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Motivation – what is the joint spectral radius?

Motivation: switching linear iterations

Discrete-time linear system of the form:

x (t + 1) = Ax (t), A ∈ Rn×n for all t .

Growth and stability ruled by the spectral radius ρ(A).

� No restriction on the sequence of matrices At .

� Switching depending on the state, external signal, due to
asynchronism, randomness...
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Motivation – what is the joint spectral radius?

The joint spectral radius

� For a single matrix A: ρ(A) = lim
k→∞

‖Ak‖1/k (Gelfand).

� For a set Σ of matrices:
I Joint spectral radius (Rota, Strang)

ρ̂(Σ) = lim
k→∞

max{‖Ai1 . . .Aik ‖1/k | Ai ∈ Σ}.

I Generalized spectral radius (Daubechies, Lagarias)

ρ(Σ) = lim sup
k→∞

max{ρ(Ai1 . . .Aik )1/k | Ai ∈ Σ}.
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Motivation – what is the joint spectral radius?

The joint spectral radius
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Motivation – what is the joint spectral radius?

The joint spectral radius is difficult to evaluate

In the last example, ρ(Σ) = ρ(AB)
1
2 .

Finiteness property: Maximal growth rate given by a periodic product.

Finiteness conjecture (false): All sets Σ ⊂ Rn×n possess the FP.

� Approximating the JSR is NP-Hard, even for binary matrices.

� Determining if ρ(Σ) 6 1 is undecidable, even for nonnegative rational
matrices.
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Computation methods for the joint spectral radius

How to compute the joint spectral radius?

Define:
ρ̂k (Σ) = max{‖Ai1 . . .Aik‖

1/k | Ai ∈ Σ},

ρk (Σ) = max{ρ(Ai1 . . .Aik )1/k | Ai ∈ Σ}.

Recall that by definition of the JSR:

lim sup
k→∞

ρk (Σ) = ρ(Σ) = lim
k→∞

ρ̂k (Σ).

We have:
ρk (Σ) 6 ρ(Σ) 6 ρ̂k (Σ).

Values of ρ̂k (Σ) depends on the norm!
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Computation methods for the joint spectral radius

First approach: consider a large set of products

For all k , we have the converging bounds ρk (Σ) 6 ρ(Σ) 6 ρ̂k (Σ).

Brute-force is only reasonable for small problems but branch-and-bound
approach is possible.

Gripenberg’s algorithm: given ε, uses a branch-and-bound technique to
return lower and upper bounds ρ− 6 ρ(Σ) 6 ρ+ with ρ+ − ρ− 6 ε.

� Guaranteed converging bounds at each step.

� Convergence may be slow depending on the norm used.

� Number of steps to reach an interval of length ε is unknown.

� May require very long products.
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Computation methods for the joint spectral radius

Second approach: consider a large set of norms

Norm dependency of the upper bounds ρ̂k (Σ)
→ try to find a norm giving good bounds with short products.

A norm is extremal if ρ(Σ) = max
Ai∈Σ

‖Ai‖ (product of length 1).

It can be proven that ρ(Σ) = inf
‖·‖

max
Ai∈Σ

‖Ai‖.

Idea: minimize over a well-chosen set of norms.
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Computation methods for the joint spectral radius

Finding an ellipsoidal norm using optimization

Ellipsoidal vector norm: ‖x‖P =
√
xTPx for a given P � 0.

Ellipsoidal norm approximation: ρ̂ell (Σ) = inf
P�0

max
Ai∈Σ

‖Ai‖P .

Upper bound ρ̂ell (Σ) can be computed using semidefinite optimization:
ρ̂ell (Σ) = min

γ∈R,P�0

{
γ | γ2P −AT

i PAi � 0 for all Ai ∈ Σ
}

.

� Guarantee: 1√
max{n,|Σ|}

ρ̂ell (Σ) 6 ρ(Σ) 6 ρ̂ell (Σ).

� Extensions: polynomials and sum-of-squares, conic programming.

� May require solving a large SDP problem.

� Subject to numerical issues.
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Computation methods for the joint spectral radius

Third approach: build an extremal norm

Instead of considering a large set of norms and “hope” that it contains an
extremal one, try to directly construct such an extremal norm.

Several algorithms, e.g., Kozyakin’s LR and MR-procedures use this
approach.

� Guaranteed converging bounds at each iteration in theory.

