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Abstract We describe several approximation algorithms for the joint spectral
radius and compare their performance on a large number of test cases. The
joint spectral radius of a set Σ of n × n matrices is the maximal asymptotic
growth rate that can be obtained by forming products of matrices from Σ.
This quantity is NP-hard to compute and appears in many areas, including in
system theory, combinatorics and information theory. A dozen algorithms have
been proposed this last decade for approximating the joint spectral radius but
little is known about their practical efficiency. We overview these approxima-
tion algorithms and classify them in three categories: approximation obtained
by examining long products, by building a specific matrix norm, and by using
optimization-based techniques. All these algorithms are now implemented in
a (freely available) MATLAB toolbox that was released in 2011. This tool-
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box allows us to present a comparison of the approximations obtained on a
large number of test cases as well as on sets of matrices taken from the litera-
ture. Finally, in our comparison we include a method, available in the toolbox,
that combines different existing algorithms and that is the toolbox’s default
method. This default method was able to find optimal products for all test
cases of dimension less than four.

Keywords Joint spectral radius · Generalized spectral radius · Product of
matrices · Matrix semigroup · Dynamical systems · Discrete-time systems

Mathematics Subject Classification (2000) 15A18 · 15A60 · 65F15 ·
65F35

1 Introduction

The joint spectral radius ρ(Σ) of a set of matrices Σ ⊂ Rn×n is a quantity
that characterizes the maximal asymptotic growth rate of products of matrices
drawn from the set Σ. It is formally defined by

ρ(Σ) = lim
t→∞

ρt(Σ), (1)

with

ρt(Σ) = max
{
‖M‖1/t |M ∈ Σt

}
.

Here, Σt denotes the set of products of length t of matrices in Σ. One can
show that the limit in (1) exists and that it does not depend on the matrix
norm that is used, provided this norm is submultiplicative. In the particular
case where Σ contains only one matrix, the joint spectral radius is equal to the
usual spectral radius, i.e., the largest magnitude of the eigenvalues. Equation
(1) is thus a generalization of the well-known Gelfand formula for the spectral
radius of a single matrix.

The joint spectral radius was initially introduced by Rota and Strang in
[29] and has since then appeared in many applications such as the stability of
switched systems [12,18], the study of wavelets [8,24], combinatorics and lan-
guage theory [15], the capacity of some types of codes [25], etc. More examples
and a general overview of what is known for the joint spectral radius can be
found in [14]; see also [30] for more specific results.

The problem of approximating the joint spectral radius has been widely
studied. The first algorithms proposed consisted in constructing products of
increasing length and using ρt as upper bounds. Lower bounds can be obtained
by considering the generalized spectral radius ρ̄(Σ) defined by

ρ̄(Σ) = lim sup
t→∞

ρ̄t(Σ), (2)

with

ρ̄t(Σ) = max
{
ρ(M)1/t |M ∈ Σt

}
.
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For all lengths t, the following inequalities are satisfied [1]:

ρ̄t(Σ) ≤ ρ̄(Σ) ≤ ρ(Σ) ≤ ρt(Σ). (3)

It was moreover proved in [1] that the generalized spectral radius is equal to
the joint spectral radius whenever Σ is bounded (or, in particular, finite). For
bounded sets, the inequalities in (3) can thus be used to derive arbitrarily
precise approximations for the joint spectral radius.

It has also been observed that the lower bound in (3) often reaches the
joint spectral radius for some finite t. A set of matrices Σ is said to possess
the finiteness property if there exists some product M ∈ Σt such that ρ(Σ) =
ρ(M)1/t. It was first conjectured by Lagarias and Wang in [22] that all sets of
matrices do have the finiteness property — a conjecture known as the finiteness
conjecture — but this conjecture was proved to be false [5,4,17]. The proofs
in these articles are nonconstructive and recently an explicit counterexample
has been provided by Hare et al. in [13] by extending the results in [5,4,18].
Note that the question of determining if all sets of rational matrices have
the finiteness property is still open. This “restricted” finiteness conjecture is
interesting because matrices that appear in applications often have rational,
integer or even binary entries.

The sequence of upper bounds in (3) converges very slowly to ρ(Σ) except
in some particular cases. Hence, any approximation algorithm directly based
on the inequalities (3) is bound to be inefficient. This is not so surprising since
the problem of approximating the joint spectral radius is known to be NP-hard
[31]: unless P=NP, there is no algorithm that, given a set of matrices Σ and
a relative accuracy ε, is able to return an ε-approximation of ρ(Σ) in a time
polynomial in the size of Σ and ε.

Our contribution in this paper consists of two parts. First, we review a
number of approximation methods that appear in the literature, we classify
them in three categories and we summarize their main characteristics. This
extensive review of the literature can be found in Section 2.

Second, we analyze the efficiency of the different methods. Many of the
approximation methods described in the literature have only been analyzed
from a theoretical point of view and have never been implemented, or their
implementations are not publicly available. The methods that we consider in
this article have all been implemented in a recent MATLAB toolbox (the JSR
Toolbox ) that is freely available for download [32]. Note that the toolbox offers
a “default” method that approximates the joint spectral radius by combining
different algorithms.

In Section 4, we use the JSR Toolbox to compare the performances of the
different algorithms on a large number of test cases. In particular, we observe
numerical issues due to finite precision arithmetic and implementation difficul-
ties that alter the behavior of algorithms that may otherwize look promising.
We discuss these issues in Section 4 and provide there final comments and
recommendations.
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2 Approximation methods for the joint spectral radius

The problem of approximating the joint spectral radius is far from trivial,
except in some particular cases. A first naive approach would be to consider
the relations (1), (2), (3) and evaluate all products inΣt for increasing values of
t. Of course, these bounds will converge to the exact value of the joint spectral
radius, but since the number of products to consider grows exponentially with
the product length, one has to reduce the search space in some way. Several
arguments may be used, e.g., the fact that the spectral radius of a product of
matrices is invariant under cyclic permutations of its factors [23]. This leads
us to branch-and-bound based methods, which are presented in Section 2.1.

