
Université catholique de Louvain
Louvain School of Engineering
Institute of Information and Communication Tech-
nologies, Electronics and Applied Mathematics

Center for Systems Engineering and Applied Mechanics

Heuristic optimization methods
for three matrix problems

Chia-Tche Chang

Thesis submitted in partial fulfillment of the requirements for the
degree of Docteur en Sciences de l’Ingénieur

Dissertation committee

Prof. Vincent Blondel Université catholique de Louvain
Prof. Paul Van Dooren Université catholique de Louvain
Prof. François Glineur Université catholique de Louvain
Prof. Raphaël Jungers Université catholique de Louvain
Prof. Moritz Diehl Katholieke Universiteit Leuven
Prof. Ilse Ipsen North Carolina State University, USA

Louvain-la-Neuve, December 2012

Acknowledgements

First of all, I would like to thank my advisor, Vincent Blondel, for ac-
cepting me as a Ph.D. student and guiding me during these four years of
research. I am grateful for his valuable support and working under his
supervision was a real pleasure.

I am very thankful to Paul Van Dooren for accepting to participate
in my supervising committee, but also for his insightful comments about
my work. I also would like to thank the other members of my Jury:
François Glineur, Raphaël Jungers, Moritz Diehl and Ilse Ipsen. Their
remarks and questions were very valuable for the final writing of this
thesis.

Of course, research also allows one to interact with many other peo-
ple. In particular, I would like to thank Quentin Rentmeesters, my
officemate at CESAME for more than four years, but also Samuel Mel-
chior, Bastien Gorissen, Romain Hollanders, Mathieu Renauld, Nicolas
Boumal and 1 for the numerous discussions about re-
search — and non-research — topics.

Research is not limited by international borders and I gratefully ac-
knowledge Denise Maurice, Ismaël Bouya, Jill-Jênn Vie and Olivier Blazy
for all our interactions. Special thanks go to Randall M. and Jorge C.
for their amazing work that helps graduate students (and others...) cope
with this unique experience.

Finally, I would like to thank my friends and my parents for their
continuous support.

1Fill in your name if you think you should be here!

This thesis has been supported by a F.R.S–FNRS fellowship. It also
benefited from the Belgian Network DYSCO (Dynamical Systems, Con-
trol, and Optimization), funded by the Interuniversity Attraction Poles
Programme, initiated by the Belgian State, Science Policy Office, and
the “Action de Recherche Concertée”, funded by the French Community
of Belgium.

Contents

List of Figures v

List of Tables vii

List of Algorithms ix

List of Publications xi

1 Introduction 1

2 From classical optimization to heuristic approaches 7
2.1 Classical optimization methods as starting point 7

2.1.1 Hill climbing and steepest ascent methods 8
2.1.2 Optimization methods in the continuous case . . . 10
2.1.3 Nelder-Mead simplex algorithm 12

2.2 Local search heuristic methods 16
2.2.1 Simulated annealing 18
2.2.2 Tabu search . 21

2.3 Population-based heuristic methods 22
2.3.1 Genetic algorithm 22
2.3.2 Other population-based approaches 25
2.3.3 Hybridizations and memetic algorithms 26

3 The minimum-volume oriented bounding box problem 29
3.1 Introduction . 29
3.2 Notation and basic properties 32
3.3 State of the art . 36

3.3.1 O’Rourke’s algorithm 37
3.3.2 PCA-based methods 39
3.3.3 Brute-force methods 41
3.3.4 (1+ε)-approximation 42

3.4 A new method based on optimization 43
3.4.1 Formulation of the optimization problem 43

ii Contents

3.4.2 The HYbrid Bounding Box Rotation IDentifica-
tion (HYBBRID) algorithm 46

3.4.3 Taking into account the structure of SO(3,R) . . . 49
3.4.4 Comparison with the algorithm of Lahanas et al. . 50

3.5 Experimental analysis . 51
3.5.1 Performance of the HYBBRID method 54
3.5.2 Comparison of HYBBRID to other simple iterative

strategies . 61
3.5.3 Comparison of HYBBRID to the state of the art . 64

3.6 Conclusion . 78

4 The subset selection problem 79
4.1 Introduction . 79
4.2 The Windowed Subset Selection algorithm (WSS) 83

4.2.1 Throwing out one column 84
4.2.2 The Gu-Eisenstat Criterion 85
4.2.3 Selection of the doomed column 87

4.3 Improving the performance of the windowed algorithm . . 89
4.3.1 Multi-pass Windowed Subset Selection (MWSS) . 89
4.3.2 Non-greedy randomized variant 91
4.3.3 Pruning heuristic for the set of columns 92

4.4 Numerical experiments . 93
4.4.1 Implementing the Windowed Subset Selection al-

gorithm . 95
4.4.2 The test matrices 96
4.4.3 Results . 98
4.4.4 Comparison between the windowed and the non-

windowed approaches 107
4.5 Conclusion . 118

5 The joint spectral radius 119
5.1 Introduction . 119
5.2 Basic properties and results 121
5.3 Methods of computation 126

5.3.1 Product enumeration methods 127
5.3.2 Norm optimization methods 129
5.3.3 Extremal norm construction methods 133
5.3.4 Lifting techniques 136

5.4 A heuristic approach using a genetic algorithm 137
5.5 Experimental analysis . 141

Contents iii

5.5.1 Details about the test sets 142
5.5.2 Details about the implementations 143
5.5.3 The JSR Toolbox 146

5.6 Results . 147
5.6.1 Accuracy of the genetic algorithm 147
5.6.2 Influence of the main parameters of the genetic

algorithm . 148
5.6.3 Comparison to the other algorithms 150

5.7 Conclusion . 169

6 Conclusion 171

Bibliography 175

List of Figures

2.1 Nelder-Mead algorithm in R2 13
2.2 One possible solution to the 8-queens problem 17
2.3 The 8-queens configuration encoded by the list (1, 1, 2, 2,

3, 3, 4, 4) . 17
2.4 Example of neighbors in the 4-queens problem 18

3.1 Notation associated to OBBs 32
3.2 Rotating calipers algorithm 35
3.3 Optimal OBB of a regular tetrahedron 36
3.4 A rotation in O’Rourke’s algorithm 38
3.5 OBBs obtained by different PCA-based methods 40
3.6 Volume of a 2D OBB depending on its orientation 45
3.7 Distribution of the size of the test instances 52
3.8 Distribution of the size of the convex hulls of the test

instances . 54
3.9 Graphical representation of four test cases 55
3.10 Computation time of HYBBRID depending on the size of

the dataset . 57
3.11 Influence of the parameters of HYBBRID on the perfor-

mance and the computation time 59
3.12 Failure rate of iterative algorithms after ∼ 500 seconds . . 62
3.13 Failure rate of iterative algorithms after ∼ 1000 seconds . 63
3.14 OBBs obtained for the example S after rotation 68
3.15 OBBs obtained for the tetrahedron T after rotation 69
3.16 Performance and computation time of all the algorithms . 71
3.16 (continued) . 72
3.17 Failure rate of the different algorithms 75
3.17 (continued) . 76
3.18 Accuracy and computation time on globe9306 77

vi List of Figures

4.1 Distribution of the volume ratios of RMWSS for random
matrices . 108

4.2 Distribution of the computation times of RMWSS for ran-
dom matrices . 109

4.3 Evolution of the volumes of the subsets for a GKS matrix 111
4.4 Selected columns for a GKS matrix 112
4.5 Evolution of the volumes of the subsets for a Gap matrix

with k = 30 . 113
4.6 Selected columns for a Gap matrix with k = 30 114
4.7 Evolution of the volumes of the subsets for a Gap matrix

with k = 300 . 115
4.8 Selected columns for a Gap matrix with k = 300 116

5.1 Influence of the parameters of the genetic algorithm . . . 149
5.2 Legend associated to the tested methods 150
5.3 Results for sets of two 2× 2 random matrices 153
5.3 (continued) . 154
5.4 Performance of upper bounds on sets of two 2×2 random

matrices . 157
5.5 Performance of upper bounds on sets of four 4×4 random

matrices . 158
5.6 Results for sets of four 4× 4 random matrices 159
5.6 (continued) . 160
5.7 Results for sets of eight 8× 8 random matrices 163
5.8 Results for a capacity set containing 256 16× 16 matrices 164

List of Tables

3.1 Computation of the Nelder-Mead contracted point on the
manifold SO(3,R) . 50

3.2 Characteristics of four test cases 53
3.3 General characteristics of the methods 66

4.1 Computation times for Kahan matrices 98
4.2 Volumes for GKS matrices 100
4.3 Computation times for GKS matrices 100
4.4 Volumes for Gap matrices 102
4.5 Computation times for Gap matrices 103
4.6 Volumes for random matrices 105
4.7 Computation times for random matrices 106
4.8 Number of columns pruned by the heuristic 117

5.1 Characteristics of randomly generated test matrices 142
5.2 Minimal period of optimal products 143
5.3 Optimality of the genetic algorithm on the test instances . 147
5.4 Distribution of instances resulting in overflow for Gripen-

berg’s original algorithm 155
5.5 Capacity of codes avoiding a difference pattern of length

at most 4 . 167
5.6 Capacity of codes avoiding a difference pattern of length

5 or 6 . 168

List of Algorithms

2.1 Generic gradient method 8
2.2 Generic stochastic gradient method 10
2.3 Nelder-mead simplex method 15
2.4 Generic simulated annealing 19

3.1 Rotating calipers for the minimum-area bounding rectan-
gle problem . 34

4.1 Windowed Subset Selection (WSS) 84
4.2 Gu-Eisenstat Criterion . 86
4.3 (Greedy) Strong Rank Revealing QR (SRRQR) 87
4.4 Multi-pass Windowed Subset Selection (MWSS) 90
4.5 (Non-greedy) Randomized Multi-pass Windowed Subset

Selection (RMWSS) . 94

List of Publications

Journal articles

[CGM11] Chia-Tche Chang, Bastien Gorissen, and Samuel Mel-
chior. Fast oriented bounding box optimization on the
rotation group SO(3,R). ACM Transactions on Graph-
ics, 30(5):122:1–122:16, Oct. 2011.

[CB12a] Chia-Tche Chang and Vincent D. Blondel. An exper-
imental study of approximation algorithms for the joint
spectral radius. Numerical Algorithms, Accepted for pub-
lication, 2012.

[CB12b] Chia-Tche Chang and Vincent D. Blondel. A genetic
based algorithm for fast approximations of the joint spec-
tral radius. Submitted to Systems & Control Letters,
2012.

[CIBD12] Chia-Tche Chang, Ilse Ipsen, Vincent D. Blondel, and
Paul Van Dooren. Polynomial-time subset selection via
updating. In preparation, 2012.

Conference papers

[CB11a] Chia-Tche Chang and Vincent D. Blondel. Approxi-
mating the joint spectral radius using a genetic algo-
rithm framework. In Proceedings of the 18th IFAC World
Congress (IFAC WC2011), pages 8681–8686, Milano,
Italy, Aug. 2011.

xii List of Algorithms

Conference abstracts

[CJB09] Chia-Tche Chang, Raphaël M. Jungers, and Vincent D.
Blondel. On the growth rate of matrices with row uncer-
tainties. In Book of Abstracts of the 14th Belgian-French-
German Conference on Optimization (BFG09), page 86,
Leuven, Belgium, Sept. 2009.

[CB10] Chia-Tche Chang and Vincent D. Blondel. A compar-
ison of approximation algorithms for the joint spectral
radius. In Book of Abstracts of the 29th Benelux Meeting
on Systems and Control (BMSC10), page 85, Heeze, The
Netherlands, Mar. 2010.

[CB11b] Chia-Tche Chang and Vincent D. Blondel. A genetic
algorithm approach for the approximation of the joint
spectral radius. In Book of Abstracts of the 30th Benelux
Meeting on Systems and Control (BMSC11), page 105,
Lommel, Belgium, Mar. 2011.

The journal article [CGM11] has also been presented at the 5th ACM
SIGGRAPH Conference and Exhibition on Computer Graphics and In-
teractive Techniques in Asia (SIGGRAPH Asia 2012) in Singapore, Nov.
2012.

CHAPTER 1
Introduction

Optimization is present in a wide variety of situations: many decision
problems can be summarized in a single sentence: “What is the best
choice? ” Of course, the meaning of “best” is highly dependent on the
situation. There may be several possible “best choices” or sometimes no
“best” solution to the problem. These solutions may be easy to find, or
very hard to obtain, even by using computers or supercomputers.

Let us consider several problems.

• Isoperimetric problem: given a rope of fixed length, we want to
enclose a planar region whose area is as large as possible. What
shape should we use?

• Shortest path problem: given a map of a country containing our
current location and a destination city, what path should we take
in order to reach the destination as fast as possible?

• Bin packing problem: given a bunch of identical containers of fixed
capacity and a list of objects with given sizes, how many containers
do we need to pack all objects?

The solution of the isoperimetric problem was already known in An-
cient Greece: if L denotes the length of the rope, the area A of any
enclosed area satisfies A 6 L2

4π , with equality if and only if the rope
forms a circle. Independently of the length of the rope, the best choice
is to enclose a disk.

The shortest path problem is more difficult: the best solution may not
be obvious. However, the problem may be solved quickly enough using
a procedure conceived by Dijkstra in 1956 and published in [Dij59]. The
idea is to examine all cities, starting from the closest ones and slowly
moving to further ones, while establishing the fastest way to reach all

2 Introduction

these cities and reusing this information. The cities are thus explored in
increasing order of distance from the starting point. Even though this
may take a while to compute, each city is only analyzed at most once,
and there is no backtracking to be done.

