. 6) or suppose that the triangulation does not have an underlying CAD model (STL triangulations ob-
tained from image segmentation). In this case, the inverse mapping xp for a point up = (up,vp) is computed with a local
RBF interpolation of the form (8):

XL ¼ BL
uA�1

u|fflffl{zfflffl}
DL

u

X; ð16Þ

where X is the vector of the closest P points to xi. Those closest points are found by computing the P closest8 parametrized
points ui to up in the set of the M parametrized points (see the yellow points in Fig. 6) and by taking the corresponding points xi

in the 3D space. In (16), XL is the inverse mapping we are looking for (of size K = 1) and DL
u is the matrix of differentiation in the

parametric space. This matrix is of size K � P and the subscript u indicates that the radial basis functions are written in the para-
metric space: /(u � ui). From (16), we obtain easily the inverse quantities needed by the planar meshes. Indeed, when L = I, we
get the inverse map xp(up), when L ¼ B@u , we obtain the Jacobian xu,p and when L ¼ B@v , we have the Jacobian xv,p.

Fig. 6. Initial triangulation of a CAD model with topological and geometrical errors such as gaps, overlaps and T-junctions (top left) and discrete
parametrization u(x) computed with RBF’s (top right). One can see clearly the holes and overlaps of the initial mesh in the parametrization. The bottom
figures show respectively the new mesh computed with a frontal mesh algorithm in the 3D space (left) and parametric space (right) (at an intermediate
stage of the frontal algorithm). For the remeshing algorithm (bottom figures), we need to give to the planar mesher the inverse mapping x(u). How to find
this inverse mapping is illustrated for two specific points (blue and green) and will be explained in Section 5. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)

8 A fast kdtree method is used for computing those closest points.
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From Fig. 6, we can see that the proposed method can be used as a hole-filling algorithm. Indeed, thanks to the RBF inter-
polation, we are able to find new mesh vertices xp corresponding to parametrized points up that are located inside undesirable
holes.

6. Complexity

Conventional RBF interpolations are quite expensive since they require OðN2Þ storage for the interpolation and OðN3Þ
arithmetic operations. Moreover, the Orthogonal Gradients method (OGr) used to solve the Laplacian restricted to a surface
needs N = 3M data points, where M is the number of mesh vertices of the initial triangulation.

However, different algorithmic advances involving RBF-generated finite differences (as in [29]), hierarchical and fast-mul-
tipole like methods combined with interpolatory filters could be implemented in order to reduce the computational cost to
OðNÞ for storage and OðN log NÞ for the arithmetic operations [42]. We note that fast algorithms involving compact radial
functions, such as Wendland functions, will not be useful in this context. While the interpolation matrix produced will be
sparse, no such guarantee will be given about its inverse, thus also about the differentiation matrix, defined as a product
of this inverse.

As such asymptotically faster methods are out of the scope of this work, we have decided to report our results with the
original OðN3Þ method. Meanwhile, we have reduced the overall computational time by taking a reduced number of mesh
vertices N = 3m, with m < M as input for the RBF interpolations. The solution at the original M mesh vertices is recovered
using classical RBF interpolations (see Eq. (4)). The reduction of the amount of data points is performed using quadratic edge
collapse decimation or classical clustering techniques [43].

7. Results

The different examples aim to show that the presented algorithm can be seen as a CAD and mesh repair algorithm but
also a quality remeshing algorithm, and a hole filling-algorithm.

In the first example we consider a dirty CAD model from a rocket reinforcement of a vehicle. Most of the time, a straight-
forward meshing of the patches of a clean CAD does not give a suitable mesh for finite element analysis. An efficient manner
to build a high quality mesh for those CAD models is then to build from the initial CAD mesh a cross-patch parametrization
that enables the remeshing of merged patches. Indeed, as most surface mesh algorithms mesh model faces individually,
mesh points are generated on the bounding edges of those patches and if thin patches exist in the model they will result
in the creation of small distorted triangles with very small angles. Those low quality elements present in the surface mesh
will often hinder the convergence of the FE simulations on those surface meshes. An efficient manner to build a high quality
mesh for those CAD models is then to build from the initial CAD mesh a cross-patch parametrization that enables the reme-
shing of merged patches. The new mesh is then build in the cross-patch parametric space and the new points are projected
back onto the CAD patches using the parametric representation of the patches uCAD (e.g. NURBS). Now, if the CAD is dirty
such as the example of Fig. 7, standard techniques for computing cross-patch parametrizations will fail and the method
we present in this paper can be considered as an original approach for creating a finite element mesh based of the dirty
CAD that does that bypasses the geometrical repair. The dirty CAD model of Fig. 7 is given in IGES format, and includes
141 NURBS surfaces. The CAD model contains a lot of gaps, overlaps, redundant surfaces, T-joints and patches with reverted
normals. This CAD model has so many topological and geometrical errors that none our available commercial packages that
claim to perform geometrical CAD healing was able to repair the model.