Note that the sequence of upper bounds may converge very slowly even if a
lower bound may reach ρ(Σ) for a small product due to the finiteness property.
A detailed analysis of the quality of the upper bounds may by found in [19].
In order to speed up the procedure, one can also try to find an appropriate
norm that gives a faster convergence rate in the expression (1). In some cases,
it is even possible to find a norm that is extremal with respect to the set of
matrices, that is, a norm such that the joint spectral radius is reached with a
product of length one. More precisely, a norm ‖ · ‖ is said to be extremal for
a set of matrices Σ if ‖M‖ ≤ ρ(Σ) for all M ∈ Σ.

We also have the property:

ρ(Σ) = inf
‖·‖

sup
M∈Σ

‖M‖, (4)

where the infimum is taken over the set of all matrix norms; see also [33].
Methods for approximating the joint spectral radius with techniques based on
the optimization problem (4) are presented in Section 2.2, whereas Section
2.3 describes geometric algorithms that iteratively approximate an extremal
norm.

2.1 Product enumeration

Gripenberg’s branch-and-bound method [9] was one of the first algorithms
proposed for approximating the joint spectral radius. Given a target tolerance
ε and a norm ‖·‖, this algorithm starts with a initial set Π1 = Σ of candidates,
and the corresponding natural bounds, i.e., α1 = maxM∈Σ ρ(M) as lower
bound and β1 = maxM∈Σ ‖M‖ as upper bound. In general, the upper bounds
will depend on the chosen norm.

At the kth iteration of the algorithm, let us define the new set of candidates:

Πk = {MP |M ∈ Σ,P ∈ Πk−1, µ(MP ) > αk−1 + ε} ,
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where µ(M1 . . .Mk) = min1≤i≤k ‖M1 . . .Mi‖1/i. The bounds are then updated
as follows:

αk = max

{
αk−1, max

P∈Πk

ρ(P )1/k
}
,

βk = min

{
βk−1,max

{
αk−1 + ε, max

P∈Πk

µ(P )

}}
.

At each iteration, the bounds satisfy αk ≤ ρ(Σ) ≤ βk and we have limk→∞(βk−
αk) ≤ ε. Hence, this method provides arbitrarily precise approximation of the
joint spectral radius ρ(Σ) when given sufficient computational resources. The
number of iterations required to achieve a given absolute accuracy of ε is not
known a priori and may depend on the choice of the norm ‖ · ‖. Even when
it is possible to discard a large number of products at each step, it may be
necessary to reach very long products in order to obtain an interval of length
ε.

In [25], Moision et al. introduces a pruning algorithm for sets of nonnegative
matrices. This method is based on several dominating relations, e.g., the fact
that if A ≥ B ≥ 0 componentwise, then ρ(A) ≥ ρ(B). Similar conditions
can also be found for the upper bounds, depending on the norm used in the
algorithm. Of course this does not lead to a polynomial-time algorithm in
the general case, but the number of products may be significantly reduced in
several particular cases.

The main disadvantages of this family of methods are the large number
of products that we may have to consider when reaching very long products,
which may result in a large amount of computation time when a small interval
is required, and the influence of the choice of the norm on the convergence
of the sequence of upper bounds. In the general case, the sequence of upper
bounds converges very slowly to the joint spectral radius. However, it may be
possible to find tight lower bounds in a short amount of time as the set of ma-
trices may have an optimal product of small length. Moreover, implementing
these methods is usually straightforward as it mainly consists in manipulating
products of matrices. Hence, this should not give rise to more numerical errors
than basic arithmetic operations, except for one detail: if the length of the
products grows too much, a direct application of the method may reach the
overflow threshold, depending on the set of matrices. In order to avoid this
issue, it may be wise to use some scaling of the matrices.

2.2 Norm optimization

Since the value of ρt(Σ) converges slowly to ρ(Σ) in the general case, another
approach is try to find a so-called extremal norm in order to obtain better
upper bounds. This is done by considering a modified version of (4). Indeed,
optimizing on the space of all matrix norms is not an easy task, so in practice
one may instead consider a subset of norms. Of course, this subset should
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preferably be chosen so that the restricted optimization problem is easy to
solve. One such example introduced in [3] is the class of ellipsoidal norms
(also called ellipsoid norms).

Given a positive definite matrix P ∈ Rn×n (denoted by P � 0), let us

consider the so-called ellipsoidal vector norm ‖x‖P =
√
xTPx for x ∈ Rn. The

associated ellipsoidal matrix norm is the corresponding induced matrix norm:

‖M‖P = max
x 6=0

‖Mx‖P
‖x‖P

= max
x 6=0

√
xTMTPMx√

xTPx
. (5)

Similarly to (4), the ellipsoidal norm approximation ρ̂Ell(Σ) is then defined
by:

ρ̂Ell(Σ) = inf
P�0

max
M∈Σ

‖M‖,

which is obviously an upper bound on the joint spectral radius. This approx-
imation can be easily computed using semidefinite programming (SDP). In-
deed, (5) implies that for each matrix M ∈ Σ we have:

xT
(
‖M‖2PP −MTPM

)
x ≥ 0, ∀x ∈ Rn.

The ellipsoidal norm approximation corresponds thus to the minimum value of
γ such that there exists a positive definite matrix P � 0 with γ2P−MTPM �
0 for all matricesM ∈ Σ. For a given value of γ, the problem of finding a matrix
P corresponds to an SDP feasibility problem that may be solved efficiently,
and thus the optimal value of γ can be found by bisection.