The bin packing problem is significantly harder in the general case.
One may have to try a large number of combinations before finding a
partition with the smallest number of bins and knowing that it is indeed
impossible to do better. More precisely in computational complexity the-
ory, this problem is said to be NP-hard [GJ79].

The class of NP problems is defined to be the set of decision problems
for which if the answer is positive, then there are certificates that can
be verified in a time that is polynomial in the size of the input. For
example, an instance of the Hamiltonian path problem asks whether it is
possible to visit each vertex of a given graph exactly once, knowing the
list of edges. This problem is indeed in NP since if the answer to the
question is “yes”, then this can be easily verified if we are given such a
path.

The class of NP-hard problems corresponds to problems that are “at
least as hard” as any problem in NP. In this context, “at least as hard”
means that any problem in NP can be reduced to the NP-hard problem in
polynomial time. In other words, an algorithm for the NP-hard problem
can be used to produce algorithms to solve any problem in NP.

This implies that there is no deterministic polynomial algorithm
known to solve the bin packing problem, and it is suspected that such
algorithm does not exist. With such NP-hard problems, it is sometimes
the case that we are already satisfied with a solution suspected to be
optimal but without having a proof of optimality, or even a good enough
solution instead of an optimal one.

In practice, one may want to obtain a solution in a short amount of
time. When several items have to be successively examined, the solution
may be reached faster if the items are ordered following some rule. Let
us consider the shortest path problem. If we know that the destination
is located north of our position, it may be wise to look at the northern
part first. This corresponds to the A∗ algorithm [HNR68]. In this case,
the A∗ algorithm reaches the solution faster than Dijkstra’s algorithm
due to a heuristic, viz. the rule biasing the search towards the location
of the destination.

Introduction 3

Of course, such heuristics do not always work: if we consider a short-
est path problem in a maze, aiming towards the location of the exit may
not necessarily be a good idea as mazes are designed so that this sim-
ple heuristic leads to dead ends. In this case, the A∗ algorithm will not
necessarily be able to find the shortest path faster than Dijkstra’s algo-
rithm, even though it will still reach the solution (provided that several
properties are satisfied [DP85]).

Similarly, a possible heuristic for the bin packing problem is to order
the objects by decreasing sizes, and then put them successively into the
first bin that can contain the object [Dós07]. This may clearly lead to
a suboptimal solution. For example, if we have two bins with remaining
capacities 6 and 5, and objects with sizes 4, 3, 3 and 1, putting the
item with size 4 in the bin with capacity 6 will lead to the creation of a
supplementary bin, even though it was possible to pack the four objects
in the two original bins. Of course, selecting the smallest bin that can
contain the current object instead of the first one is also suboptimal: this
strategy fails if we have two bins with capacities 7 and 5, and objects
with sizes 4, 3, 3 and 2.

When considering difficult problems, or even easier problems but in
situations where the computation time has to be as low as possible, one
often uses heuristics, i.e., strategies that are expected to speed up the
procedure in most cases. However, this usually comes with a drawback:
the solution obtained by a heuristic approach may be suboptimal. Even
though in some cases, it is possible to prove some guarantees on the
solution returned by the heuristic method, heuristic approaches do not
guarantee that an optimal solution will be found in general.

In practical applications, this may not necessarily be a problem: be-
ing able to quickly find a good suboptimal solution is usually better
than having a very expensive algorithm able to find the optimal solu-
tion. Many difficult or NP-hard problems are tackled in practice using
heuristic methods due to time constraints, e.g., scheduling problems,
covering problems, or network design problems.

In this thesis, we are studying general heuristic methods to tackle
hard optimization problems. These frameworks, also known as meta-
heuristics, are designed to be applicable to a wide range of problems as
they are using general rules that are independent of the problem to solve.
At the same time, there is usually a lot of freedom when implementing
these general methods, and it is often possible to obtain very good re-

4 Introduction

sults if these choices are carefully done, for example depending on the
type of the problem.

In our case, we will be using combinations of several heuristics to
help the convergence to a good — and hopefully optimal — solution.
The main goal is to design methods with a very low computational cost,
although there will be no a priori guarantee on the quality of the solution
found by the proposed methods. Indeed, for the problems we consider,
classical methods able to find the optimum solution are often much too
slow to be of practical use. A method with a low computational cost has
thus obvious advantages if the computation resources are limited or if the
application is time-critical. Furthermore, this should allow us to handle
problems with larger sizes, where classical methods are too expensive.

Outline

This thesis is organized as follows. We begin by presenting several well-
known methods for general optimization problems in Chapter 2. Starting
with classical approaches, we move into different general heuristic meth-
ods such as simulated annealing [KGV83] or genetic algorithms [Hol75].
This chapter is not intended to list all existing approaches, but rather
to present different tools required for the construction of our own algo-
rithms.

In Chapter 3, we look at the minimum-volume arbitrarily oriented
bounding box problem, which has applications mainly in computer graph-
ics and related fields. The problem consists in finding the smallest rect-
angular parallelepiped enclosing a given set of points. Even though an
exact algorithm solving the problem in polynomial time exists since 1985
(O’Rourke’s algorithm, see [O’R85]), its performance is nowhere near
the practical requirements: the computation of the optimal bounding
box may take several hours, days or even weeks for problems with more
than 10000 vertices on its convex hull. In practice, heuristic approaches
are preferred, e.g., techniques based on principal component analysis
[Jol02]. These methods are very fast but usually return suboptimal so-
lutions. We propose a new algorithm, HYBBRID, that has been able to
find the optimal bounding box in most cases, very good solutions being
returned when optimality is not reached. These results correspond to a
benchmark containing about 300 test cases taken from [Gro08]. Hence,
HYBBRID offers an alternative to methods that are accurate but very
slow, and very fast algorithms with poor accuracy. The exact trade-off

Introduction 5

between accuracy and computation time can also be set depending on
the considered applications.

Next, we consider another application of heuristics in Chapter 4: the
column subset selection problem. Here, we are interested in selecting a
fixed number of columns from a given matrix so that the volume of the
parallelepiped spanned by these columns is as large as possible. This
can be interpreted as selecting columns that are far from being redun-
dant and has applications in fields such as data mining. This problem
has been proved to be NP-hard [cMI09]. We present several algorithms
for the subset selection problem, with different accuracy/computation
time trade-offs. Numerical experiments show that when compared to a
reference algorithm (Gu and Eisenstat’s strong rank revealing QR algo-
rithm, see [GE96]), the methods we propose are able to find a subset
of columns with similar quality in a shorter amount of time. In several
cases, our set of columns has even a significantly larger volume than Gu
and Eisenstat’s solution.

Last but not least, we present our contributions to the study of the
joint spectral radius in Chapter 5. This quantity characterizes the growth
rate of products of matrices, generalizing the notion of spectral radius
of a single matrix to sets of matrices [RS60]. It is known since 1997
that the problem of approximating the joint spectral radius is NP-hard
[TB97]. Despite this negative theoretical result, many approaches have
been proposed for the approximation of the joint spectral radius. We
present a brief survey of these algorithms, which we have implemented
in MATLAB R© as part of the JSR Toolbox [VHJ+11]. This is not without
importance as many algorithms have never been studied from a practical
point of view, and it is clear that even though most algorithms have a
way to converge to the exact value of the joint spectral radius (in expo-
nential time), their practical behaviors may present many differences. In
addition to this comparison of methods based on practical performances,
we also propose a new algorithm based on a heuristic approach, viz. the
genetic algorithm. Again, similarly to the previous chapters, our algo-
rithm has been able to find very good bounds on the exact solution in a
short amount of time, these bounds matching the value of the joint spec-
tral radius in many cases. It is also able to tackle larger sets of matrices,
while most classical methods become too expensive to use.

We present our final comments and conclude this thesis in Chapter 6.

CHAPTER 2
From classical optimization

to heuristic approaches

In this chapter, we present several well-known techniques and heuristic
methods for function optimization (without constraints). Of course, this
is not intended as an exhaustive compilation of algorithms, given the
huge number of different approaches. We will rather focus on the main
methods, and in particular those related to our contributions in the next
chapters.

2.1 Classical optimization methods as starting
point

Let f be a function so that our optimization problem can be expressed
as

max
x∈Ω

f(x),

where Ω ⊂ Rn is the domain of the optimization variable x. This domain
may be continuous or discrete. The function f will be referred to as the
objective function, the utility function, or the fitness function depending
on the context. When the problem is written as a minimization prob-
lem, we also use the term cost function. Here, the objective is to find the
global maximum of the function, f(xmax), and/or an associated solution
xmax without using a brute-force method testing all solutions x ∈ Ω, or
sampling the search space and taking the best result. However, obtain-
ing the global maximum is very difficult to guarantee. In most cases,
it is only reasonable to try to find a maximum said to be local. In the
continuous case, this means that the value of objective function becomes
worse when the solution xmax is slightly perturbed. In the discrete case,

8 From classical optimization to heuristic approaches

local optimality corresponds to the fact that all other points in a neigh-
borhood of xmax are not better than xmax with respect to the objective
function. Thus, this property depends on the chosen neighborhood.

2.1.1 Hill climbing and steepest ascent methods

Given a starting point x0 ∈ Ω, one wants to build a sequence of so-
lutions (xi)i∈N, hopefully converging to xmax. One of the most basic
methods is the hill climbing technique, also known as gradient method
for continuous spaces [NW06], or steepest ascent — steepest descent for
minimization problems. The idea is very simple: among all points yk,i
that are “close” to the current point xk, the next point xk+1 is taken as
the yk,i maximizing the objective function. This is thus a greedy method
as it is supposed that taking the best solution at each step will result in
a best global solution. Of course, this hypothesis does not hold in gen-
eral, and the method usually finds a local maximum which is not global.
In fact, this method is quite sensitive to the starting point. One may
want to restart the algorithm from different initial points to try to find a
better local maximum. This is known as the restart strategy, which can
be used in any algorithm requiring to choose a starting point.

Algorithm 2.1 Generic gradient method
Input: f function to maximize

tolerance τ > 0
initial solution x0

Output: solution x expected to maximize f(x)
1: xcur := x0

2: repeat
3: d := ∇f(xcur)
4: Determine a step size α associated to the point xcur and the direc-

tion d
5: xprev := xcur
6: xcur := xcur + αd
7: until ‖xcur − xprev‖ < τ
8: x := xcur

For continuous spaces, the best direction to go from the current point
xk can be obtained by computing the gradient ∇f(xk), hence the name
of the method. Algorithm 2.1 shows the steepest ascent method in the

2.1. Classical optimization methods as starting point 9

continuous case. Note that this gradient may be difficult — or impossible
— to obtain depending on the objective function. In this case, one pos-
sibility would be to produce an approximation or an empirical gradient.
Given the value of the gradient, the point xk+1 is then taken as:

xk+1 = xk + αk∇f(xk),

where the size αk of the step can for example be fixed depending on k
or taken such that the increase of the objective function is maximized,
either exactly or approximately. This approach is referred to as a line-
search method. In order to avoid the optimization of this one-dimensional
subproblem in the direction dk = ∇f(xk), one can also use the Wolfe
conditions [Wol69], which correspond to the two conditions

f(xk + αkdk) > f(xk) + c1αkd
T
k∇f(xk), (2.1)

and
dT∇f(xk + αkdk) 6 c2d

T
k∇f(xk). (2.2)

The condition (2.1), which is called the Armijo condition, ensures that
the value of the objective function decreases “sufficiently”, and the con-
dition (2.2), known as the curvature condition, ensures that the slope is
“sufficiently” reduced. In particular, this condition rules out extremely
small step sizes αk that satisfy the Armijo condition. The two constants
satisfy 0 < c1 < c2 < 1. The constant c1 is usually chosen to be close
to 0, while c2 is chosen to be close to 1 [NW06]. Other line-search con-
ditions such as the strong Wolfe conditions or the Goldstein conditions
are also described in [NW06].

Several variants are possible: instead of using a greedy strategy,
stochastic hill climbing methods (Algorithm 2.2) are sometimes used
(see [FM93] for an example in the discrete case). Rather than test-
ing all neighbors or directions and taking the best one, the stochastic
version chooses one random neighbor or direction and uses it to obtain
xk+1, provided that the value of the objective function improves when
moving to the new candidate. When combined with the restart strategy,
this variant may result in a better exploration of the search space.

Nevertheless, basic hill climbing algorithms are not expected to per-
form well in general problems with several local maxima: the starting
point has to be sufficiently close to a global maximum in order to be able
to reach it, and the method may require a large number of iterations be-
fore converging to the corresponding solution.

10 From classical optimization to heuristic approaches

Algorithm 2.2 Generic stochastic gradient method
Input: f function to maximize

tolerance τ > 0
initial solution x0

Output: solution x expected to maximize f(x)
1: xcur := x0

2: repeat
3: if ∇f(xcur) = 0 then
4: x := xcur
5: exit
6: end if
7: d := random direction such that dT∇f(xcur) > 0
8: Determine a step size α associated to the point xcur and the direc-

tion d
9: xprev := xcur

10: xcur := xcur + αd
11: until ‖xcur − xprev‖ < τ
12: x := xcur

Let us first look at some well-known alternative methods in the con-
tinuous case. For discrete problems, local search-based methods are more
suitable. They are presented in Section 2.2.

2.1.2 Optimization methods in the continuous case

For differentiable functions, the steepest ascent method uses the gradi-
ent information at the current solution in order to determine the next
candidate. Higher-order differentials can be used if they are available.
For example, Newton’s method uses the gradient ∇ and the Hessian ∇2,
with the iteration

xk+1 = xk − αk
(
∇2f(xk)

)−1∇f(xk).

