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The problem: minimum-volume OBB

The problem

Given a set of n points X in 3D, find the minimum-volume arbitrarily
oriented bounding box enclosing X .

Collision detection, intersection tests, object representation, data
approximation. . . (BV trees. . . )
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The problem: minimum-volume OBB Exact methods in 2D and 3D

In 2D: the rotating calipers method

A minimum-area rectangle cir-
cumscribing a convex polygon
has at least one side flush with
an edge of the polygon.

Compute the convex hull:
O(n log n)

Loop on all edges:
O(n) → easy and efficient

conv(X )
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The problem: minimum-volume OBB Exact methods in 2D and 3D

In 3D: generalization of the rotating calipers?

A minimum-volume box circum-
scribing a convex polyhedron
has at least one face flush with
a face of the polyhedron?

Problem:
Loop on all pairs of edges and
rotate the box while keeping
edges flush→O(n3) time com-
plexity...

C.-T. Chang et al. Fast oriented bounding box optimization on the rotation group SO(3,R) 5



The problem: minimum-volume OBB Exact methods in 2D and 3D

In 3D: generalization of the rotating calipers?

A minimum-volume box cir-
cumscribing a convex polyhe-
dron has at least one face
two adjacent faces flush with a
face edges of the polyhedron.
[O’Rourke, 1985]

Problem:
Loop on all pairs of edges and
rotate the box while keeping
edges flush→O(n3) time com-
plexity...

C.-T. Chang et al. Fast oriented bounding box optimization on the rotation group SO(3,R) 5



The problem: minimum-volume OBB Exact methods in 2D and 3D

In 3D: generalization of the rotating calipers?

A minimum-volume box cir-
cumscribing a convex polyhe-
dron has at least one face
two adjacent faces flush with a
face edges of the polyhedron.
[O’Rourke, 1985]

Problem:
Loop on all pairs of edges and
rotate the box while keeping
edges flush→O(n3) time com-
plexity...

C.-T. Chang et al. Fast oriented bounding box optimization on the rotation group SO(3,R) 5



The problem: minimum-volume OBB Classical approaches for the 3D case

In practice...

O’Rourke’s algorithm is too slow (cubic time)
→ use faster but inexact methods:

� PCA-based methods (covariance matrix):
very fast and easy to compute but may be very inaccurate

� Brute-force all orientations with a small angle increment:
large computation time and/or low accuracy

� Brute-force a well-chosen set of orientations:
may sometimes have (very) good accuracy but still too slow

� Guaranteed quality approximation methods:
same problem...
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The problem: minimum-volume OBB Our goal

What do we want?

Goal:

� Very good accuracy: find an optimal OBB in (nearly?) all cases

� If a suboptimal solution is returned, it should be close to the best one

� Computational cost has to be low

Our approach: iterative algorithm based on optimization methods
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Bringing optimization into the game

Coming up next...

The problem: minimum-volume OBB

Bringing optimization into the game
OBB fitting as an optimization problem
Requirements
Going hybrid

How to solve an optimization problem?

Results

Conclusion
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Bringing optimization into the game OBB fitting as an optimization problem

A first, direct, formulation

min
over size, position, orientation

the volume of the bounding box

so that all the points are in the box

� ∆ = (∆ξ,∆η,∆ζ) denotes the dimensions of the OBB,

� Ξ is the center of the OBB.

� R ∈ SO(3,R) is a rotation matrix,

� SO(3,R) =
{
R ∈ R3×3 | RTR = I = RRT ,det(R) = 1

}
,

� X = {Xi | i = 1, . . . ,N } is the considered set of points

Smooth but constrained optimization problem
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Bringing optimization into the game OBB fitting as an optimization problem

Unconstrained formulation

min
R∈SO(3,R)

(
min

∆∈R3,Ξ∈R3
∆ξ∆η∆ζ

s.t. −1
2∆ ≤ RXi − Ξ ≤ 1

2∆ ∀i = 1, . . . ,N

)
︸ ︷︷ ︸

f (R)

The objective function f (R) is simply the volume of the AABB of X
rotated by R

Unconstrained but non-differentiable optimization problem
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Bringing optimization into the game Requirements

Solving this problem requires...