The following bounds are known to hold for the ellipsoidal norm approxi-
mation ρ̂Ell(Σ):

1
√
η
ρ̂Ell(Σ) ≤ ρ(Σ) ≤ ρ̂Ell(Σ), (6)

with η = min {n, |Σ|}, where |Σ| corresponds to the size of Σ, i.e., the number
of matrices in the set. However, in practice, better lower bounds can easily be
obtained by considering products of small lengths.

This SDP-based method has been generalized by several authors, includ-
ing Parrilo and Jadbabaie. In [26] these authors propose a generalization by
replacing the norms by positive polynomials, based on the following result:

Proposition 1 Let Σ be a set of n × n matrices and p(x) be a (strictly)
positive homogeneous polynomial of degree 2d with n variables that satisfies
p(Mx) ≤ γ2dp(x)∀x ∈ Rn, for all M ∈ Σ. Then, ρ(Σ) ≤ γ.

Even though positive polynomials are hard to characterize, a positivity
constraint can be relaxed into a sum-of-squares (SOS) constraint: instead of
p(x) ≥ 0, we require the existence of a decomposition p(x) =

∑
i pi(x)2. Note

that although a sum of squares is obviously nonnegative, most but not all
nonnegative polynomials can be rewritten as sums of squares. The sum-of-

squares decomposition can also be written as p(x) =
(
x[d]
)T
Px[d], where x[d]

is a vector containing all monomials of degree d with n variables, and P � 0
is a positive semidefinite matrix. The problem of checking if a polynomial
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is a sum-of-squares is thus equivalent to a SDP feasibility problem and the
sum-of-squares approximation can thus be exprimed as follows:

ρ̂SOS,2d(Σ) = min γ

s.t. ∃ p(x) ∈ R[x]2d homogeneous

p(x) is SOS

γ2dp(x)− p(Mx) is SOS ∀M ∈ Σ.

As with the ellipsoidal approximation, the optimal value of γ can be found by
bisection. In fact, in the particular case d = 1, the problem is equivalent to
the ellipsoidal norm case because all quadratic nonnegative polynomials can
be written as sums of squares.

In the general case, we have the following bounds on the approximation
accuracy: (

1
√
η

)d
ρ̂SOS,2d(Σ) ≤ ρ(Σ) ≤ ρ̂SOS,2d(Σ), (7)

where η = min
{(

n+d−1
d

)
, |Σ|

}
. In theory, one can thus obtain arbitrarily sharp

approximations by taking polynomials of sufficiently large degree, but the
computational cost increases accordingly.

Another generalization of the ellipsoidal norm approximation was pre-
sented in [28], where the authors extend the SDP problem to general conic
programming. This extension allows to derive upper and lower bounds on
the joint spectral radius, provided that the matrices in Σ leave a common
cone K invariant, i.e., MK ⊂ K for all M ∈ Σ. In this case, the conic ap-
proximation ρ̂Conic,K(Σ) satisfies the inequalities α(K)ρ̂Conic,K(Σ) ≤ ρ(Σ) ≤
ρ̂Conic,K(Σ), where α(K) ≥ 1

n is a constant depending on the invariant cone
K. For example, the constant corresponding to the cone Sn+ of positive semidef-
inite n × n matrices, has value α(Sn+) = 1

n . Note that for an arbitrary set Σ,

it is always possible to build a set Σ̃ leaving the cone Sn+ invariant and sat-

isfying ρ(Σ̃) = ρ(Σ)2. When applying this method on the lifted set Σ̃ with
respect to the cone Sn+, the result obtained is equivalent to the ellipsoidal norm
approximation.

The main idea of all these methods is thus to formulate an approximation
of the problem in conic optimization and use efficient solving techniques to
obtain the bounds on the joint spectral radius. The implementation of these
methods usually makes use of an external optimization solver. The situation
is roughly the opposite of product enumeration algorithms in the sense that
norm optimization methods are sometimes able to find tight upper bounds, but
are unable to provide lower bounds of good quality. However, this approach
is usually inadequate for problems of large size. Indeed, the size of these op-
timization problems may grow very fast and computational limitations may
thus become a significant issue since the optimization solver will require a large
amount of memory and of computation time. Moreover with high-dimensional
problems, numerical issues tend to appear during the resolution of the opti-
mization problem by the solver.
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2.3 Extremal norm construction

A third approach to joint spectral radius approximation is to explicitly ap-
proximate an extremal norm instead of optimizing over a chosen set of matrix
norms. Several methods have been proposed by different authors, including
Protasov, Guglielmi and Kozyakin. The main idea is to start with some ma-
trix norm or, equivalently, some region corresponding to the unit ball of a
norm. Iterative algorithms are then applied in order to produce an adequate
sequence of norms that converges to an extremal norm. These algorithms may
explicitly work with the norms, or with the corresponding unit balls. For ex-
ample, [27] proposes to approximate the unit ball of an extremal norm with a
sequence (Pi)i of polytopes chosen in order to obtain an ε-approximation of
the joint spectral radius after a number of iterations which can be determined
a priori, depending on ε and Σ. At the ith iteration, the new polytope Pi+1

is obtained as an approximation of the convex hull of the polytopes obtained
by applying the different matrices of Σ on Pi. Note that the computation of
a convex hull may be a significant issue when dealing with high-dimensional
sets of points.

Another geometric approach involving polytopes has been studied in [11]
and in [7]. The method is based on balanced polytopes, which are polytopes
P ⊂ Kn such that there exists a finite set of vectors V = {v1, . . . , vk} satisfying
span(V) = Kn and:

P = absco(V) :=

{
x ∈ Kn

∣∣∣∣∣ x =

k∑
i=1

λivi with

k∑
i=1

|λi| ≤ 1, λi ∈ K

}
,

with K = R or C. Here, “absco” corresponds to absolutely convex hull. De-
pending on the choice for K, the polytope is called a balanced real polytope or
a balanced complex polytope. A polytope norm is any norm whose unit ball is
a balanced polytope. It is known [10] that the set of induced matrix polytope
norms is dense in the set of induced matrix norms, so (4) holds even if we take
the infimum on all polytope norms.