Newton’s method and its variants appear in many applications, in-
cluding interior-point methods used to solve convex optimization prob-
lems [NN94]. When applicable, this method converges much faster than
gradient methods. The main issue is that the computation of the Hes-
sian is required for the application of Newton’s method. Of course, one

2.1. Classical optimization methods as starting point 11

can use approximations of the Hessian in order to reduce the compu-
tational cost; this gives us the class of Quasi-Newton methods. Com-
mon variants are the SR1 (symmetric rank one) formula [MS70], or
the BFGS (Broyden-Fletcher-Goldfarb-Shanno) method [Bro70, Fle70,
Gol70, Sha70].

Other methods such as the conjugate gradient method take into ac-
count the previous update direction in order to compute the current
direction:

xk+1 = xk + αkdk, dk = ∇f(xk) + βkdk−1,

for some value of βk. Several popular methods used to determine the
value of βk are the Fletcher-Reeves [FR64] and the Polak-Ribière [PR69]
formulas.

It is clear that there are a bunch of possibilities when one has to
choose an optimization method. However, both gradient-based methods
and Newton-based methods share a major common feature: the value of
the gradient at the current point is required. What if the gradient does
not exist, is unavailable or is too expensive to compute?

There are several approaches for the optimization of functions with-
out using their derivatives. Classical derivative-free optimization (DFO)
methods have the same goal as the techniques presented above: starting
from an initial point x0, try to guarantee convergence to a local optimum.
Several classes of DFOs can be distinguished.

Trust-region methods consist in approximating the objective function
with a simpler model function in a neighborhood of the current point xk.
This approach can be used for both differentiable and non-differentiable
objective functions. At each iteration, the optimization is done on the
model function, but only within the neighborhood or trust region. The
result is then compared to the true function. If the behavior of the
original function matches the expected improvement based on the model
function, then the size of the trust region is increased. The trust region
is reduced if the model does not reflect well the behavior of the objective
function. A comprehensive reference on trust-region methods can be
found in [CGT00].

Another main approach is the class of direct search algorithms (see
[KLT03] for a survey). The spirit of the approach is to examine several
“trial” solutions and use some strategy to determine what the next can-
didate will be, based on the results obtained so far. Line-search methods

12 From classical optimization to heuristic approaches

(see [Kel99]) are also eligible in a derivative-free framework as one does
not need to follow the steepest ascent direction to improve the objective
function.

In the next section, we will concentrate on the Nelder-Mead sim-
plex algorithm, one of the best known methods of optimization by direct
search which has led to many variants. A more detailed review on DFO
methods can be found in [CSV09].

2.1.3 Nelder-Mead simplex algorithm

The Nelder-Mead algorithm was first proposed by John Nelder and Roger
Mead in 1965 [NM65]. The main idea is that the method always keeps
a simplex, i.e., a polytope of d + 1 vertices for a d-dimensional space,
instead of a single candidate. This simplex is then moved and deformed
depending on the values of the objective function at its vertices.

More precisely, the algorithm starts with an initial simplex composed
of d + 1 points. At each iteration, the worst point is replaced by its
reflection through the centroid of the d remaining points, if this reflected
point is good enough with respect to the fitness function. In particular,
if the reflected point is even better than the best current point, a good
search direction may have been found, so the algorithm tries to explore
further in that direction.

If the new point is not good enough, then we have two points located
at opposite directions from the centroid that are both considered “bad”.
In this case, an optimal point may lie inside the simplex, so we shrink
it. The detailed steps of an iteration of the algorithm are shown below
(see also Figure 2.1), and a pseudocode version of the method is given
in Algorithm 2.3.

Initialization

Let S ⊂ Rd be a simplex with vertices S1, S2, . . . , Sd+1. Without loss of
generality, we can assume that f(S1) > f(S2) > . . . > f(Sd+1), where f
is the function to maximize. The worst point is thus Sd+1 here. Let the
centroid of {S1, S2, . . . , Sd} be denoted by S0.

2.1. Classical optimization methods as starting point 13

(a) Reflection step (b) Expansion step

(c) Contraction step (d) Reduction step

Figure 2.1: Illustration of the Nelder-Mead algorithm in R2. The simplex
S ⊂ R2 has vertices S1, S2, S3, with S3 being the worst point with respect
to the objective function.

14 From classical optimization to heuristic approaches

Reflection step

Let Sr be the reflection of Sd+1 through the centroid S0, that is,

Sr = S0 + (S0 − Sd+1) = 2S0 − Sd+1.

If f(Sr) > f(Sd), then the new simplex is defined by replacing Sd+1 with
Sr.

Expansion step

If the reflected point is the current best candidate, i.e., f(Sr) > f(S1),
then an expansion step is attempted. The expanded point Se is defined
as

Se = Sr + (Sr − S0) = 2Sr − S0 = 3S0 − 2Sd+1.

If the expansion is successful, i.e., f(Se) > f(Sr), then instead of replac-
ing Sd+1 with Sr when constructing the new simplex, we replace it with
Se.

Contraction step

If the reflection was unsuccessful (f(Sr) 6 f(Sd)), we compute the con-
tracted point Sc using the expression

Sc = S0 +
1

2
(Sd+1 − S0) =

1

2
(S0 + Sd+1).

If f(Sc) > f(Sd+1), the fitness is improving when moving inwardly of
the simplex from the worst vertex Sd+1, so the new simplex is taken as
{S1, S2, . . . , Sd, Sc}.

Reduction step

If both the reflection and the contraction steps fail, the whole simplex
S is reduced around its best vertex S1: a new simplex {S1, S2′ , S3′ , . . . ,
Sd′ , S(d+1)′} is constructed using the transformation

Si′ =
1

2
(S1 + Si), i = 2, . . . , d+ 1.

2.1. Classical optimization methods as starting point 15

Comments

The Nelder-Mead algorithm is not guaranteed to converge to a station-
ary point (for example see [McK99]), and largely depends on the initial
simplex. Several runs with different initial simplices can be performed,
in order to increase the probability of reaching a global optimum. An-
other possibility is to use more elaborate variants of the algorithm with
improved performances.

Algorithm 2.3 Nelder-mead simplex method
Input: f function to maximize

initial simplex S = (S1, S2, . . . , Sd+1) with vertices ordered such
that f(S1) > . . . > f(Sd+1)

Output: solution x expected to maximize f(x)
1: while stopping criterion is not met do
2: S0 := 1

d(S1 + · · ·+ Sd)
3: Sr := 2S0 − Sd+1

4: if f(S1) > f(r) > f(Sd) then
5: Sd+1 := Sr
6: else if f(r) > f(S1) then
7: Se := 3S0 − 2Sd+1

8: Sd+1 := argmaxs∈{Sr,Se} f(s)
9: else

10: Sc := 1
2(S0 + Sd+1)

11: if f(Sc) > f(Sd+1) then
12: Sd+1 := Sc
13: else
14: Si := 1

2(S1 + Si) for all i = 2, . . . , d+ 1
15: end if
16: end if
17: Reorder the vertices of S such that f(S1) > . . . > f(Sd+1)
18: end while
19: x := S1

The Nelder-Mead simplex method will be used as a component of
the algorithm presented in Section 3.4.2. The role of the Nelder-Mead
iterations will be to locally improve solutions associated to the optimiza-
tion problem. The exploration of the search space will be left to another
component, viz., a genetic algorithm (see Section 2.3.1).

16 From classical optimization to heuristic approaches

2.2 Local search heuristic methods

The methods presented in the previous section are designed for an op-
timization problem with continuous variables. If the search space is
discrete, other approaches are generally more suitable for local optimiza-
tion. Indeed, it is not always possible to compute approximate gradients.
Applying an iteration and taking the “closest” admissible point may not
be a good idea in the general case. Depending on the problem, these
approximations are sometimes simply meaningless.

Let us go back to the hill climbing strategy and let us consider a
discrete search space. The general idea is to take a point in the neigh-
borhood of the current solution, and move to it if the value of the fitness
function increases. Here, a neighborhood corresponds to a set of solu-
tions that are “close” to the current solution, in the sense that they can be
obtained by applying small local changes to the current candidate. The
exact nature of these changes is heavily dependent on the problem. Such
local search techniques are widely used when facing hard combinatorial
problems. In the following sections, we will present several well-known
strategies for discrete optimization problems, starting with the simulated
annealing and the tabu search.

In order to illustrate the different methods and concepts, let us use
the classical n-queens problem as running example.

Example 2.1. The n-queens problem is defined as follows: given an
n×n chessboard, we want to place n queens in distinct squares such that
no two queens attack each other. In other words, we have to place n
elements in an n × n grid so that no two elements share the same row,
column or diagonal. It is known that this problem admits solutions for
all n > 3 (see [BS09] for a survey of known results on the subject). For
instance, a possible solution for the usual 8 × 8 chessboard is shown in
Figure 2.2.

In order to manipulate candidate solutions in the different algorithms,
we will use a simple encoding, or representation of the solutions. The
positions of the n queens will be encoded as a list of n integers Q =
(q1, . . . , qn) ∈ {1, . . . , n}n, where qi = j means that there is a queen
at column i, row j of the chessboard. The position in Figure 2.2 is
thus encoded by the list (4, 6, 8, 2, 7, 1, 3, 5) if the rows are numbered from
the top to the bottom. As an additional example, the configuration in
Figure 2.3 is encoded by the list (1, 1, 2, 2, 3, 3, 4, 4).

2.2. Local search heuristic methods 17

⊗
⊗

⊗
⊗

⊗
⊗

⊗
⊗

Figure 2.2: One possible solution to the 8-queens problem.

⊗ ⊗
⊗ ⊗

⊗ ⊗
⊗ ⊗

Figure 2.3: The 8-queens configuration encoded by the list (1, 1, 2, 2, 3, 3,
4, 4).

18 From classical optimization to heuristic approaches

⊗
⊗
⊗

⊗

⊗
⊗

⊗
⊗

Figure 2.4: Two neighbors for the “swap” neighborhood, in the 4-queens
problem.

Choosing this representation ensures that two queens will never share
the same column. We also have to define a fitness function that measures
the quality of a solution. Here, a possible choice would be to use the
number of pairs of queens that do not attack each other. With this fitness
function, the goal is to find a candidate solution with a fitness of

(
n
2

)
=

1
2n(n− 1).

Finally, several neighborhoods may be defined for the n-queens prob-
lem. For example, given a candidate solution Q = (q1, . . . , qn), one can
construct a neighborhood containing all n-tuples that differ from Q by
exactly one component. This can be interpreted as the set of positions
reachable by moving one queen in its column. This “move” neighborhood
has thus a size of n(n − 1). Another possibility would be to consider a
neighborhood formed by all positions obtainable from Q = (q1, . . . , qn) by
swapping two elements in the list. This “swap” neighborhood has a size
of 1

2n(n− 1). Note that if we use the second neighborhood, then starting
with a permutation of (1, . . . , n) as initial position ensures that there will
never be two queens in the same column, nor in the same row.

As an illustration, the two positions shown in Figure 2.4 are neighbors
with respect to the “swap” neighborhood. The fitness of the first position
is 4 while the fitness of the second position is 5.

2.2.1 Simulated annealing

The main idea of simulated annealing is based on the following observa-
tion: sometimes, one has to accept an unfavorable move in order to reach
a better global solution. The method was described by Kirkpatrick et
al. in 1983 [KGV83] and is inspired by a physical process. Indeed, the

2.2. Local search heuristic methods 19

concept of annealing in metallurgy corresponds to a procedure consisting
in cycles of adequate heating and cooling, so that the crystal structure
of the object can be modified. A high temperature allows the atoms to
move from their initial positions, which can be viewed as a local mini-
mum for the internal energy, to configurations of higher energy. When
the temperature decreases, the atoms stabilize in another configuration
of low energy, which can be better than the initial structure.

The optimization method follows the same ideas: a parameter T
(the “temperature”) is set to a high value in the initial conditions and
is slowly decreased during the process. At each iteration, a candidate
that is worse than the current solution may be accepted, depending
on the current temperature and the quality of the candidate. Hence,
unfavorable moves are allowed at the beginning of the algorithm so that
we do not remain stuck in a local optimum, but the process has to
stabilize in the long-term.

The details of the algorithm are presented in Algorithm 2.4 for a
minimization problem, in order to keep consistency with the physical
process. An overview of the simulated annealing technique can be found
in [vLA87].

Algorithm 2.4 Generic simulated annealing
Input: f function to minimize

initial temperature T > 0 and cooling schedule
initial solution x0

Output: solution x expected to minimize f(x)
1: xcur := x0

2: x := xcur
3: while stopping criterion is not met do
4: xneigh := random neighbor of xcur

5: if random < exp
(
f(xcur)−f(xneigh)

T

)
then

6: xcur := xneigh
7: end if
8: if f(xcur) < f(x) then
9: x := xcur

10: end if
11: decrease temperature T
12: end while

The initial solution x0 may be randomly chosen in the search space.

20 From classical optimization to heuristic approaches

The random expression corresponds to a random number between 0 and
1 using a uniform distribution. Note that if the neighbor is better than
the current point, i.e., f(xcur) − f(xneigh) > 0, the update is accepted
independently of the value of random since the right-hand side of the
inequality would be larger than 1.

Several stopping criteria can be chosen, e.g., if the temperature T is
too low, or if there was no improvement with respect to the cost function
during a large number of iterations. The main parameter is the cooling
schedule: how to decrease the temperature? This is mainly a design
choice influenced by the problem. Common choices are a sequence of
thresholds or a continuously decreasing temperature, for instance using
an exponential decay. In any case, the temperature for the first iterations
has to be sufficiently high in order to allow escaping from local minima.
Of course, it is also possible to run this procedure several times, as with
the physical process.