� ... a derivative-free method

� ... a global search technique

� ... a fast convergence rate
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� ... a derivative-free method

� ... a global search technique

� ... a fast convergence rate

f (R) is not differentiable everywhere...
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Bringing optimization into the game Requirements

Solving this problem requires...

� ... a derivative-free method

� ... a global search technique

� ... a fast convergence rate

f (R) has many local minima...
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Bringing optimization into the game Requirements

Solving this problem requires...

� ... a derivative-free method

� ... a global search technique

� ... a fast convergence rate

That was the point!
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Bringing optimization into the game Going hybrid

Our idea: using an hybrid method

1. Use a global exploration component:
genetic algorithm (GA)

2. Speed up convergence using a local exploitation algorithm
Nelder-Mead simplex algorithm (NM)

� GA alone would be very slow to converge (GA more suitable for
discrete search spaces)

� NM alone would be stuck in local minima (even with restarts)
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How to solve an optimization problem?

Coming up next...

The problem: minimum-volume OBB

Bringing optimization into the game

How to solve an optimization problem?
Genetic algorithms (GA)
The Nelder-Mead algorithm (NM)
HYBBRID: let’s mix GA and NM together!

Results

Conclusion
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How to solve an optimization problem? Genetic algorithms (GA)

Global exploration: genetic algorithms

Stochastic population-based evolutionary method

(original variant proposed by Holland in the 1970s)

� Population-based: keep a large set of candidates at each iteration

� Evolutionary: generate new candidates by combining current ones
depending on their performance
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How to solve an optimization problem? Genetic algorithms (GA)

The general framework

Start with a set of candidates (population)
and a performance function (fitness function)

At each generation:

� Selection: parents are selected depending on their fitness

� Crossover: selected parents produce offsprings

� Mutation: offsprings can be subject to mutations
(random modification, gradient step, SA step, ...)
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How to solve an optimization problem? The Nelder-Mead algorithm (NM)

The Nelder-Mead simplex algorithm

Derivative-free simplicial optimization method

(original algorithm proposed by Nelder & Mead in 1965)

Simplex (in Rn) = set of n + 1 affinely independent points

� n = 2 : triangle

� n = 3 : tetrahedron

� ...
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How to solve an optimization problem? The Nelder-Mead algorithm (NM)

Ideas of the algorithm (details omitted)

Reflection Expansion Contraction Reduction

Four main ways to move/transform the simplex depending on the
performance of its vertices: affine combinations
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How to solve an optimization problem? The Nelder-Mead algorithm (NM)

Nelder-Mead and the six-hump camel back...

Current objective = −0.23094

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

The initial simplex
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Iteration 1: contraction
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How to solve an optimization problem? The Nelder-Mead algorithm (NM)

Nelder-Mead and the six-hump camel back...
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Iteration 2: reflection
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How to solve an optimization problem? The Nelder-Mead algorithm (NM)

Nelder-Mead and the six-hump camel back...

Current objective = −0.86796
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Some more iterations...
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How to solve an optimization problem? The Nelder-Mead algorithm (NM)

Nelder-Mead and the six-hump camel back...

Current objective = −0.94459
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How to solve an optimization problem? The Nelder-Mead algorithm (NM)

Nelder-Mead and the six-hump camel back...

Current objective = −1.03163
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The final result
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How to solve an optimization problem? HYBBRID: let’s mix GA and NM together!

Mixing NM and GA together (simplified version)

Population of M simplices (simplex = set of 4 rotation matrices)
Fitness function f (R) (volume of corresponding OBB)

� Selection: Evaluate fitness of all simplices, keep best 50%

� Crossover I: Create M
2 offsprings by mixing vertices:

A1B1C1D1 ⊗A2B2C2D2 → Ai1Bi2Ci3Di4 , ik ∈ {1, 2}

� Crossover II: Create M
2 offsprings by affinely combine vertices:

A1B1C1D1 ⊗A2B2C2D2 → A3B3C3D3 with A3 = λA1 + (1− λ)A2

� Mutation: Apply K Nelder-Mead iterations on each offspring
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How to solve an optimization problem? HYBBRID: let’s mix GA and NM together!