In order to find such a polytope norm, the authors present an algorithm
that essentially considers the trajectories of a vector x̃ under all possible prod-
ucts of matrices in Σ. If x̃ is well-chosen and some hypotheses hold, then the
convex hull of the trajectories will describe a balanced polytope, that will give
the value of the joint spectral radius. In particular, it is supposed that the set
Σ do possess the finiteness property. The vector x̃ is then taken as a leading
eigenvector of a candidate product. Note that this eigenvector may be complex
even if Σ ⊂ Rn×n. The main idea of the algorithm is given below:

– Let P be the candidate product (of length m) and let Σ̃ = ρ(P )−1/mΣ
be a scaled version of Σ. Define the set V0 as V0 = {x, x̄}, where x is a
(possibly complex) leading eigenvector, and let P0 = absco(V0).

– Recursively compute Vk+1 = Σ̃Vk.
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– At each iteration, define Pk as Pk = absco(Vk). If Vk+1 ⊂ Pk for some k
then terminate the algorithm with the conclusion that the product P is
optimal.

More details can be found in [11]. This method requires a good initial guess,
but if the candidate product is indeed optimal, then the algorithm stops after
a finite number of steps and provides a certificate for the product optimality.
In [7], a stopping criterion (x ∈ intPk for some k) is given so that the iteration
can be stopped and the candidate product discarded if it is not optimal. Apart
of the requirement of a starting point, the main drawback is that this algorithm
usually requires a large amount of computation time, especially with matrices
of larger sizes. Efficiently implementing the algorithm is also nontrivial (see
Section 3.2). Another issue is that the operations such as the computation of
the convex hulls may be subject to numerical inaccuracies or a large memory
usage with high-dimensional sets of points.

Two different iterative schemes are proposed in [20] and [21] for the con-
struction of an extremal norm. More precisely, these algorithms are mainly
designed for building Barabanov norms, but they also give the joint spectral
radius as a byproduct. In the first algorithm (called the Linear relaxation iter-
ation or LR-procedure), starting with an arbitrary initial norm on Rn, we build
a sequence of norms by using linear combinations of already computed norms.
Bounds on the joint spectral radius are available at every iteration. More pre-
cisely, the LR-procedure defines a sequence of norms (‖ · ‖k)k∈N according to
the following rules:

– Start with a norm ‖·‖0 on Rn and let e 6= 0 be a vector such that ‖e‖0 = 1.
Let us also choose λ−, λ+ such that 0 < λ− ≤ λ+ < 1.

– At every iteration, bounds on the joint spectral radius are given by ρ(Σ) ∈
[ρ−k , ρ

+
k ] with:

ρ+k = max
x6=0

maxi ‖Mix‖k
‖x‖k

, ρ−k = min
x6=0

maxi ‖Mix‖k
‖x‖k

.

– Let λk be in the interval [λ−, λ+] and define the new norm ‖ · ‖k+1 as
follows:

‖x‖k+1 = λk‖x‖k + (1− λk)
maxi ‖Mix‖k
maxi ‖Mie‖k

.

This procedure converges to an extremal norm, and the two sequences(
ρ±k
)
k∈N converge to ρ(Σ). Alternatively, one can also apply the Max-relaxation

iteration that replaces the linear combination with a maximum operation and
an averaging function. The MR-procedure has similar convergence properties
as the LR-procedure. More details can be found in [20] and [21].

In practice, producing an efficient implementation of these two methods
is quite challenging due to the geometric nature of the operations and the
fact that the algorithms are described at a rather high level. One possibility
would be to discretize the space but this may reduce the practical accuracy
of the algorithms, due to discretization errors. Moreover, this approach can
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become difficult to manage with matrices of large sizes as the required num-
ber of discretization points would grow exponentially. More details about our
implementation can be found in Section 3.2. This implementation seems to
produce acceptable results of limited accuracy provided that the problem size
is small enough.

2.4 Lifting techniques

Whatever method is used to approximate the joint spectral radius, it is always
possible to apply a lifting on the set of matrices Σ. This provides better bounds
at the price of a higher computational cost, for example when combined with
the bounds (6) or (7). The main idea is to build a set of matrices Σ̃ such that

the relation between ρ(Σ̃) and ρ(Σ) is known, and then apply the algorithms

on Σ̃. Some examples are Σt, the set of products of length t, Σ⊗t, the set of
tth Kronecker powers of the matrices in Σ, or Σ[t], the set of t-lifts of matrices
in Σ (see [2] and [26]). Indeed, it can be proved that

ρ(Σ)t = ρ(Σt) = ρ(Σ⊗t) = ρ(Σ[t]).

In these examples the lifted set contains either a larger number of matrices,
or matrices that have a larger dimension. Note that in [2], the authors also
propose a recursive approximation method based on successive liftings of the
initial set. In theory, this may provide arbitrarily accurate bounds on the joint
spectral radius, but the exponential growth of the problem size renders the
method intractable except for a very small number of liftings.

3 Experimental analysis

In practice, the performance of all the methods that we have described varies
widely. A branch-and-bound method such as Gripenberg’s algorithm provides
an interval containing the value of the joint spectral radius, but the compu-
tation time becomes prohibitive when a small interval is desired due to the
growth of the number of products to consider. The same thing can be said
about the pruning algorithm, when the matrices are nonnegative. Optimiza-
tion methods based on the ellipsoidal norm or the sum-of-squares approxima-
tions mainly give an upper bound, and even if they may find the exact value
in some cases, the size of the semidefinite optimization problem becomes huge
when one tries to lift the matrices to improve the bounds in (6) or to increase
the degree d in (7). The computation time increases rapidly and numerical
problems may become a significant issue. Geometric algorithms such as the
LR-procedure or Protasov’s method require the manipulation of geometric
objects. The accuracy of the results may thus be significantly influenced by
numerical issues such as discretization errors.
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Problem size n = 2 n = 4 n = 8
|Σ| = 2 100 sets 100 sets —
|Σ| = 3 100 sets 100 sets —
|Σ| = 4 100 sets 100 sets 100 sets
|Σ| = 8 — — 100 sets

Table 1 Characteristics of the randomly generated sets of matrices. Each instance corre-
sponds to a set Σ of n× n matrices whose entries have been randomly chosen between −5
and 5 using a uniform distribution.