Example 2.2. For the n-queens problem, a simulated annealing ap-
proach can be easily implemented. At each iteration, we choose a ran-
dom candidate in the current neighborhood. For instance, let us use the
“swap” neighborhood; this is interpreted as choosing a random pair of
queens on the chessboard. These two queens are located on different rows
and different columns. Let us look at the alternate position where the
two queens are exchanging their row values, while keeping their column
values. This alternate position is kept if it is better than the current
one. If the row exchange produces a worse solution then we randomly
choose which position is kept, depending on the difference in fitness and
the current temperature.

A possible simple choice for the temperature management (which is
slightly different from the formula presented in Algorithm 2.4 in order to
simplify this example) is to start with a value of n2, and have it decrease
at each iteration so that the temperature is zero after a fixed number
of iterations. Then, a worse position may be accepted if the difference
in fitness, i.e., the number of additional conflicts between queens, is less
than the current temperature. When the temperature becomes strictly less
than 1, only exchanges improving the quality of the solution are accepted.

2.2. Local search heuristic methods 21

2.2.2 Tabu search

Tabu search is a heuristic strategy created by Fred Glover in 1986-1989
([Glo89, Glo90], see also [GL98]) which is usually used in combination
with another optimization method. The principle is to keep in mem-
ory recently visited solutions and to prevent visiting them again at a
short-term horizon. For example, a tabu search would forbid a cycling
behavior between a small number of very good solutions. Indeed, these
solutions will be marked as taboo one after the other, when each point is
visited. Thus, this tabu strategy prevents the optimization method from
remaining stuck in the same region and enforces a better exploration of
the search space.

The set of forbidden solutions, called the tabu list, can contain either
explicit solutions, or more general features preventing all the correspond-
ing solutions from being examined. Usually, the tabu list has a limited
size and old rules are progessively forgotten in favor of new rules. Of
course, it is perfectly possible to use rules that definitely remove some
regions of the search space, or to bias the search instead of completely
forbidding the corresponding solutions.

Tabu search is related to our pruning heuristic presented in Sec-
tion 4.3.3.

Example 2.3. Let us consider the n-queens problem. One possibility to
implement a tabu search would be to keep a tabu list corresponding to
the list of the last k queens that have been moved, for some small value
of k < n. These queens are thus frozen at their current positions. Then,
instead of considering the whole neighborhood at a given iteration, we
only look at the subset of candidates that do not move the frozen queens
from their current positions. As k is constant, the queens associated
to the selected neighbor will enter the tabu list and unfreeze the “oldest”
frozen queens. Hence, a given queen will not be able to move several times
without remaining at the same position during some number of iterations,
between two moves. In particular, a move will not be able to directly undo
the recent modifications done to the candidate solution. Note that if k =
n− 1, this corresponds to a strategy that can be interpreted as a discrete
version of coordinate descent: each variable is optimized separately, one
after each other, in a cyclic pattern.

22 From classical optimization to heuristic approaches

2.3 Population-based heuristic methods

This section is devoted to population-based techniques and in particular
the genetic algorithm which is one of the most famous representatives
of the family. Population-based methods correspond to strategies where
we keep track of a large set of candidates at each iteration, instead of
moving a single candidate in the search space. This is different from
a simple restart strategy done in parallel as information from different
candidates is combined in population-based strategies.

These methods are mainly designed for exploration of the unknown
search space, unlike local search methods which concentrate on the ex-
ploitation of the current knowledge. Like simulated annealing, most
population-based methods are inspired by processes in the real world
such as the behavior of populations of animals or other biological sys-
tems.

2.3.1 Genetic algorithm

Genetic algorithms have been proposed by Holland in 1975 ([Hol75], see
also [Gol89, Dav91]) and are inspired by the process of natural evolu-
tion. Indeed, they produce solutions by letting a population evolve, using
mechanisms such as inheritance, crossover, or mutation. The approach is
used in many applications, partially due to the fact that the framework
of genetic algorithms is very general and can be customized for many
optimization problems, giving birth to a bunch of variants.

The search variable of a genetic algorithm is a population P. Each
individual or member of the population P represents a potential solution
to the optimization problem. The individual can be the solution itself, or
some encoding of the candidate, i.e., an alternative representation of the
solution (typically a string or a list). The initial population is usually
randomly generated.

The size S of the population, i.e., the number of individuals kept in
memory at each step of the algorithm, is considered a parameter. In-
creasing the value of S tends to ensure a better exploration, but of course
at the price of a higher computation time. Usually, the size of the pop-
ulation remains unchanged during the process, but adaptive population
sizing schemes can also be used. The main part of the algorithm consists
in a sequence of generations. At each generation, a whole process of se-
lection and breeding is done. Indeed, we have to find individuals in the

2.3. Population-based heuristic methods 23

population that perform well, then produce new candidates by combining
these good elements. The breeding is usually done with two components
called crossover and mutation. The detailed steps are presented below.

Evaluation and selection

In order to be able to select population members, we have to somehow
quantify their “quality” or fitness. At the evaluation step, the perfor-
mance of each member of P is evaluated, according to a fitness function.
Some modifiers may be applied in order to bias the evaluation procedure.
For example, penalties or tie-breakers can be used if solutions satisfying
some additional property are preferred.

It has to be noted that this implies that the fitness of an individual
should be easily computable. If the evaluation of the objective function
is expensive, one may want to consider using an approximation of the
fitness function as the population size in genetic algorithms is usually of
the order of tens, hundreds or even thousands of individuals.

Afterwards, a subset of P is selected in order to produce the new
population. Several schemes are possible, such as keeping the k elements
with the best fitness (elitist strategy), or selecting k individuals with a
probability density proportional to the fitness of the elements. Another
possibility is to allow an individual to be selected only if its fitness is
good enough. One can also allow the best solutions or even all solutions
to be selected several times during the procedure.

Even though the fittest elements are logically favored, the other in-
dividuals should have decent chances to be selected, in order to preserve
genetic diversity and thus a good exploration of the search space. A
possible solution is to introduce a small number of randomly generated
“strangers” in the selection to counterbalance an elitist strategy.

Crossover

A new population of size S is created by combining elements selected
at the selection step. Each new individual is obtained from two selected
“parent” solutions. There are a large number of breeding methods and
the choice usually depends on the problem and/or the representation of
a candidate solution as a population member. Some examples are as
follows.

24 From classical optimization to heuristic approaches

• The crossover cut: if the two parents A,B are represented as
a1a2 . . . ak and b1b2 . . . bk, respectively, then a new candidate C
can be formed by choosing a cut point p satisfying 1 6 p < k, and
taking C = a1a2 . . . apbp+1 . . . pk or C = a1a2 . . . apbp+1 . . . pk. It
would also be possible to have several cut points.

• The linear combination: given two parents A,B, one can produce
a candidate C with the formula C = αA+ βB, for some values of
α, β. For example, the arithmetic mean of A and B is a possibility
that is often used.

• The fitness-weighted convex combination: in this case, the coeffi-
cients α, β of the linear combination are nonnegative and propor-
tional to the fitness of the two solutions. Furthermore, the coeffi-
cients are normalized so that α+ β = 1 (convex combination).

Of course, one may use several crossover rules when creating the new
population.

Mutation

With some probability, small random mutations are applied on one or
several elements of P. This step ensures that the algorithm will keep
analyzing new candidates and avoid staying forever in a local optimum.
Indeed, we want to explore the neighborhood of promising products but,
at the same time, we need to avoid situations where the population P
is composed of very similar elements as crossing over such populations
would not result in new solutions.

It is also possible to apply controlled mutations, i.e., mutations that
are not random. This is usually done when we are looking for solutions
satisfying some additional property, or if we are using some strategy to
improve the quality of the candidates.

Comments

The algorithm usually stops after a fixed number of generations, or if
there is no significant improvement to the fitness of the best solution
during some number of generations. Genetic algorithms are usually able
to reach good (but not necessarily optimal) solutions in a short amount of
time. However, convergence to a global optimum or even locally optimal

2.3. Population-based heuristic methods 25

solutions is not necessarily obtained, depending on the problem and the
strategies used in the different steps.

The genetic algorithm approach is used in our methods presented in
Sections 3.4.2 and 5.4. In order to help the convergence to solutions that
are at least locally optimal, an additional strategy is combined to the
genetic algorithm, depending on the optimization problem.

Example 2.4. Let us design a simple genetic algorithm for the n-queens
problem. The population corresponds thus to a set of lists of n integers,
each list encoding a solution as explained in the previous sections. The
fitness function is again taken to be the number of pairs of non-conflicting
queens.

A crossover cut between two positions can easily be interpreted on the
chessboard: we produce a new position by selecting a random column as
cut point, then keeping the left part of the first position and the right part
of the second position. The hypothesis used here is that we expect good
positions to be constituted of good sub-positions (when we only look at a
subset of contiguous columns).

The usual random mutation consists in moving (with a low probabil-
ity) a random queen to a random position in the same column. A less
random strategy would be to randomly select a queen, but then moving it
to the square (in the same column) that minimizes the number of con-
flicting pairs of queens. A controlled mutation can be the application
of this local improvement strategy at each generation instead of doing it
randomly. Another possible controlled mutation is to perform a rotation
on the list of integers. For example, (q1, q2, . . . , q8) could mutate into
(q6, q7, q8, q1, . . . , q5). The amplitude of the rotation can be determined
by keeping the best position among all rotations of the initial solution.

2.3.2 Other population-based approaches

Besides the genetic algorithm and its variants, many other population-
based methods have been developed based on natural processes, espe-
cially over the last two decades. In 1992, ant colony optimization al-
gorithms are introduced by Dorigo in his Ph.D. thesis [Dor92]. The
approach is based on the behavior of a colony of ants searching for food
and using pheromones to mark promising paths, in order to attract other
ants on the same path.

26 From classical optimization to heuristic approaches

These pheromones have a limited-time effect so that an exploration
of the search space is still possible. A path will be kept only if it is
good enough with respect to other solutions. Indeed, a good path will
be frequently taken by the population of ants, reinforcing its density of
pheromones. Hence, the method is mainly used when solving optimiza-
tion problems that can be expressed as path problems.

Another popular method is the particle swarm optimization algo-
rithm, proposed by Kennedy and Eberhart in 1995 [KE95], based on
social behavior of a population of agents such as a bird flock or a fish
school. In this framework, a population of particles is moving in the
search space, starting with random initial positions and velocities. At
each iteration, the velocity of each particle is computed depending on
its current velocity (inertia component), the location of the best solu-
tion obtained by the particle in its past, relatively to its current position
(personal component), and the location of the best solution among all
particles (social component). The positions are then updated according
to these velocities.

The precise weighting between the three components is an impor-
tant parameter of the method since it controls the weighting between
exploration and exploitation. This has led to many variants and much
research, similarly to the design of the selection, crossover and mutation
steps in the genetic algorithm.

Many other optimization methods have been proposed, with varying
performance, depending on the design parameters and the optimization
problems. Several recent examples are the artificial bee colony method
[KB07], the firefly algorithm [Yan09], or the cuckoo search algorithm
[YD09].

2.3.3 Hybridizations and memetic algorithms

Even though the previous sections only present a small fraction of ex-
isting optimization techniques, one can already wonder which ones are
more adapted to a given optimization problem. Moreover, most heuristic
methods have a very large freedom in the design of the internal steps, or
the tuning of the parameters. This is not surprising as they are mainly
very general rules or frameworks that can be adapted to particular prob-
lems.

2.3. Population-based heuristic methods 27

An important observation is that there are two main opposing ob-
jectives: the exploration of unknown parts of the search space, and the
exploitation of the obtained knowledge in order to produce a better so-
lution. Several methods are more suitable for one of these two goals.
Hence, combinations of different heuristic strategies are often used when
tackling a particular problem. Combining several approaches to produce
another algorithm is sometimes referred to as hybridizing. This notion
is not specific to genetic algorithms.

Genetic algorithms are usually more adequate as an exploration com-
ponent. Hence, it may be wise to consider a hybridization, i.e., combina-
tion, with another method which aims at producing local improvements
with the individuals. This approach is sometimes known as memetic
algorithms [NCM12]: at a higher level, a population-based strategy is
used for exploration. But at a lower level, each individual is separately
subject to a local improvement procedure. Note that these subproblems
do not have to be completely solved, i.e., until convergence to a local
optimum. A small number of iterations may be sufficient and would be
much less computationally intensive.

In the following chapters, we present heuristic approaches for three
different problems. Chapter 3 deals with the minimum-volume oriented
bounding box problem. Our strategy for this problem involves an hy-
bridization of the genetic algorithm with Nelder-Mead simplex algorithm
as local improvement procedure, or controlled mutation.

Chapter 4 presents the column subset selection problem, which is a
combinatorial NP-hard problem. In this case, the genetic algorithm is
avoided. Indeed, the evaluation of the fitness function for an arbitrary
solution is generally expensive. The optimization problem is handled
using a window-based approach, combined with variants of stochastic
hill climbing and tabu search.

Finally, Chapter 5 focuses on the problem of approximating the joint
spectral radius, which is also NP-hard. As with the bounding box prob-
lem, we use a genetic algorithm with local improvement rules to tackle
the problem and derive bounds on the joint spectral radius.

