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1 Introduction

The joint spectral radius (jsr) ρ(Σ) of a set of matrices Σ⊂
Rn×n characterizes the maximal asymptotic growth rate of
products of matrices in the set. It is defined by:

ρ(Σ) = lim
k→∞

ρk(Σ), ρk(Σ) = max
{
‖M‖1/k

∣∣∣M ∈ Σ
k
}
, (1)

where Σk is the set of products of length k of matrices in
Σ, and indepedently of the chosen submultiplicative matrix
norm. When the set Σ is bounded, the jsr is also equal to the
generalized spectral radius ρ̄(Σ):

ρ̄(Σ) = limsup
k→∞

ρ̄k(Σ), ρ̄k(Σ) = max
{

ρ(M)1/k
∣∣∣M ∈ Σ

k
}
.

The jsr appears in many applications such as stability of
switched systems, combinatorics, graph theory, ... For ex-
ample, let Σ be a bounded set of Rn×n, then the discrete-time
system x(t +1) = Atx(t) with At ∈ Σ for all t is stable under
arbitrary switchings if and only if ρ(Σ)< 1.

2 Computation of the joint spectral radius

The jsr is notoriously difficult to compute. Indeed, the prob-
lem of approximating the jsr is NP-Hard [1]. Several ap-
proximation methods have been designed, some of which
even allowing arbitrarily accurate approximations but this is
thus at the expense of a high computation time.

A first class of methods considers the definition of the jsr
and uses the relation ρ̄k(Σ) ≤ ρ̄(Σ) ≤ ρ(Σ) ≤ ρk(Σ), which
holds for all k. The idea is thus to generate sets of products in
order to compute ρ̄k(Σ) and ρk(Σ) while discarding as many
products as possible, using a branch-and-bound technique.
Unfortunately, this sequence of bounds is generally slow to
converge, in particular the upper bound.

Hence, a second approach is to carefully choose a norm giv-
ing a faster convergence rate. We are searching for an ex-
tremal norm, i.e., a norm such that the limit in (1) is reached
for k = 1. Such a norm can be obtained either by an explicit
iterative construction, i.e., by building a sequence of norms
converging to an extremal norm, or by optimizing on the set
of norms, e.g., using the relation ρ(Σ) = infmax{‖A‖ | A ∈

Σ}, where the infimum is taken on the set of norms. How-
ever, the size of the optimization problems may grow too
fast, and there may be numerical issues when directly deal-
ing with norms. We have thus several algorithms that are
guaranteed to converge to the jsr, but that are either too slow
to reach a good accuracy, or subject to numerical problems.

3 Genetic algorithm approach

In our approach, we are willing to drop the guaranteed con-
vergence to the exact value in order to obtain bounds of good
quality with low computation cost. The algorithm we pro-
pose finds a lower bound on the jsr by considering a subset
of all products of matrices of given lengths. There is no
guarantee that the optimal product will be found as in the
previously mentioned branch-and-bound methods but here,
the emphasis is put on the low computation time. More pre-
cisely, the algorithm starts with a set of products of small
length and iteratively generates new products by heuristi-
cally combining existing ones depending on their perfor-
mance. The maximal allowed product length is slowly in-
creased during the computation and each new product may
thus provide a better bound. Experimental results tend to
show that the bounds obtained by this method are tighter
than those obtained by other algorithms and are often opti-
mal on examples of small size. The required computation
time is also much smaller, however, there is no a priori guar-
antee on the quality of the bounds returned by our method.
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