Minimal period
Problem size [1; 2] [3; 5] [6; 9] [10; 19] 20+

n
=

2 |Σ| = 2 90% 5% 2% 1% 2%
|Σ| = 3 87% 11% 1% 1% —
|Σ| = 4 77% 20% 3% — —

n
=

4 |Σ| = 2 74% 17% 6% 3% —
|Σ| = 3 54% 25% 12% 6% 3%
|Σ| = 4 63% 20% 13% 3% 1%

Table 2 Classification of the different instances according to the minimal period associated
to the optimal products.

3.1 Details about the test sets

The different methods presented in the previous section have been tested on
a large number of sets of matrices. Most examples are randomly generated
matrices but the test set also includes instances obtained from applications
such as the computation of the capacity of codes subject to forbidden difference
patterns [25]. Indeed, the computation of a capacity may involve very large
sets of matrices and/or high-dimensional matrices. More information about
the random generation may be found in Table 1.

In the case of 2×2 and 4×4 matrices, an optimal periodic product reaching
the exact value of the joint spectral radius has been found for every test case.
As the computational cost increases with the size of the matrices, obtaining
the same result for every 8 × 8 matrix in the test set was not possible due
to a high computational cost. Note that all these results have been obtained
using the JSR Toolbox (more details in Section 3.3). The exact value of the
joint spectral radius allows us to compute the actual approximation errors
for the different algorithms. The minimal period associated to the different
optimal products for a given set Σ may be considered as a rough measure
of the difficulty of the problem. In Table 2, the different sets of matrices are
classified according to their minimal period. Note that even with randomly
generated matrices, the test set contains nontrivial instances, e.g., several sets
of two 2× 2 matrices with an optimal product whose length is more than 20.
The smallest minimal period is 1 and the largest is 32.
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3.2 Details about the implementations

The approximation methods have been implemented using MATLAB 7.4.0.336
(R2007a) and the computation have been performed on an Intel R© CoreTM 2
Quad Q9300 at 2.50 GHz with 3 GiB RAM, running Ubuntu Linux 10.04.3
LTS. The solver used for the SDP problems is SeDuMi 1.3. For Gripenberg’s
method, the implementation used in the tests is the one written by G. Gripen-
berg and available at http://math.tkk.fi/~ggripenb/ggsoftwa.htm.

Since the computations are performed with limited numerical accuracy,
several issues may arise in practice. For example, as the upper bound in Gripen-
berg’s method converges quite slowly in general, very long products may be
required in order to reach the desired accuracy on the approximation of the
joint spectral radius. However, if these products are too long, the implemen-
tation may fail due to overflow problems. This indeed happens for a small but
non-negligible fraction of the test set, especially with sets containing only two
small matrices. More precisely, given the same amount of computational re-
sources, this problem is expected to happen less often for larger sets of matrices
since the number of different products of a given length would be much larger.
Hence, the maximal reachable product length given the same computational
resources would be lower. This will be analyzed in Section 4 (see Table 3).
One possible way to avoid these overflow problems is to rescale the matrices
as often as required during the computation, in order to keep the growth of
the matrices under control.

Norm optimization methods have been implemented as direct transla-
tions of the SDP problems described in the literature into SeDuMi format.
The resolution of the optimization problem is done by SeDuMi 1.3, which is
based on primal-dual interior-point methods and is freely available at http:

//sedumi.ie.lehigh.edu. When doing an iteration of the bisection method,
the description of the SDP problem (in SeDuMi format) is updated instead of
being recomputed. Hence, there is only a single construction of the full prob-
lem, which is done at the first iteration. The tolerance threshold of the SDP
solver is left as a parameter.

For Guglielmi’s balanced polytope algorithm, we mainly follow the de-
scription given in [11]: a first remark is that we do not really need to compute

Vk+1 = Σ̃Vk at each iteration: it is possible to prune vectors from the set.
This is done by constructing a so-called essential system of vertices of Pk,
which corresponds to a minimal set of vertices generating Pk via absolutely
convex combinations. The minimality of the set is not required, but it lets us
keep a smaller set of vectors during the computation. The computation of this
essential system of vertices can be done via a convex hull operation in the real
case (which is done by Qhull with the function convhulln in MATLAB), or
by solving a quadratic real program in the complex case, by separating the
real and imaginary parts. Testing whether all vectors in Vk+1 are inside Pk
can be done by solving a linear program in the real case, or again a quadratic
real program in the complex case, as we already have an essential system of
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vertices describing the polytope Pk. In our implementation, we are using the
MATLAB functions linprog and quadprog but other solvers can be used.