CHAPTER 3
The minimum-volume
oriented bounding box

problem

In this chapter, we study a well-known problem in computational geom-
etry and computer graphics, the approximation of the minimum arbi-
trarily oriented bounding box of a set of points in R3. More precisely,
the problem consists in finding the minimum-volume rectangular par-
allelepiped enclosing the given points. We present the main currently
used methods and introduce a new approach, where the problem of ob-
taining the minimum-volume oriented bounding box is formulated as an
unconstrained optimization problem on the rotation group SO(3,R). It
is solved by a hybrid method combining the genetic and Nelder-Mead
algorithms. This method is shown to be either faster or more reliable
than other presented methods, for any accuracy. The chapter presents
original research published in [CGM11].

3.1 Introduction

The arbitrarily oriented bounding box (OBB) fitting problem is encoun-
tered in many applications, such as fast rendering of 3D scenes [AM00],
collision detection [JTT00, GASF94], visibility tests [IZK98] or mesh
reparameterization [JFGCM10]. In these applications, one has to per-
form several tests involving geometric objects. For example, collision
detection consists in determining whether two geometric objects are in-
tersecting, an important operation done in physics engines. As objects
are mainly defined as sets of points, possibly with descriptions of edges
and/or faces, testing whether two objects are intersecting or disjoint

30 The minimum-volume oriented bounding box problem

is not obvious, especially since it has to be done quickly. Hence, we
usually use a simplified hierarchical representation of 3D objects (see
[GLM96, PML97]).

The various 3D models can be approximated by a tree of succes-
sively smaller volumes ([GLM96] uses such a method), requiring three
characteristics:

1. An intersection test between two volumes must have a low compu-
tational cost. Indeed, the main purpose of these representations is
to be able to perform such operations much faster than with the
original objects. This becomes particularly important when we are
dealing with a large number of moving objects, since this implies
a large number of collision detection tests.

2. The volumes themselves must be quickly computable as the trees
have to be built before the intersection tests can be performed.
Moreover, the set of considered objects may vary since new ele-
ments may appear in the scene. Volumes approximating animated
or deformable objects may also have to be modified in real-time.

3. Those volumes need to be as close as possible to the geometry
defined by the set of points in order to minimize the number of
superfluous tests and thus improve the total running time of the
algorithms.

Using volumes such as OBBs, i.e., rectangular parallelepipeds, is thus
a compromise between these two objectives. Indeed, testing whether
two OBBs are intersecting can be easily done. In particular, we can
use the axis-aligned bounding box (AABB, see [dB98]), i.e., an OBB
whose orientation is parallel to the three axes of the reference frame.
Other bounding volumes can of course be used, such as bounding spheres,
ellipsoids, cylinders, capsules (cylinders capped by two half-spheres) or
k-DOPs (discrete oriented polytopes that correspond to AABBs with
beveled edges and/or corners), all of which form different compromises
between computing ease and accuracy. A review of various bounding
volumes can be found in [Eri04].

On the one hand, the AABB is the easiest bounding volume to com-
pute, as we only have to evaluate the range of the coordinates of the
points. However, it is obviously not very good at fitting most geome-
tries. Moreover, rotating the object usually results in a modification of

3.1. Introduction 31

its minimum AABB. On the other hand, the convex hull of the model
provides, by definition, the closest convex approximation. However, col-
lisions between convex polyhedra can be just as hard to detect as those
involving the original models. This is why OBBs are often a good com-
promise.

Computing the minimum-volume OBB is far from trivial, although
it can be solved in polynomial time using O’Rourke’s exact algorithm
[O’R85]. Approximations can also be obtained using heuristics such as
the ones based on principal component analysis (PCA) [Jol02]. Here, we
propose a hybrid global optimization algorithm for the computation of
the orientation of an optimal OBB that searches in the space of rotation
matrices. Our experiments show that optimal OBBs of about 300 test
cases from [Gro08] can for example be estimated with relative accuracy
of 1% or better in 98% of the runs on average. Running the algorithm
on all test cases takes about 4 minutes. In comparison, PCA-based
methods only reach such accuracy in less than 60% of the cases. For
another choice of parameters of our method, we were able to compute all
optimal volumes with a relative error of at most 10−12 in more than 95%
of the runs on average, in about 20 minutes. In comparison, O’Rourke’s
method requires nearly one week of computation time to compute one
optimal OBB for each example. All these computation times include the
computation of the convex hulls.

The main idea behind our HYbrid Bounding Box Rotation IDenti-
fication (HYBBRID) algorithm is that the problem of finding an opti-
mal OBB can be written as an unconstrained optimization problem on
SO(3,R), the special orthogonal group of degree 3. Hence, the objective
function is continuous but non-differentiable as it takes into account the
geometric constraints. Therefore, it cannot be written in closed form
although it is easy to evaluate. This is why solving such a formulation
of the problem requires the use of derivative-free optimization methods,
such as those used in HYBBRID. It consists in a hybridization of the
genetic and Nelder-Mead algorithms, based on the method described in
[DA99]. Such a hybrid scheme combines the strength of the genetic al-
gorithm in terms of exploration of the search space, and the capacity of
the Nelder-Mead method to quickly converge to locally good solutions.

The remainder of this chapter is organized as follows. We start by
presenting the main notation and basic results associated to the prob-
lem. This section is followed by an extensive review of the literature
on the subject. Next, the formulation of the OBB fitting problem as

32 The minimum-volume oriented bounding box problem

b

b

b b

b

b

b

b

b

bb

b

b

b

b

b b

b

b

b

b

X

XC

ex

eξ

b

b

b

∆ξ∆η

Figure 3.1: Illustration of the notation associated to OBBs used through-
out this chapter, in the two-dimensional case. The axis-aligned bounding
box and the optimal oriented bounding box are drawn as dotted black and
solid blue lines, respectively.

an optimization problem is detailed. Our HYBBRID algorithm is then
described, analyzed and compared to the other methods.

3.2 Notation and basic properties

Let X ⊂ R3 be a given finite set of N points. The problem consists
in finding an oriented bounding box, i.e., rectangular parallelepiped, of
minimum volume enclosing X . This is illustrated for the 2D case in
Figure 3.1. Each OBB is defined by its center X ∈ R3, its dimension
∆ ∈ R3 and its orientation R ∈ SO(3,R).

Here, the rotation group SO(3,R) is the special orthogonal group of

3.2. Notation and basic properties 33

degree 3 over R:

SO(3,R) =
{
R ∈ R3×3 | RTR = I = RRT ,det(R) = 1

}
,

where GL(3,R) is the general linear group of degree 3, i.e., the set of
3-by-3 invertible real matrices. The matrix R rotates the reference frame
ex onto eξ as shown in Figure 3.1. Hence, an AABB corresponds to an
OBB where the matrix R is chosen as the identity matrix I.

The convex hull of X and the set of its vertices are denoted by
conv(X) and XC ⊂ X , respectively. Just as N = |X |, let NV = |XC | be
the number of vertices of conv(X). The computation of this convex hull
can be used as a preprocessing step before computing an OBB, as only
the points in XC have an influence on the OBB. In R2 and R3, the con-
vex hull of a set of N points can be obtained with a cost of O(N logN)
[Ski98], for example by using Qhull [BDH96]. Note that the volume of
the convex hull gives a lower bound on the volume of the minimal OBB.

The problem of computing an optimal OBB for a given set of points
is not trivial. In 2D, an optimal bounding rectangle can be computed
in linear time using the so-called rotating calipers method as proposed
in [Tou83]. This technique is based on the idea developed by Michael
Ian Shamos in his Ph.D. thesis [Sha78] (see also [PS85]) to compute the
diameter of a convex polygon. The fact that the 2D problem can be
easily solved is due to the following property.

Theorem 3.1 ([FS75]). Given a set of points X in R2, the minimum-
volume rectangle enclosing all points in X has at least one side aligned
with an edge of the polygon conv(X).

In other words, at least one side of the optimal bounding rectangle
contains at least two points of XC (The upper right side for the example
in Figure 3.1). Thus, one does not have to test all orientations in order
to find the smallest bounding rectangle.

The rotating calipers algorithm for the minimum-area bounding rect-
angle in R2 is given in Algorithm 3.1.

In this algorithm, the four indices idown, iright, iup, ileft correspond
to the indices of four points located on the four sides of the bounding
rectangle. The vector ddown = (dx, dy) corresponds to the direction of
one side of the current bounding rectangle, and thus completely defines
the orientation of this rectangle. The two parallel vectors ddown and

34 The minimum-volume oriented bounding box problem

Algorithm 3.1 Rotating calipers for the minimum-area bounding rect-
angle problem
Input: (z0, z1, . . . zNV −1) with zi = (xi, yi), ordered list of the coordi-

nates of the vertices of the convex hull conv(X). In this algorithm,
all indices are supposed to be modulo NV . The edges of the convex
hull are thus [zi, zi+1], for i = 0, . . . , NV − 1.

Output: f area of the minimum-area bounding rectangle enclosing XC

1: f := +∞
2: idown := argmini yi
3: iright := argmaxi xi
4: iup := argmaxi yi
5: ileft := argmini xi
6: (dx, dy) := (1, 0)
7: while dx > 0 do
8: δj := zij+1 − zij for j ∈ {down, right, up, left}
9: Let ddown = (dx, dy), dright = (−dy, dx), dup = (−dx,−dy) and

dleft = (dy,−dx)
10: jmax := argmaxj

(
δj · dj

/
‖δj‖

)
11: dnew := zijmax+1 − zijmax

12: Update dx, dy such that djmax = dnew
/
‖dnew‖

13: ijmax := ijmax + 1
14: Compute the area fcur of the bounding rectangle with directions

(dx, dy) and (−dy, dx)
15: if fcur < f then
16: f := fcur
17: end if
18: end while

3.2. Notation and basic properties 35

z0

z1

z2

z3

z4

z5

z6

z7

z8 αdown

αright

αup

αleft

conv(X)

ddown = (1, 0)

dright

dup

dleft

δdown

δright

δup

δleft

Figure 3.2: The rotating calipers algorithm for the minimum-area bound-
ing rectangle problem. In this situation, we have idown = 0, iright = 3,
iup = 5 and ileft = 7.

dup define a first pair of calipers, and a second pair is defined by dleft
and dright. These two pairs of calipers are then rotated around conv(X).
Whenever a caliper is aligned with an edge of the convex hull, the area of
the corresponding bounding rectangle is computed. The rotation angle
between two such events can be obtained by comparing the αj angles
between the δj ’s and the dj ’s (see Figure 3.2). Since 0 6 αj 6 π, the
smallest angle (which determines the next rotation to apply) is associated
to the largest value of the cosines, and thus to the largest value of the
normalized dot products. After a total rotation of at most π

2 , all edges
have been tested.

A naive generalization to the three-dimensional case would be the
following conjecture.

Conjecture 3.2 (FALSE). Given a set of points X in R3, the minimum-
volume OBB enclosing all points in X has at least one face aligned with
a face of the polyhedron conv(X).

Unfortunately, this assertion does not hold, as shown by the simple
counterexample in Figure 3.3. Indeed, it is clear that none of the six faces
of the cube is parallel to a face of the inscribed regular tetrahedron.

36 The minimum-volume oriented bounding box problem

Figure 3.3: Optimal OBB of a regular tetrahedron (in blue dotted lines).
Here, the optimal OBB is a cube (in red solid lines).

However, it should be noted that the edges of the tetrahedron are all
embedded into the faces of the cube.

In fact, in the 3D case, the following theorem holds.

Theorem 3.3 ([O’R85]). A rectangular parallelepiped of minimum vol-
ume circumscribing a convex polyhedron must have at least two adjacent
faces that contain edges of the polyhedron.

In Theorem 3.3, the two faces are said to be flush with the cor-
responding edges. This theorem shows that it is possible to find the
optimal OBB by examining a finite number of orientations, similarly to
the 2D case.

3.3 State of the art

The current best exact algorithm for the 3D problem, published by
O’Rourke in 1985 [O’R85] and based on Theorem 3.3, has a time com-
plexity of O(N3

V). O’Rourke’s algorithm is too slow to be of practical
use and is known to be extremely hard to implement [BHP01, Eri04].

3.3. State of the art 37

Most of the time, heuristic approaches are used instead. The most
popular ones are based either on principal component analysis [Jol02] or
on brute-force search. Note that given one axis p of an optimal OBB, the
two remaining axes can easily be obtained by using the rotating calipers
technique to compute the minimum-area rectangle enclosing the set of
points projected on a plane orthogonal to p. Several methods use this
idea of finding the orientation of the OBB, aligned with a given direction
p, that has the minimum volume by solving the associated 2D problem.

In the following subsections, these algorithms are presented, but a
more detailed discussion can be found in [Eri04]. We have implemented
them all in MATLAB R© in order to compare these currently widespread
methods for OBB fitting. Several studies comparing the performances
of bounding box algorithms can also be found in [DHKK09, LKM+00].

3.3.1 O’Rourke’s algorithm

In [O’R85], Joseph O’Rourke presented an algorithm that can be used
to compute an optimal OBB of a set of points in 3D. Although exact,
this method has the main drawbacks of being both extremely compli-
cated and very slow. It can be seen as a generalization of the rotating
calipers for the 3D case. Indeed, it is a smart exhaustive search across
all potential optimal orientations of the bounding box.

Based on Theorem 3.3, O’Rourke devised an algorithm that examines
every pair (e1, e2) of edges of conv(X). The idea is to perform a rotation
of the OBB such that a face and an adjacent one are continuously flush
with e1 and e2, respectively. Such a rotation is shown in Figure 3.4.
The volume of the OBB is a continuous but non-smooth function of the
rotation matrix R. Indeed, the derivative is not continuous each time a
third edge is flush with one face of the OBB. Between two such particular
rotations, the volume is a rational function whose local minima can be
obtained from the roots of a polynomial of degree 6. If one of these
volumes or the volume with three flush edges is smaller than the current
best volume found, the incumbent optimal solution is updated.