Eighteen groups of patches (also called compounds) have been created and a cross-patch parametrization has been com-
puted with the presented method for every of those compounds. This is implemented quite simply in Gmsh by creating a.geo
file that reads:

Mesh.RemeshParametrization = 2;// (2) for rbf

Merge ‘‘CAD.iges";

Mesh.CharacteristicLengthFactor = 0.1;

Compound Surface (20000) = {34:65,118};

The new mesh (Fig. 7 bottom) is obtained with a planar Delaunay mesh algorithm with a given uniform mesh size field.
This new mesh is made of 13216 triangles that have a high mean quality of �j ¼ 0:94. Parameter j is such that an equilateral
triangle has j = 1 and a degenerated flat triangle has j = 0. The total time for meshing the compounds is 40 s.

The next example highlights the capability of the presented method to be used as a hole filling algorithm. Fig. 8 shows a
mutilated mesh of a skull and the mesh after the remeshing and hole filling process. Fur the purpose of the parametrization,
the mutilated mesh has been cut into two different mesh partitions and a uniform mesh size field was given to the Delaunay
planar mesh algorithm. Error analyses have been performed by calculating with the Metro tool [44] the absolute geometric
deviation of the newly created nodes from the non-mutilated mesh of the skull (Hausdorff distance). The L2 error given in
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Fig. 7. Example of an initial triangulation of a CAD model from the automotive industry that contains a lot of gaps, overlaps and T-joints. The bottom figure
shows the new mesh that is suitable for finite element simulations.

Fig. 8. Mutilated mesh of a skull and remeshed skull with hole filling (P = 120 for the inverse map). The color of the right figure indicates the error map.
Note that it is a red-green–blue map, so red is min and blue is max error. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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Table 1 is normalized by the diagonal of the bounding box. The error is computed for different meshes of the skull that have
been computed by changing the number of neighboring vertices P in the computation of the inverse map (see Section 5). The
small errors of Table 1 show that the underlying shape is predicted with good geometric fidelity. The presented algorithm
could then be used with success in the restoration and reverse engineering of bio-models, and the designing of implants such
as titanium plates to restore a damaged skull.

As can be seen for the example of the skull, the remeshing procedure with hole-filling renders also high quality meshes.
This is highlighted in the quality histogram of both meshes (initial STL triangulation and new mesh) shown in Fig. 9. The fact
that our repair process includes also mesh generation makes our algorithm quite original compared to classical hole-filling
algorithms presented in the literature.

The next example shows a raw mesh model of a duck obtained by segmentation. This mesh is made of 1326 triangles and
M = 624 mesh vertices and has been downloaded from the repository of the AIM@SHAPE project.9 As can be seen from Fig. 10,
the mesh is noisy, self-intersecting, has degenerate and overlapping elements, and is not watertight. The initial mesh contains
no less than 57 boundary gaps and non-conforming edges. The parametrization has been computed with RBF’s using a reduced

Table 1
Hausdorff distance between the non-mutilated mesh of the skull and the mutilated mesh as a
function of the number of P neighboring vertices. Those P neighboring vertices come into play for the
computation of the inverse map.

Neighborhood size P L2 error

30 6.3e-3
60 2.6e-3
120 2.3e-3

Fig. 9. Remeshing the skull while filling the holes. Quality histogram j of the initial STL triangulation (3700 triangles) and the new mesh (8740 triangles).

9 http://www.shapes.aim-at-shape.net/view.php?id=717.

Fig. 10. Raw mesh model of a duck that has been split into two patches for the parametrization (left). The right figure shows the boundary gaps and non-
conforming edges of this mesh as well as the orange curve which is the interface between the two surface patches (orange and green). (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of this article.)
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number of mesh vertices m = 443 obtained by quadratic edge collapse. The parametrization is shown in Fig. 11 (left) for the
green patch and the final mesh is shown in Fig. 11 (right). The resulting mesh is made of 5952 triangles and has a very high
mean quality of �j ¼ 0:923. The L2 Hausdorff distance (normalized by the bounding box) between the initial triangulation
and the new mesh is only 0.0025. The total time for remeshing is 6.5 s and only 29% of that total time is used for the param-
etrization with RBF’s.

8. Conclusion

In this paper, we presented a brand new approach for repairing and remeshing, which paradoxically finds its strength in
the meshless character of the RBF method on which our approach is based. We showed that our algorithm gives excellent
results in repairing serious topological and geometrical errors such as holes, reversed normals, overlaps and T-junctions. We
also showed in our examples that the presented algorithm is also able to keep some specified topological edges.

The approach makes use of the RBF Orthogonal Gradients method, recently introduced in [2], to solve PDEs on arbitrary
surfaces using RBF’s. We use this method to solve Laplace’s equation (with Dirichlet boundary conditions on a closed bound-
ary curve of the surface) to obtain a discrete parametrization. Next, the surface is remeshed in the parametric space with a
computed inverse mapping. We showed that the presented algorithm can be seen as a CAD and mesh repair algorithm but
also a quality remeshing algorithm, and a hole filling-algorithm.

Our technique can be further improved by computing conformal mappings instead of harmonic mappings. Indeed, as con-
formal mappings preserve angles, they will enable us to generate also high quality quadrilateral meshes. Moreover, they re-
quire only two Dirichlet boundary conditions for the solution of the mapping. Also different algorithmic advances involving
hierarchical and fast-multipole like methods combined with interpolatory filters can be used to reduce the computational
cost associated to the RBF interpolation. Meanwhile, we found that this cost is still quite small compared to a user controlled
CAD repair followed by a meshing.
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