In general, geometric algorithms are subject to more implementation is-
sues since most geometric operations, e.g., the computation of convex hulls,
are done with limited precision. Describing objects such as polytopes or ellip-
soids is possible, but representing the unit ball of an arbitrary norm may be
problematic. In these cases, the geometric objects are usually approximated
using some kind of discretization, for example in our implementation of the
LR and MR-procedures. This may lead to two practical problems. On the
one hand, as the dimension of the space increases, one would obviously need
an exponentially increasing number of points, which is not always reasonable.
On the other hand, one has to choose the position of the sampling points.
Hence, while a uniform sampling of a circle (in a space of dimension 2) is
easy to perform, the general problem of uniformly sampling an n-dimensional
hypersphere is difficult. A possible solution is to use a random sampling with
uniform distribution on the hypersphere but then, the number of points has
to be increased even more in order to obtain good approximations with high
probability. In our implementation, we have chosen a uniform random sam-
pling by generating vectors using independent standard gaussian distributions
for every component, then rescaling them in order to obtain unit norm vec-
tors [16]. The different unit balls are then managed by keeping the values of
the norms of the discretization points. The effects of the matrices acting on
these discretization points are pre-computed before the first iteration. Finding
the nearest discretization point is done via the MATLAB function dsearchn,
which also uses Qhull. Of course in the two-dimensional case, we can simply
use a uniform sampling of the circle and the problem of finding the nearest
discretization point becomes trivial.

3.3 The JSR Toolbox

The JSR Toolbox [32] is a MATLAB toolbox that provides a large set of
methods for the approximation of the joint spectral radius, but also includes
several helper functions, for example for comparison or analysis purposes, and
several demonstration functions. One important feature is that the toolbox
offers a “default” algorithm that computes bounds on the joint spectral radius
by combining several approaches presented in this article. This may be useful
if one does not know which algorithm is more suitable. The behavior of this
algorithm may also be parameterized as needed, for instance by setting a
maximal computation time or by fine-tuning a particular step in an algorithm.

The main steps of the default algorithm are the following:

– Try to transform the problem into a set of smaller independent problems.
This is possible when the matrices in the set Σ are simultaneously block-
triangularizable.



14 Chia-Tche Chang, Vincent D. Blondel

– If the matrices are nonnegative, start with the pruning algorithm in order
to get some bounds [β−, β+] on the joint spectral radius, then compute the
joint conic radius, using the positive orthant as cone, and the ellipsoidal
norm approximation using [β−, β+] as initial bounds.

– If some matrices have negative entries, start with a variant of Gripenberg’s
algorithm in order to get some initial bounds and a candidate product. This
variant may rescale the matrices during the computation in order to avoid
overflows. After this first step, compute the ellipsoidal norm approxima-
tion and, if needed, try to certify optimality or to find a better candidate
product using a balanced complex polytope method or a conitope method,
which is a lifted polytope method.

In the next section, the results corresponding to this algorithm will also be
included for comparison purposes.

4 Results

In order to compare the different methods, the performances of a chosen subset
of methods (see Figure 1) is shown in Figures 2, 4 and 6. All these figures show
the number of test cases where the algorithm was able to find a lower bound
(left column) or upper bound (right column) close enough to the value of the
joint spectral radius, and the average computation time required to obtain a
result for a single set of matrices with the corresponding sizes.

The red squares correspond to a brute-force method, i.e., the evaluation of
all products of length at most t, with t ∈ {2, 3, 4, 5, 6, 7, 8, 10, 12}, each square
corresponding to one value of t, in this order from the left to the right. In Figure
6, values with t > 8 are not displayed as the computation time is then too large.
The upper bounds are obtained using (3) with the standard 2-norm. Green cir-
cles are associated to Gripenberg’s original branch-and-bound algorithm, using
the 2-norm and a limitation on the number of evaluations of norms and eigen-
values. The maximal number of evaluations is set to a value among {100, 200,
500, 1000, 2000, 5000, 10000, 20000, 50000, 100000}. More precisely, each set of
matrices has been tested with each one of these values. In the different fig-
ures, each green circle is associated to one of these values. Hence, the left-most
green circle corresponds to the run with maximum 100 evaluations as it is the
fastest, the second one corresponds to 200 evaluations, etc.

The ellipsoidal norm and sum-of-squares approximations (with d ∈ {1, 2, 3})
are represented by cyan pentagrams and magenta plusses (‘+’ symbol), respec-
tively. As these techniques involve the resolution of a sequence of semidefinite
optimization problems, three tolerance values have been tested for the Se-
DuMi part: 10−5, 10−7, 10−9. Indeed, this may influence the computation time
and the result, for example if numerical problems are encountered. The initial
bounds associated to the bisection method are obtained by taking the maximal
spectral radius and the maximal 2-norm among all matrices in the set.
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Brute−force (depth = 2, 3, ..., 7, 8, 10, 12)

Gripenberg (2−norm, evals = 100, 200, 500, ..., 50k, 100k)

Ellipsoidal (SDP solver tolerance = 1e−5, 1e−7, 1e−9)

Sum−of−squares (deg = 2, 4, 6, solver tol. = 1e−5, 1e−7, 1e−9)

LR−procedure (λ = 0.3, 0.5, discr. points = 500, 1k, 2k, ..., 50k, 100k)

MR−procedure (discretization points = 500, 1k, 2k, ..., 50k, 100k)

JSR Toolbox (default params, time limit = 3s, 10s, 30s, 120s, 300s)

Fig. 1 Legend associated to Figures 2, 4 and 6.

The points associated to LR and MR-procedures are displayed using black
and gray triangles. The parameters λ± for the Linear relaxation iteration have
been chosen as λ+ = λ− ∈ {0.3, 0.5}. For the Max-relaxation iteration, the
chosen averaging function correspond to the arithmetic mean µ(x, y) = x+y

2 .
Random uniform sampling is used except for 2×2 matrices, where the natural
deteministic uniform sampling of the circle is used. The algorithms have been
tested with all the following values for the number of discretization points:
500, 1000, 2000, 5000, 10000, 25000, 50000, 100000. Moreover, as the result may
vary due to the random component, each run has been repeated 25 times. The
corresponding results have been averaged over these 25 repetitions.

Finally, the results obtained by the JSR Toolbox are shown using blue
crosses. All parameters have been kept at their default values, except the
maximal allowed computation time. This limit has been set to 3, 10, 30, 120
and 300 seconds, so that bounds are obtained in a reasonable time.