This algorithm runs in cubic time since the computational cost for
each pair of edges is linear inNV , as in the 2D rotating calipers technique,
and there are O(N2

V) pairs of edges. We have implemented O’Rourke’s
algorithm in order to compute the optimal volume and thus verify the
accuracy of the other methods.

38 The minimum-volume oriented bounding box problem

Figure 3.4: Illustration of two successive steps of the rotation in-
volved in O’Rourke’s algorithm for the tetrahedron ABCD with vertices
{(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1)}. During the whole rotation, the ad-
jacent faces 3784 and 1234 are flush with the edges AB and BC, respec-
tively. Hence, both faces evolve in a plane rotating around their corre-
sponding edge. In general, the rotation of the other faces are not around
a fixed axis as adjacent faces of the OBB have to stay orthogonal while
being flush with at least one vertex of the tetrahedron. The first OBB is
the cube in blue of which the faces 1234, 3784 and 2376 are flush with
the faces ABC, ADB and ADC of the tetrahedron, respectively. In fact,
the latter is a corner of this cube; hence, all edges are flush with faces of
this particular OBB. In the intermediate bounding box, which is in red
(resp. blue) on the left (resp. right), the face 1256 is flush with the edge
CD; since this particular OBB has three edges flush, it corresponds to a
salient point of the volume function during the rotation. As far as the
last bounding box, in red on the right, is concerned, the faces 3784 and
5678 are flush with the face ABC and the edge AD, respectively. Note
that its vertex 8 is hidden behind the tetrahedron.

AB

C

D

1
2

34

5
6

7
8

1

2

3

4

5

6

7

8

AB

C

D

1

2

3

4

5

6

7

8
1

2

3

4

5
6

7

8

3.3. State of the art 39

3.3.2 PCA-based methods

A very popular class of heuristic methods is the one based on principal
component analysis. The idea behind it is to first perform a PCA on X ,
that is, computing the eigenvectors of its covariance matrix and choosing
them as axes of the orthonormal frame eξ. The first (resp. last) axis
is the direction of largest (resp. smallest) variance. Either some or all
axes resulting from the PCA can then be used, the choice leading to
three different variants of the methods: All-PCA, Max-PCA and Min-
PCA [BCG+96]. In general, PCA-based methods do not require the
computation of the convex hull and run in linear time with respect to
the number of points. In fact, using XC instead of X may change the
bounding box returned by these three variants as the distribution of
points is modified. Depending on the set of points, using XC may yield
better or worse results than using X .

All-PCA

This is the most basic method. It consists in directly using the three
directions given by the PCA as the axes of the OBB. In practice, X is
simply rotated to be placed in the PCA frame, and the AABB in this
frame is obtained by computing the minimum and maximum values for
each component.

Though this method is particularly fast and easy to implement, it
can be shown that the ratio between the volumes of the OBB obtained
using PCA and the optimal volume is unbounded [DKKR09]. In fact,
the PCA is very sensitive to the way points are distributed, and can fail
to give good results even in simple cases. For example, the PCA yields
a very badly fitted bounding box if the points form two crosses roughly
on two parallel rectangles, as shown in Figure 3.5. This is why one of
the two following variants are often used to improve the quality of the
solution.

Max-PCA and Min-PCA

The idea here is to use only one of the three axes determined by the
PCA. The orientation of the OBB, aligned with this axis, that has the
minimum volume can then be obtained by solving the associated 2D
problem obtained by projecting the points on the plane formed by the

40 The minimum-volume oriented bounding box problem

Figure 3.5: Simple case showing the OBBs given by different PCA-based
methods on a set of points (in green). The two bounding boxes correspond
to the result obtained by All-PCA or Max-PCA (black dashed lines), and
Min-PCA or Continuous PCA (blue solid lines).

two unused axes. In the Max-PCA variant, the direction of projection
is given by the first axis which is the eigenvector corresponding to the
largest eigenvalue of the covariance matrix. On the other hand, one
can choose to keep the last axis instead and thus obtain the Min-PCA
variant.

These methods are a little slower, but are always more accurate than
All-PCA. Indeed, the orientation given by All-PCA corresponds to a
feasible solution of both 2D optimization problems solved by Min-PCA
and Max-PCA with rotating calipers. Of course, the two corresponding
optimal orientations are at least as good as the one obtained by All-
PCA. Using Min-PCA or Max-PCA may avoid some of the pitfalls of
All-PCA. For example, using Min-PCA (resp. Max-PCA) will give an
almost optimal bounding box if X has a predominantly two-dimensional
(resp. one-dimensional) shape. Figure 3.5 illustrates the case of an object
that has one dimension with a significantly much smaller range than the
others. On sets of points with a real 3D extension, the Min-PCA variant
tends to yield better results in practice.

Continuous PCA

As regular PCA-based algorithms are too sensitive to the distribution of
the points in the set, Stefan Gottschalk, Ming Lin and Dinesh Manocha
have proposed the following two improvements in [GLM96]:

3.3. State of the art 41

1. Only the vertices of conv(X) determine the optimal bounding box.
Hence, computing the PCA simply on XC should provide better
results.

2. This reduced set of points can still give poor results; it typically
happens when points are very concentrated in one region of the
convex hull. A resampling of conv(X) should be performed in
order to obtain a uniformly spread out set.

Those two improvements yield a slightly more complex method be-
cause, to be completely general, the convex hull needs to be resampled
“infinitely densely”; this leads to a reformulation of the covariance matrix
as a continuous form. However, it is shown in [DKKR09] that, for an
octahedron, the volume of the bounding box given by this method is still
four times bigger than the optimal volume.

3.3.3 Brute-force methods

Given the complexity of the problem, a common simple strategy is to
examine a large number of possible orientations and choose the one yield-
ing the best OBB. These methods are used quite regularly given the ease
of implementation. Some of them are independent of the distribution of
points in the geometry, unlike PCA-based heuristics.

There are two main approaches. First, one can decide to sample the
search space and try all these possible orientations. For example, a uni-
form distribution can be used to sample SO(3,R), and then try all these
rotation matrices. Another possibility is to consider a large set of points
on the unit sphere, each point defining a direction p. The orientation of
the OBB, aligned with p, that has the minimum volume can then be ob-
tained by solving the associated 2D problem using the rotating calipers
technique. In either case, the best OBB obtained can be relatively close
to the real optimum provided that the number of considered orientations
is sufficiently large. Obviously, the major drawback of this approach is
the large computation time required to check all these orientations. More
details can be found in [Eri04].

A second approach is to select a large set of candidates based on
some properties of the geometry. For instance, for every direction that
connects any two points of the set, the associated 2D problem can be
solved to obtain the orientation of the OBB. The one that yields the

42 The minimum-volume oriented bounding box problem

smallest volume is then selected. This heuristic is described in [BHP01]
as the all-pairs method and runs in cubic time as the number of possible
pairs grows quadratically with the size of X .

Many other strategies can be used. In [Kor08], three variants are
described. The fastest one was already proposed in the discussion sec-
tion of [O’R85] and corresponds to a search among all bounding boxes
of which one side coincides with one face of the convex hull. It is thus
a generalization of the 2D naive algorithm based on Theorem 3.1 and
runs in O(N2

V) time. Both other strategies also take edges of the con-
vex hull into account but are slower (O(N3

V) running time). In fact,
Korsawe’s slowest variant is even slower than O’Rourke’s algorithm (see
Section 3.5.3).

3.3.4 (1+ε)-approximation

In [BHP01], Gill Barequet and Sariel Har-Peled have proposed algo-
rithms to compute, for any value of ε ∈]0, 1], an approximating OBB
whose volume is at most (1+ε) times the optimal volume. For that pur-
pose, a grid in R3 whose discretization step d is inversely proportional to
ε is built. Its orientation is given by an OBB whose volume is a constant
factor approximation of the optimal one. This OBB is chosen aligned
with an approximation of the diameter of X that is computed using the
AABB.

Based on this grid, two very different methods can be designed. On
the one hand, X can be projected on the grid with a computational cost
that is linear in N . O’Rourke’s algorithm can then be performed on the
projected set. In addition to requiring an implementation of O’Rourke’s
method, a main drawback of this method is that it can be very slow
in practice if d is too large. This first method is called ApproxMin-
VolBbx and has a complexity of O(N + 1

ε4.5
).

On the other hand, each vector pointing from the center of the grid
to one of its nodes can be taken as a direction p. The orientation of
the OBB aligned with p, that has the minimum volume, can then be
obtained by solving the associated 2D problem. For this variant, it is
necessary to choose how many cells of the grid will be considered to build
a candidate OBB. This is done by considering only the cells that have
a Chebyshev (or infinity-norm) distance of d or less from the center of
the grid. The way to compute the value of d to reach an accuracy of

3.4. A new method based on optimization 43

ε is exposed in [BHP01]. This second method is referred to as Grid-
SearchMinVolBbx in the article and has a complexity of O(NV

ε3
), with

an additional cost of O(N logN) for the computation of the convex hull
of X as preprocessing.

Note that the original technique described in [BHP01] can be im-
proved. Indeed, it is possible to reduce the size of the projected set of
points to a smaller set as described in [AHPV04, Cha06].

3.4 A new method based on optimization

The approach we propose in this thesis consists in formulating the search
of the minimum-volume OBB as an optimization problem defined on a
manifold. To the best of our knowledge, this idea has only been used in
[LKM+00]. In that article, the authors combine Powell’s quadratic con-
vergent method [PTVF92] and a multi-scale grid search to minimize the
volume of the OBB. A comparison of this scheme with our algorithm can
be found in Section 3.4.4. The method we propose is based on a formu-
lation of the minimum OBB problem as an unconstrained optimization
problem on SO(3,R), which is presented below.

3.4.1 Formulation of the optimization problem

A first direct optimization formulation can be written as follows:

min
∆,Ξ∈R3

R∈SO(3,R)

∆ξ∆η∆ζ (3.1)

s.t. −∆
2 6 RXi −Ξ 6 ∆

2 ∀i ∈ {1, . . . , N},

where Xi ∈ X , ∆ = (∆ξ,∆η,∆ζ) denotes the dimensions of the OBB
and Ξ its center after rotation by R. Note that the 6 operator is applied
componentwise.

The objective function is trilinear and the constraints are linear. One
of the major difficulties in this problem is the feasible set of R. The
minimization over the two vectors ∆,Ξ in R3 and the rotation matrix
R can be carried out as two successive minimizations. One can single
out the minimization with respect to R, and the other “internal” one

44 The minimum-volume oriented bounding box problem

is simply given by the computation of an AABB after a rotation of X
defined by a given fixed matrix R. Thus, the problem (3.1) can also be
written in the following form:

min
R∈SO(3,R)

f(R), (3.2)

where the objective function f(R) is simply the volume of the AABB
of X rotated by R:

f(R) =

(
min

∆,Ξ∈R3
∆ξ∆η∆ζ

s.t. −∆
2 6 RXi −Ξ 6 ∆

2 ∀i ∈ {1, . . . , N}

)
.

∆ξ (resp. ∆η, ∆ζ) can indeed be computed as the difference between
the maximum and minimum values of the first (resp. second, third)
components of the rotated set of points.

This function f(R) is only C0 since it is not differentiable at every
rotation matrix R that brings at least one face of the OBB to be flush
with one edge of the convex hull. These particular rotations are the
equivalent in SO(3,R) of salient points (points where two branches of a
curve meet with different tangents) and potentially yield local minima
of this objective function. A 2D example illustrating the function f(R)
is presented in Figure 3.6. It appears that this function is formed by the
upper envelope of concave functions. Note that the problem (3.2) is also
interesting in the 2D case, even though the rotating calipers technique
already provides an efficient — and asymptotically optimal — linear
algorithm.

Because of the non-differentiability of the function, especially at local
minima, line-search methods such as steepest descent or Newton can
encounter convergence issues. Therefore, derivative-free methods have
been preferred. A short presentation of different methods can be found
in Chapter 2.

Note that this non-smoothness comes from the elimination of the con-
straints in problem (3.1). Even though problem (3.2) is unconstrained on
SO(3,R) with an easy-to-evaluate objective function, it would be possi-
ble to try to solve problem (3.1) as a constrained smooth optimization
problem. This alternative approach will also be included in the results
presented in Section 3.5.3.

3.4. A new method based on optimization 45

(a)

0.6 0.7 0.8 0.9 1 1.1
0.6

0.7

0.8

0.9

Volume

θ

(b)

0 0.5 1 1.5

0.8

0.85

0.9

V
o

lu
m

e

θ

(c)

1 1.05 1.1 1.15

0.775

0.78

0.785

0.79

V
o

lu
m

e

θ

(d)

Figure 3.6: Representation of the area of an oriented bounding rectangle
depending on its orientation. (a) A 2D example is shown with the same
conventions as those used in Figure 3.1. (b) The area of the minimum
oriented bounding rectangle is shown for all directions around a quarter of
the circle. This is sufficient given the symmetries of a rectangle. Salient
points corresponding to angles aligning the bounding rectangle with a face
of conv(X) are shown by dashed lines. (c) The same curve is also drawn
as a function of the angle θ ranging from 0 to π

2 . It appears that only four
of the salient points are local minima. (d) A close-up view on the global
minimum is shown. Note that the salient point at θ ≈ 1.05 is not a local
minimum as increasing the value of θ reduces the area of the bounding
rectangle.