HYBBRID

Nelder-Mead algorithm ⊕ Genetic algorithm
on the special orthogonal group SO(3)

to solve the optimal OBB problem

=

HYbrid Bounding Box Rotation IDentification algorithm
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Results

Coming up next...

The problem: minimum-volume OBB

Bringing optimization into the game

How to solve an optimization problem?

Results
Behaviour of HYBBRID
Comparison to other algorithms

Conclusion
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Results Behaviour of HYBBRID

Behavior of HYBBRID

All algorithms tested on a benchmark set of ∼ 300 objects (Gamma db)
Implementations done in MATLAB (built-in functions are used)
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Error is less than 10−12 in 90%+ of the cases!
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Results Behaviour of HYBBRID

Behavior of HYBBRID: yes, it works!

All algorithms tested on a benchmark set of ∼ 300 objects (Gamma db)
Implementations done in MATLAB (built-in functions are used)
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Error is less than 10−12 in 90%+ of the cases!
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Results Behaviour of HYBBRID

How does it scale?

0 2000 4000 6000 8000 10000
0

5

10

15

Number of vertices on the convex hull

C
o
m

p
u
ta

ti
o
n
 t
im

e
 [
s
]

Experimental results show a roughly linear complexity!
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Results Comparison to other algorithms

Comparison to other iterative approaches
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Trying random orientations does not work...
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Results Comparison to other algorithms

Comparison to other iterative approaches
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Constrained smooth opti: success rate ∼ 40% but mainly AABBs...
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Results Comparison to other algorithms

Comparison to other iterative approaches
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Unconstrained non-diff. opti, random initializations: much better results!

C.-T. Chang et al. Fast oriented bounding box optimization on the rotation group SO(3,R) 24



Results Comparison to other algorithms

Comparison to other iterative approaches

 

 

HYBBRID (M=50, K=30)
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HYBBRID: combining potential solutions does improve the success rate!
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Results Comparison to other algorithms

Comparison to other algorithms

First, let’s ignore the computational cost and look at the failure rates...
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A reference point: the simple AABB
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Comparison to other algorithms

First, let’s ignore the computational cost and look at the failure rates...
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PCA-based methods: limited accuracy

C.-T. Chang et al. Fast oriented bounding box optimization on the rotation group SO(3,R) 25



Results Comparison to other algorithms

Comparison to other algorithms

First, let’s ignore the computational cost and look at the failure rates...
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AABB with post−processing

Min−PCA with post−processing

Continuous PCA with post−processing
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Brute-forcing on a set of orientations may be OK... if well chosen!
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Comparison to other algorithms
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Guaranteed approximation algorithms: limited by computational resources
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Results Comparison to other algorithms

Comparison to other algorithms

First, let’s ignore the computational cost and look at the failure rates...
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HYBBRID: more accurate than these other methods
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Results Comparison to other algorithms

Comparison to other algorithms

What are the computation times? (Tolerance: 10−3)
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AABB – PCA – Continuous PCA – Brute-force on a set of orientations
O’Rourke’s exact algorithm – Guaranteed approximation – HYBBRID
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Results Comparison to other algorithms

Comparison to other algorithms

What are the computation times? (Tolerance: 10−6)
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Conclusion

Coming up next...

The problem: minimum-volume OBB

Bringing optimization into the game

How to solve an optimization problem?

Results

Conclusion
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Conclusion

Conclusion

� HYBBRID: Nelder-Mead ⊕ Genetic algorithm
able to approximate optimal OBBs using optimization on SO(3)

� More accurate and/or faster than other algorithms

� Still has room for improvements...

Thank you for your attention!
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