Guglielmi’s balanced polytope methods are not represented in these fig-
ures. Indeed, they correspond more to certification algorithms used to check
whether a given candidate product is optimal. This means that their perfor-
mance would heavily depend on the choice of this starting point, especially
when we consider the amount of computation time. Nevertheless, it should
be noted that such certification algorithms are implicitely used by the JSR
Toolbox (see Section 3.3). For example, in our experiments, they allowed us
to find the exact value of the joint spectral radius by producing optimality
certificates for given products.

A first comparison of the behavior of the different methods can be seen
in Figure 2. This corresponds to a set of low-dimensional test cases as we
have n = 2 and |Σ| = 2, which can be considered as “easy”. Indeed, a simple
brute-force method is able to quickly reach an optimal lower bound in nearly
all cases, which is consistent with Table 2. As expected, the upper bounds
converge very slowly. Even with products of length 12, the error is higher than
10−2 more than 40% of the time and an accuracy of 10−6 is never reached. This
can be improved by using a branch-and-bound technique, such as Gripenberg’s
algorithm. Indeed, the figure shows that better upper bounds are obtained, at
least when the number of evaluations is low. There is no clear improvement for
lower bounds as the brute-force approach was already nearly optimal. When
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Fig. 2 Results on small test instances (sets of two 2× 2 matrices). The performance of an
algorithm corresponds to the number of test cases where it was able to find a bound that is
within a given tolerance (10−2 or 10−6) of the exact value of the joint spectral radius. The
computation time corresponds to the average time required by the algorithm to produce a
result and is represented using a logarithmic scale.

the number of allowed evaluations is increased, the results show a significant
drop in performance, which can be explained by overflow problems. Indeed,
since the problem size is very small, a large number of evaluations corresponds
to the evaluation of very long products, and the algorithm fails as it is unable
to manage the corresponding matrices. Hence, increasing the size of the prod-
ucts may not be a good idea in practice in this case as this problem occured
for a large number of instances. Fortunately, the issue is expected to happen
much less often with instances of larger sizes (see Figures 4 and 6). Neverthe-
less, in order to avoid these numerical issues with small sets of matrices, one
possible solution is to modify the algorithm by using successive rescalings of
the matrices so that the products remain tractable. This is done in the branch-
and-bound exploration in the first step of the JSR Toolbox. Table 3 shows the
number of instances where the original version of Gripenberg’s algorithm had
overflow problems, for several test sets.
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Max number of evaluations 500 1000 2000 5000 50000
Sets of two 2× 2 matrices — 34 44 48 50
Sets of four 2× 2 matrices — — 29 49 53
Sets of four 4× 4 matrices — 4 8 11 12
Sets of four 8× 8 matrices — — — 1 1

Table 3 Number of instances of the given sizes where Gripenberg’s original algorithm
had overflow problems, depending on the maximal number of evaluations. Each of the four
categories of test cases contains 100 instances.
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Fig. 3 Performance of the different algorithms on sets of two 2× 2 matrices, with respect
to the relative error tolerance. Parameters have been chosen such that the computation
times are around 7 seconds. The colors correspond to the legend in Figure 1: solid lines are
associated to JSR Toolbox (blue, top), Gripenberg (green, bottom) and Brute-force (red,
middle); dash-dot lines are SOS (magenta, top) and Ellipsoidal (cyan, bottom); dashed lines
are LR (black) and MR (gray).

Optimization methods such as the ellipsoidal norm or the sum-of-squares
approximations are able to obtain a much better accuracy, but only for a subset
of all test cases. Indeed, these algorithms may directly reach the exact value
of the joint spectral radius in a non-negligible number of cases, in contrast to
product enumeration algorithms. This can be seen in the bottom right part of
the figure as they are indeed the only methods (excluding the JSR Toolbox)
that have been able to obtain upper bounds within a tolerance of 10−6. Note
also that even though the sum-of-squares approximation is supposed to give
better bounds than the simple ellipsoidal norm approximation, this is not
always the case in practice because of the fact that increasing the degree of
the polynomials also increases the chances for the optimization solver to run
into numerical problems.
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Comparing the results for the two tolerance values also shows that the LR
and MR-procedures are able to obtain upper and lower bounds most of the
time, but only with a limited accuracy due to discretization errors. Indeed,
the large number of points required to reach a tolerance of 10−6 would imply
a correspondingly large computation time. In order to avoid this drawback,
algorithms based on successive approximations of (unit balls of) norms would
have to restrict themselves to subsets of norms, e.g., polytope norms.

Finally, the JSR Toolbox seems to be able to reach the exact value in
all cases for this test set. This is due to the fact that most set of matrices
have a short optimal product that can be found by the branch-and-bound
method. Although the upper bounds obtained by this first step are still weak,
the polytope or conitope algorithm directly tries to prove the optimality of
the candidate. This explains the performance in the upper bounds subfigures.
Note that in these simple cases, the total computation time is a bit higher than
the other algorithms with a high performance rating since with the standard
parameters, three different methods are launched successively.

Figure 3 shows the quality of the upper bounds found by the algorithms
when considering different tolerance values. For each algorithm, one represen-
tant has been selected. These representants have been chosen so that their
computation times are roughly the same. More precisely, the computation
times are all around 7 seconds in this case. This allows most algorithms to be
close to their best performance (see Figure 2). The results shown in Figure 3
support the observations given in the previous paragraphs. This is expected as
Figure 3 is simply another view of what happens between the two subfigures
in the right column of Figure 2.