46 The minimum-volume oriented bounding box problem

3.4.2 The HYbrid Bounding Box Rotation IDentification
(HYBBRID) algorithm

In order to find a global minimum of the volume function f(R), a local
search component to ensure the convergence to a minimum and a global
search component to explore the search space can be combined. Several
schemes are possible but in this thesis, we have chosen to focus on a
hybrid method combining the Nelder-Mead algorithm (see Section 2.1.3)
and the genetic algorithm (see Section 2.3.1), as preliminary tests were
showing very promising results. A genetic algorithm without some local
improvement rule is not adequate when the search space is continuous,
whereas a pure Nelder-Mead would have to be restarted a large number
of times in order to find a good local optimum (see Section 3.5.2). An-
other example of an applicable global-local scheme for this problem is
the particle swarm optimization method (see [BA10]).

By combining Nelder-Mead simplex algorithm and genetic algorithm
one could hope to obtain very good solutions in a short time. This idea
has been studied by several authors: in [CS03] the authors first use a
continuous genetic algorithm with elitist strategy to locate a “promising
area” in the search space, where the Nelder-Mead algorithm is then used
to try to find the best solution situated in that region. Another example
is given by Durand and Alliot in [DA99], where the authors apply a
genetic algorithm with p-tuples of points as population elements, with
several Nelder-Mead iterations applied at each generation.

The combination used in HYBBRID is close to the variant of Durand
and Alliot and is detailed hereafter, step by step. As the dimension of the
rotation group SO(3,R) is 3, a simplex is a set of four rotation matrices
R = {R1, R2, R3, R4} ⊂ SO(3,R). Hence, it forms a tetrahedron on this
manifold with Rj ’s at its vertices. An element Ak of the population A
is thus a simplex R and its fitness is defined as minj∈{1,...,4} f(Rj). The
Nelder-Mead algorithm will also have to be adapted as we are optimizing
on SO(3,R) instead of R3. Generalizations of the Nelder-Mead simplex
algorithm to Riemannian manifolds have already been studied in [Dre06].

We will first describe the different steps of the HYBBRID algorithm
in terms of the usual operations in a linear space, and then explain
in Section 3.4.3 how these operations are implemented on the manifold
SO(3,R).

3.4. A new method based on optimization 47

Initialization

Let M be the size of the total population. It is initialized with random
simplices, i.e., the four vertices Rj of each simplex are obtained by using
a QR factorization of random 3-by-3 real matrices.

Evaluation and selection

The fitness of all the simplices is evaluated. The best M
2 simplices are

selected, the others are discarded. From this reduced population, four
groups AI1,AI2,AII1 ,AII2 are created at random using a uniform distribu-
tion. Each group has M

2 elements, and each population member can be
selected any number of times, in any number of groups.

Crossover

A standard mixing crossover is applied between the two groups AI1 and
AI2. A pair of parents is constituted by choosing the kth element of
both subpopulations: A1 ∈ AI1 and A2 ∈ AI2. They produce an offspring
Anew. Each vertex of the simplex Anew is either the corresponding vertex
of A1 or of A2, the selection being random, but the parent with the best
fitness having a higher probability of being chosen. In our algorithm,
the probability to select one of the two parents is 0.6 (resp. 0.5 or 0.4)
if it is better (resp. equivalent, worse) than the other parent. This first
crossover gives us M

2 new simplices.

The other M
2 new simplices are given by an affine combination cross-

over between AII1 and AII2 . Let A1 ∈ AII1 , A2 ∈ AII2 be the kth pair of
parents as before. The four vertices Anew,j of the corresponding offspring
Anew are defined by

Anew,j = λA1,j + (1− λ)A2,j ,

where the value of λ depends on whether A1 is better or worse than A2.
For example, λ can take the value 0.4 (resp. 0.5, 0.6) if the fitness value
of A1 is smaller (resp. equal, larger) than that of A2.

48 The minimum-volume oriented bounding box problem

Nelder-Mead mutation

K Nelder-Mead iterations (as described in Section 2.1.3) are applied on
all the M new simplices in order to obtain the new generation of the
population. This is thus expected to improve the general fitness of the
whole population.

Stopping criterion

This process (Selection → Crossover → Mutation) is repeated until a
stopping criterion is met, usually if the fitness of the best simplex stalls
for several iterations with respect to the desired tolerance, or if a maximal
number of iterations is reached. In our case, the algorithm stops after k
consecutive generations where the objective value does not improve by
at least x% compared to the current best value, with k = 5 and x = 1
as default values for these parameters.

Comments

The goal of the genetic component of HYBBRID is to somehow compute
the initial condition so that the Nelder-Mead algorithm converges to a
global minimum. These steps, inspired by evolutionary biology, bring
correlations between the initial conditions, which is better than starting
with random simplices (see Section 3.5.2).

Using Nelder-Mead simplices seems to be a better choice than directly
considering rotation matrices with a mutation consisting in a line-search
method. Indeed, the use of Nelder-Mead simplices induces a layer of
local cooperation between groups of candidate solutions. This meshes
well with the global cooperation introduced by the genetic algorithm that
randomly “resets” the initial conditions of the Nelder-Mead algorithm.

Experiments showed that using only one of the two crossover steps
yields poorer performances. Combining both of them ensures that the
simplices move enough to explore the search space sufficiently (first
crossover) while still tending to gather around promising areas (second
crossover). Of course, other crossovers can also be considered.

Finally, a post-processing step can be applied to the OBB obtained
from any algorithm: as the 2D problem is easy to solve with the rotating
calipers technique, the set X can be projected along one of the axes of

3.4. A new method based on optimization 49

the candidate OBB and the associated 2D problem can be solved. This
amounts to a rotation of the box around the normal of one of the faces
and ensures local optimality in that direction. A post-processed OBB
is thus guaranteed to be locally optimal with respect to its elementary
rotations.

3.4.3 Taking into account the structure of SO(3,R)

The second crossover in the genetic component of HYBBRID and the
update of the simplices in the Nelder-Mead algorithm consist of affine
combinations of rotation matrices. However, the affine combination of
two or more rotation matrices is not a rotation matrix, in the general
case. The geodesics can be used in order to take into account the ge-
ometry of SO(3,R) in these computations. On this particular manifold,
the exponential map and the log map [KHM07] can be used.

Let us look at the reflection and expansion steps in the Nelder-Mead
algorithm. A simplex is defined by four vertices which are rotation ma-
trices here: (R1, R2, R3, R4). The rotation matrix R0 is somehow de-
fined as the “centroid” of these four points. The mathematical operation
that brings R4 on R0 is the left multiplication by the rotation matrix
R0R

T
4 since R0 = (R0R

T
4)R4. In the reflection step, by definition, Rr

is obtained by performing the same displacement on the manifold but
starting from R0 instead of R4. Hence, the reflection point can sim-
ply be computed as Rr = R0R

T
4 R0. Similarly, the expansion point can

be expressed as Re = (R0R
T
4)2R0 as the displacement has to be done

twice. The new vertices in the contraction and reduction steps can also
be written in a closed form, e.g., Rc = (R0R

T
4)1/2R4.

The computation of a square root of a matrix is significantly more
expensive than simple multiplications. However, a high accuracy is not
required in our Nelder-Mead method as only a few number of iterations
are applied to let the population get closer to the minima at each gen-
eration. In this case, the method can take advantage of the fact that
SO(3,R) is embedded in R3×3. After computing the usual affine combi-
nation in R3×3, the obtained matrix can be projected on SO(3,R) with
a QR factorization to obtain an approximation of the affine combination
on this manifold [SS09]. Note that this projection is less adequate for
the reflection and expansion steps as these are non-convex combinations.
Nevertheless, such extrapolations are simply avoided as for the reflection

50 The minimum-volume oriented bounding box problem

Computation method Computation time Error measure
Definition C = (ABT)1/2B 376.3 s 0using MATLAB R© sqrtm

Polar factorization C = UV T

17.0 s 0with 1
2(A+B) = UΣV T

QR factorization C = Q 8.2 s 0.063 rad ≈ 3.6◦with 1
2(A+B) = QR

Table 3.1: Performance of different methods to compute the Nelder-Mead
contracted point C on the manifold SO(3,R). The operations have been
done 1000000 times with random matrices A,B ∈ R3×3. The error mea-
sure corresponds to the average value of the angle of the rotation between
the approximated contracted point and the exact one.

and expansion steps, the geodesic on SO(3,R) can be followed exactly
with a low computational cost as we have shown before.

The proper projection on SO(3,R) is actually the polar factorization
which is orthogonal for the inner product defining the Frobenius norm
[GvL96]. However, it requires one to perform a singular value decom-
position which is more expensive. In practice, it is observed that using
the QR factorization is faster than polar decomposition without losing
significant accuracy (see Table 3.1). The error is small enough so that in
practice, it does not affect the bounding boxes returned by HYBBRID.

A remaining point is the computation of the centroid R0. Indeed,
averaging on manifolds is in general nontrivial (see [KHM07] for the
Karcher mean on SO(n,R) or [Moa02] for averages on SO(3,R)). In
our case, we use the same strategy as with the contraction or reduction
steps: the usual arithmetic mean is computed in R3 and the resulting
matrix is projected on SO(3,R) with a QR factorization.

3.4.4 Comparison with the algorithm of Lahanas et al.

Unfortunately, it is difficult to empirically compare the efficiency of HYB-
BRID with the algorithm of [LKM+00] because the way Powell’s method
is applied and the choice of the parameters of the multi-scale grid search

3.5. Experimental analysis 51

method are not detailed in the article. Nevertheless, let us emphasize
the main differences from a theoretical point of view between these two
hybrid approaches.

First of all, the formulation of the problem is not defined on the
same search space. On the one hand, the principle of HYBBRID is to
minimize an objective function on the rotation group SO(3,R). Each
evaluation of this cost function requires an AABB computation which
is a trivial optimization subproblem. One important property of this
method is that the search space is viewed as a manifold without a global
parameterization. On the other hand, the search space on which the
optimization problem is formulated in [LKM+00] is parameterized by
the triplet (φ, cos θ, α), i.e., the azimuth angle, the cosine of the zenith
angle and the angle of rotation around the axis defined by φ and θ,
respectively. A drawback of this choice is the singularity induced at the
poles. One main interest of formulating the optimization problem on a
manifold is to avoid such issues induced by the parameterization.

Both algorithms consist in a hybridization using an exploration and
an exploitation component. The latter is the Nelder-Mead (resp. Pow-
ell’s) method for HYBBRID (resp. the algorithm of Lahanas et al.). On
the one hand, the Nelder-Mead simplex search is an intuitive heuristic
that is very popular due to its simplicity and empirical efficiency, at
least for problems of dimension less than 5. This is the case here as
the dimension of the SO(3,R) rotation group is 3. At each iteration of
this method, the vertices of the simplex induce an implicit model that
is used to determine the next simplex with just a few evaluations of
the cost function. On the other hand, Powell’s method is a line-search
method that requires solving a succession of one-dimensional minimiza-
tion subproblems. As far as the exploration component is concerned,
HYBBRID is based on the genetic algorithm which is stochastic while
the multi-scale grid search method is a priori deterministic.

3.5 Experimental analysis

All the methods presented in the previous sections (except the method
of Lahanas et al.) have been implemented using MATLAB R© and tested
on about 300 sets of points from [Gro08]. These examples include a
wide selection of different geometries, ranging from simple shapes to
anatomical objects defined by millions of points. As a bounding box only

52 The minimum-volume oriented bounding box problem

1 10 100 1k 10k 100k 1M 10M
0

10

20

30

40

50

60

70

Number of points

N
u

m
b

e
r

o
f

te
s
t

c
a

s
e

s

Figure 3.7: Distribution of the number of points of the different objects
used as test instances.

depends on the convex hull of the object, computing it as a preprocessing
step is a good way to reduce the number of points in the subsequent
computations.

The distributions of the number of points of the objects and of ver-
tices on their convex hull, shown in Figures 3.7 and 3.8, highlight the
interest of such preprocessing. The characteristics of four of those ex-
amples are given in Table 3.2, while a graphical representation is shown
in Figure 3.9. This figure is rendered in GMSH [GJF09], and the green
meshes represent the convex hull of the objects.

Note that for about 15% of these objects, the AABB coincides with an
optimal OBB. Furthermore, for about 40% of the test cases, the AABB
has at least one face parallel to a face of an optimal OBB.

In the remaining of this section, a study of the properties and behav-
ior of HYBBRID is first presented in Section 3.5.1. This method is then
compared to the different techniques introduced in Section 3.3 based on
experimental results.

3.5. Experimental analysis 53

C
om

pu
ta
ti
on

vo
l(
O
B
B

)/
vo

l(
co

n
v
(X

))
N
am

e
N

ti
m
e
of

co
n
v
(X

)
O
pt
im

al
O
B
B

R
an

do
m

O
B
B

(m
in

–
m
ed

ia
n
–
m
ax

)
he

ar
t4

82
88

60
8

0.
12

27
s

1.
97

19
1.
98

58
–
2.
58

57
–
3.
03

01
ha

nd
77

0
47

59
0

0.
06

30
s

2.
10

87
2.
14

81
–
5.
02

17
–
6.
59

93
ba

ll
jo

in
t4

07
4

13
70

62
0.
23

37
s

1.
89

26
1.
89

89
–
2.
99

93
–
3.
69

82
gl

ob
e9

30
6

19
56

8
0.
11

08
s

1.
80

57
1.
81

70
–
2.
11

55
–
2.
31

50

T
ab

le
3.
2:

C
ha

ra
ct
er
is
ti
cs

of
fo
ur

ex
am

pl
es

of
te
st
ed

se
ts

of
po
in
ts
.
T
he

nu
m
be
r
in

th
e
na

m
e
co
rr
es
po
nd

s
to
N
V
,

th
e
nu

m
be
r
of

ve
rt
ic
es

of
co

n
v
(X

),
an

d
th
e
da

ta
se
ts

ar
e
or
de
re
d
in

in
cr
ea
si
ng

va
lu
es

of
N
V
.
T
he

se
co
nd

an
d
th
ir
d

co
lu
m
ns

gi
ve

th
e
si
ze
N

of
th
e
or
ig
in
al

se
t
of

po
in
ts

an
d
th
e
ti
m
e
re
qu
ir
ed

to
co
m
pu

te
th
e
co
nv

ex
hu

ll,
re
sp
ec
ti
ve
ly
.