� Most algorithms require manipulation of geometric objects
(polytopes, unit balls of norms, . . . )

� Practical convergence may be slow due to discretization and
numerical problems.
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A genetic algorithm for the joint spectral radius

Why using a genetic algorithm?

Most “classical” methods have some theoretical guarantees but are often
too slow and/or fail due to numerical problems if we want a good accuracy.

Here, we are willing to drop guarantees* in exchange of a fast running
algorithm able to handle reasonably large size problems.

(*) Only return a lower bound on the JSR but with no a priori guarantee
on its quality.
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A genetic algorithm for the joint spectral radius

What is a genetic algorithm?

GA is a stochastic beam-search evolutionary method...

� Stochastic: include random elements.

� Beam-search: keep a set of candidates at each iteration.

� Evolutionary: generate new candidates by combining current ones.

Many variants are possible for the generation of new candidates from old
ones.
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A genetic algorithm for the joint spectral radius

Application to the joint spectral radius

� Preprocess and generate an initial population of size M .

I Evaluate all products of length 6 k for some k .
I Best product gives an initial lower bound on the JSR.
I Generate M random products of length 6 K = 2k as initial population.

At each generation:

� Evaluate the performance of all population members.

� Generate the new population based on the current one.

� Apply random mutations with some probability.

� Enlarge the search space if no improvement is done.
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A genetic algorithm for the joint spectral radius

Application to the joint spectral radius

� Preprocess and generate an initial population of size M .

At each generation:

� Evaluate the performance of all population members.

� Generate the new population based on the current one.

I Best products are kept (elitism).
I New products are produced by swapping good ones:

A1A2A3A4A5 ⊕ B1B2B3B4B5 −→ A1A2B3B4B5.
I Others are produced by mixing old products:

A1A2A3A4A5 ⊗ B1B2B3B4B5 −→ A1B2B3A4B5.
I New random products are inserted to ensure exploration.

� Apply random mutations with some probability.

� Enlarge the search space if no improvement is done.
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A genetic algorithm for the joint spectral radius

Application to the joint spectral radius

� Preprocess and generate an initial population of size M .

At each generation:

� Evaluate the performance of all population members.

� Generate the new population based on the current one.

� Apply random mutations with some probability.
I Randomly modify some parts of a small number of products to ensure

exploration.

� Enlarge the search space if no improvement is done.
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A genetic algorithm for the joint spectral radius

Application to the joint spectral radius

� Preprocess and generate an initial population of size M .

At each generation:

� Evaluate the performance of all population members.

� Generate the new population based on the current one.

� Apply random mutations with some probability.

� Enlarge the search space if no improvement is done.
I If the bound keeps stalling for T1 generations, increase the maximum

product length K and try again.
I If there is still no improvement for T2 generations, abort the algorithm

and return the best bound found.
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Numerical results

A first numerical example

Test sets: 100 sets of randomly-generated matrix with entries in [−5, 5]

Smaller problems: |Σ| = 2, Σ ⊂ R2×2.

Comparison of lower bounds given by brute-force approach, Gripenberg’s
algorithm (1st approach), LR/MR-procedures (3rd approach), and genetic
algorithm.

Performance mesured by the number of times the algorithm returns the
best bound among all algorithms, within a given tolerance.
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Numerical results

Small sets (2 random matrices of size 2x2)
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Brute-force: products of length 2 ∼ 12, manageable due to small size
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Gripenberg: 100 ∼ 105 evaluations, fails due to numerical accuracy
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LR/MR-procedures: 500 ∼ 105 points, imprecise and numerical issues
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Numerical results

Small sets (2 random matrices of size 2x2)
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Genetic: population size 15 ∼ 100, stalling threshold T1 ∈ {10, 15}.
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Numerical results

Larger sets (4 random matrices of size 4x4)
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Running time of the genetic algorithm is similar to the smaller problem.
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Numerical results

Even larger sets (16 capacity matrices of size 16x16)
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Genetic algorithm can manage the problem size increase.
LR/MR-procedures require too much memory.
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Conclusions

Conclusions

� The approximation of the JSR is a difficult computational problem.

� “Classical” methods have theoretical guarantees but are unable to
handle large size problems in practice (computation time, memory
usage, numerical issues).

� The genetic algorithm has no a priori guarantee but performs very
well with a low running time.

Further work: parameter selection, other joint spectral quantities, . . .
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