Figure 4 summarizes the results for a set of larger problems, which allows
us to observe the influence of the size of the problem on the results. The
counterpart of Figure 3 is also presented as Figure 5, with an average compu-
tation time of about 50 seconds. As expected, the general performance tends
to be weaker, while the computation time is higher. Still, several interesting
observations can be made. First, the improvements of Gripenberg’s algorithm
with respect to a naive brute-force approach begin to appear, at least when
there are no overflow issues. The fact that its performance increases when
comparing Figures 3 and 5 is due to the fact that overflows only happened
in a small number of instances in this case. The upper bounds are still quite
weak, but this also holds for most of the other algorithms: for example, the
performance of the ellipsoidal norm approximation method is also dropping
by a large factor compared to the 2 × 2 case. In fact, the only method that
is still able to obtain tight upper bounds around the exact value with nearly
all instances is the algorithm of the JSR Toolbox. Note that the success rate
shown in the figure is a bit less than 100%. In fact, it is possible to reach a
performance rating of exactly 100%, by increasing a little bit the threshold
on the computation time. Indeed, optimal products for all 600 test sets with
n ∈ {2, 4} are known thanks to results obtained with this algorithm.
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Fig. 4 Results for sets of four 4× 4 matrices. The performance measure is the same as in
Figure 2.

The implementations of the LR and MR-procedures are also close to their
limits as a large number of discretization points are required even for a toler-
ance of 10−2. Of course, the threshold at 10−6 is unreachable in a reasonable
time. Note also that in practice, for an arbitrary set of matrices, it is even
possible to obtain an interval that does not contain the actual value of the
joint spectral radius due to discretization errors and thus depending on the
quality of the discretization. As we need an exponentially growing number of
points when the size of the problem increases, it is clear that this approach
does really not scale well to high-dimensional problems.

This last remark is also valid for optimization-based methods. Indeed, Fig-
ure 4 shows that the ellipsoidal norm approximation and thus the sum-of-
squares approximation of degree 2 are now inadequate in most of the test
cases and even increasing the degree of the polynomial does not always yield
much better results in the general case.

In Figure 6, a partial comparison between three algorithms is shown. The
other algorithms are not represented as the size of the problem is now too
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Fig. 5 Performance of the different algorithms on sets of four 4× 4 matrices, with respect
to the relative error tolerance. Parameters have been chosen such that the computation
times are around 50 seconds. The colors follow the legend in Figure 1: solid lines are, from
the left to the right, JSR Toolbox (blue), Gripenberg (green), Brute-force (red); dash-dot
lines correspond to SOS (magenta, top) and Ellipsoidal (cyan, bottom); dashed lines are LR
(black) and MR (gray).
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Fig. 6 Results for large sets of eight 8× 8 matrices. The exact value of the joint spectral
radius is not known for all cases. The performance is therefore measured with respect to the
best lower or upper bound available.
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large to be able to obtain relevant results in reasonable time. Moreover, in
some cases, operations such as the computation of a convex hull (which is usu-
ally done by Qhull) may become problematic. In these cases, allowing more
computation time does not improve the situation. The performance is mea-
sured with respect to the best known bound because the exact value of the
joint spectral radius is not available in general. Thus, a performance of 100%
does not mean that the exact value is reached in all cases, but only that the
other algorithms have not found better bounds.

Due to the large number of possible products for a set of eight matrices,
Gripenberg’s algorithm does not run into overflow problems and is clearly
ahead of the other two methods. In this case, the JSR Toolbox did not find
very good bounds. This is due to the fact that the first step is only a limited
version of a variant of Gripenberg’s algorithm, i.e., only short products are
tested. The main part of the algorithm is the conitope step, that tries to certify
the optimality of the candidate found in the first step if it is possible, while
the candidate is replaced if the algorithm finds a better one. This main step is
thus time-consuming, and the maximum time limit of 5 minutes is generally
too low for sets of eight 8 × 8 matrices. Indeed, the typical behavior of the
performance of this algorithm corresponds to a lower threshold where only
“particularly easy” instances are completely solved, a transition region where
the performance rating improves rapidly, and an upper threshold associated
to “particularly hard” instances. The three situations shown in Figures 2, 4
and 6 correspond to points in the upper threshold, the transition region, and
the lower threshold, respectively. Usually, the algorithm of the JSR Toolbox
gives much more accurate results than Gripenberg’s method starting from this
transition region, especially when we consider the upper bounds. This is even
more apparent in Figures 3 and 5.

5 Conclusion

In this article, a large set of approximation methods for the joint spectral radius
has been presented. These algorithms have been implemented in MATLAB and
released as part of the JSR Toolbox, a project available to the public via
MATLAB Central. These implementations can be used to compare the perfor-
mance of the different algorithms on a set of benchmarks. A default algorithm
combining several approaches can also be found in the toolbox, which may be
useful if one wants to approximate the joint spectral radius of a set without
having to decide between the different available algorithms.

The results presented in Section 4 show that although all these methods are
able to derive bounds that theoretically converge to the exact value of the joint
spectral radius, this is often not observed in practice due to limitations such
as numerical problems, sometimes even if a large computation time is allowed.
Using a combination of several methods seems to be a good approach. For
example, one can use a branch-and-bound technique to quickly find a good
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lower bound, and then use the corresponding product as starting point of a
slower geometric algorithm. Indeed, the numerical experiments also confirm
that the exact value of the joint spectral radius is often reached by a finite
product, and that most of the time, such a finite product can be found in a
reasonable amount of time. Of course, the main difficulty is to certify that this
product is indeed optimal, but this shows the difference in difficulty between
deriving good lower and upper bounds.

The comparison presented in this article can of course be useful if one
wants to develop a new approximation method, for example by combining
the advantages of several existing ones. Furthermore, the numerical results
offer an easy way to evaluate the relative performance of new algorithms,
compared to existing ones. Some algorithms may also be adapted in order to
investigate other spectral quantites, such as the joint spectral subradius, which
characterizes the minimal asymptotic growth rate of products of matrices, or
the p-radius, which represents the asymptotic average growth rate of products
of matrices, in the sense of the Lp-norm.
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