Fo
r
th
e
co
nv
ex

hu
ll
co
m
pu

ta
ti
on

,
th
e
al
go
ri
th
m

us
ed

is
Q
hu

ll
[B
D
H
96
],
w
hi
ch

is
w
ri
tt
en

in
C
.
T
he

fo
ur
th

co
lu
m
n

co
rr
es
po
nd

s
to

th
e
vo
lu
m
e
ra
ti
o
fo
r
th
e
m
in
im

um
O
B
B
.
T
he

fif
th

co
lu
m
n
sh
ow

s
th
e
m
in
im

al
,
m
ed
ia
n
an

d
m
ax
im

al
vo
lu
m
e
ra
ti
o
re
sp
ec
ti
ve
ly
,
ob
ta
in
ed

by
co
ns
id
er
in
g
10
00
00

ra
nd

om
ly

or
ie
nt
ed

bo
un

di
ng

bo
xe
s.

A
ll
co
m
pu

ta
ti
on

s
ha
ve

be
en

ca
rr
ie
d
ou

t
us
in
g
M
A
T
LA

B
R ©

7.
6.
0.
32

4
(R

20
08
a)

on
an

In
te
lR ©

C
or
eT

M
2
D
uo

2.
80

G
H
z
w
it
h
3
G
iB

R
A
M
,

ru
nn

in
g
U
bu
nt
u
Li
nu

x
10

.0
4.

54 The minimum-volume oriented bounding box problem

1 10 100 1k 10k
0

10

20

30

40

50

60

70

Number of vertices on the convex hull

N
u
m

b
e
r

o
f
te

s
t
c
a
s
e
s

Figure 3.8: Distribution of the number of vertices on the convex hulls of
the test instances.

3.5.1 Performance of the HYBBRID method

The HYBBRID method was tested 200 times on each object of the test
set presented in the previous section. HYBBRID was able to find an
optimal OBB for each dataset. Nevertheless, this solution is not reached
at each run because of the random component of the genetic algorithm.
The actual success rate depends on parameters such as M , the size of
the population, and K, the number of Nelder-Mead iterations. With
carefully chosen values this success rate may be brought close to 100%.
However, changing the values of the parameters also influences the com-
putation time required by the algorithm. Hence, we will first study the
asymptotic time complexity of the algorithm in the following subsection.
Then, we will analyze the effect of the two parametersM and K in terms
of performance and computation time. Finally, the reasons why a subop-
timal solution may be returned are explained as well as how it is possible
to modify the algorithm in order to take these facts into account.

3.5. Experimental analysis 55

(a) heart482 (b) hand770

(c) balljoint4074 (d) globe9306

Figure 3.9: Graphical representation of the four examples described in
Table 3.2, along with their convex hull and the optimal OBB.

56 The minimum-volume oriented bounding box problem

Complexity of the algorithm

One major drawback of O’Rourke’s algorithm is its cubic time com-
plexity, whereas the 2D problem can be solved with a linear complexity
assuming the convex hull is known. An interesting point to investigate is
thus the time complexity of HYBBRID. In Figure 3.10, the computation
time needed by HYBBRID when run on each test case withM = 30 and
K = 10 is represented. The stopping criterion used in these experiments
is the following: “If there is no volume improvement of at least 1% during
at least 5 iterations, then the search is aborted”. This corresponds to the
criterion mentioned previously.

These experimental results tend to show that the asymptotic time
complexity of this method would be linear with respect to the number of
vertices on the convex hullNV . Of course, this linear complexity does not
include the convex hull computation done as a preprocessing step. The
asymptotic linear complexity is illustrated by the red dotted line that is
obtained using a weighted linear regression; indeed, data corresponding
to test cases of large size have been given more weight, as we are looking
for an asymptotic behavior.

As each iteration of HYBBRID takes O(NV) time, which is the com-
plexity of evaluating the volume of an AABB, the observation that the
asymptotic time complexity of this optimization method seems linear
would imply that the number of generations required to produce a solu-
tion is independent of the set of points. Note also that taking another
pair of parameters would change the computation times, but the asymp-
totic complexity is expected to be the same.

Theoretically, the asymptotic time complexity of an iteration could
be further lowered toO(logNV) by using the method described in [EM85]
to locate extreme points. Unfortunately, the data structure described
therein is difficult to implement efficiently in MATLAB R© due to limita-
tions in the usage of pointers in the language. Moreover, given the size
of the test cases used, it seems that using this extreme points locating
technique would not improve the total computation time in practice, as
the overhead introduced by the construction of the hierarchical structure
would be too high. Indeed, this additional preprocessing step requires
O(NV logNV) time.

3.5. Experimental analysis 57

0 2000 4000 6000 8000 10000
0

2

4

6

8

10

12

Number of vertices on the convex hull

C
o
m

p
u
ta

ti
o
n
 t
im

e
 [
s
]

Figure 3.10: Evolution of the computation time required by HYBBRID
with datasets of increasing sizes, excluding the time required to compute
the convex hull. Computer specifications are identical to what is described
for Table 3.2. The results were obtained by running the method 200 times
on each test case and averaging the computation times.

58 The minimum-volume oriented bounding box problem

Influence of the values of the parameters

In Figure 3.11, the reliability of our algorithm is studied through the
performance and the computation time of HYBBRID for different sets
of parameters. The performance is measured by the proportion of runs
where the optimal volume has been obtained within an accuracy of 10−12.
It is possible to check this as the exact optimal volume is known, thanks
to O’Rourke’s algorithm.

Each example has been tested 200 times in order to take into ac-
count the variability due to the randomness inherent to HYBBRID. The
stopping criterion is the same as in the previous section: “If there is no
volume improvement of at least 1% during at least 5 iterations, then the
search is aborted”.

It appears that increasing the number of Nelder-Mead iterations K
yields the same general trend as increasing the population size M : this
increases both the reliability and the computation time. Because of
this natural trade-off, the optimal choice of parameters depends on the
requirements for each particular application. For a given population
size, the performance increases significantly with the number of Nelder-
Mead iterations until about K = 20. After this threshold value of 20,
the performance gain seems much less interesting, especially for large
population sizes. Hence, one interpretation of this figure is that using
20 Nelder-Mead iterations is somehow optimal; the population size can
then be chosen depending on the needs.

Note that for very small values ofK such as 0 or 1, the performance is
very weak. Indeed, this corresponds to a nearly pure genetic algorithm,
whereas the main idea of HYBBRID is to keep locally improving the can-
didates found by exploring the search space, and repeatedly combining
these improved solutions. As expected, the performance gain obtained
by increasing the population size is more significant for small values of
M : increasing M = 10 by 10 units is equivalent to an increase of 100%,
whereas going from M = 40 to 50 is only an increase of 25%.

To summarize, based on these experimental results, we suggest tak-
ing K = 20 and then choosing M depending on the available time and
the desired reliability. Note that if parallelization is considered for HYB-
BRID, one should take into account the fact that the genetic component
is easily parallelizable whereas at each generation and for each popula-
tion member, the Nelder-Mead iterations have to be applied sequentially.
Hence in this case, it may be less expensive to increase the size M of the

3.5. Experimental analysis 59

0 500 1000 1500
0

10

20

30

40

50

60

70

80

90

100

1 111

3

3 3 3

5

5

10

5
5

20

30

50 100
10

10
10

20
20 3020 30

50

40 30

Computation time [s]

P
e
rf

o
rm

a
n
c
e
 [
%

]

Tolerance = 1e−12

Population size = 10
Population size = 30
Population size = 40
Population size = 50

Figure 3.11: Computation time and performance of the HYBBRID al-
gorithm for different sets of parameters (M,K). The color of the points
corresponds to the population size, whereas the numerical labels corre-
spond to the number of Nelder-Mead iterations at each generation. The
computation time corresponds to the total time required to approximate
the OBBs of all 300 objects, including the computation of the convex
hulls. For each test case, the results were obtained by running the method
200 times and averaging the results.

60 The minimum-volume oriented bounding box problem

population than the number K of Nelder-Mead iterations and another
value of K may be more appropriate.

Causes of suboptimal performance

Two main reasons may account for the fact that HYBBRID may some-
times miss the optimal volume. For instance, with our set of test cases, a
suboptimal result was returned in about 4% of the runs on average with
the pair of parameters (M,K) = (50, 30).

On the one hand, the algorithm consists in exploring the search space
thanks to the evolution of a population of simplices. If the search is
interrupted too early, a good exploration cannot be ensured; hence, a
suboptimal solution may be returned. As there is no simple way to verify
whether a given candidate bounding box is optimal, a time-accuracy
trade-off has to be made with the stopping criterion. We have chosen a
stopping criterion of the form: “If there is no improvement of at least x%
during at least k iterations, then the search is stopped”. Typical values
used in the experiments are x = 1 and k = 5. Increasing the value of k
for example would increase the expected number of iterations and thus
the exploration of the search space. Many different schemes are possible,
and the choice between a faster algorithm and more exploration should
be made depending on the application.

On the other hand, it is possible for all simplices to get stuck in
a local minimum after some iterations. This behavior is desired if the
minimum is global, but this may sometimes happen with suboptimal so-
lutions. One way to avoid such a situation could be to introduce random
mutations, e.g., at each iteration, one population member is replaced by
a random simplex. Another possibility is to apply random perturbations
on some or all simplices with a given small probability. The choice of
such a random mutation strategy is again a trade-off problem as using
too many random mutations may reduce the effect of the improvements
given by the Nelder-Mead algorithm. Conversely, with a small random
mutation factor, the simplices may remain at a suboptimal solution for
too long, possibly activating the stopping criterion. In this work, we
have chosen not to use such random mutations for the sake of simplicity,
but this strategy can be easily included in the algorithm. Moreover, the
results show that the correct bounding box is found in nearly all cases,
and at least a good solution is found in all cases, as it can be observed
in the figures in the previous subsection.

3.5. Experimental analysis 61

3.5.2 Comparison of HYBBRID to other simple iterative
strategies

Before comparing HYBBRID to the other methods presented in Sec-
tion 3.3, let us first look at alternative iterative approaches to the mini-
mum-volume bounding box problem. Since HYBBRID uses a genetic
algorithm in order to produce good starting points for the Nelder-Mead
simplex algorithm, one possibility is to observe the behavior of this al-
gorithm with random initial conditions. A first interesting alternative
is thus a Nelder-Mead algorithm with random restarts. Note that given
the same computational resources, the number of restarts for the simple
Nelder-Mead algorithm is not equal to the population size in HYBBRID
since HYBBRID only applies a small number of Nelder-Mead iterations
at each generation.

Another approach is to try to solve problem (3.1) as a constrained
optimization problem. Let us recall the problem hereafter:

min
∆,Ξ∈R3

R∈SO(3,R)

∆ξ∆η∆ζ

s.t. −∆
2 6 RXi −Ξ 6 ∆

2 ∀i ∈ {1, . . . , N},
This smooth optimization problem has 15 real variables: 9 for the ro-
tation matrix R, 3 for the size ∆ of the bounding box and 3 for the
center Ξ of the bounding box. The constraint R ∈ SO(3,R) can be
expressed as a set of 6 nonlinear equality constraints that correspond to
the matrix relation RTR = I. Note that there are only 6 independent
constraints instead of 9 because the matrix RTR is symmetric. In our
experiments, this constrained optimization problem is solved using the
fmincon function in MATLAB R© Optimization Toolbox version 4.0.

Another possibility is to solve the same problem but using the Euler
angles formalism instead of a formulation with rotation matrices. In
that case, there are only 9 real variables but the constraints −∆

2 6
RXi − Ξ 6 ∆

2 become nonlinear with respect to the Euler angles. The
results obtained by fmincon with this formulation are also presented in
the comparison below.

Finally, as a reference point, we have also included results from a
naive random search that simply tries a large number of bounding box
orientations. All these results can be found in Figures 3.12 and 3.13.

Let us look at the figures. First, it clearly appears that a pure ran-
dom search is inefficient. There is no significant improvement when the

62 The minimum-volume oriented bounding box problem

HYBBRID (M=10, K=50)

Nelder−Mead (15 restarts)

fmincon, Euler angles (8 restarts)

fmincon, Rotation matrix (8 restarts)

Random search (30000 trials)

(a) Legend

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

0

20

40

60

80

100

F
a
ilu

re
 r

a
te

 [
%

]

Relative error tolerance

(b) Results

Figure 3.12: Failure rate of iterative algorithms with restarts, for several
tolerance thresholds. For each test case and each threshold τ , the run is
considered a failure if the relative error is greater than τ . The parameters
of HYBBRID and the number of restarts have been chosen so that the
computation time is about 500 seconds for each algorithm.

3.5. Experimental analysis 63

HYBBRID (M=50, K=30)

Nelder−Mead (30 restarts)

fmincon, Euler angles (15 restarts)

fmincon, Rotation matrix (15 restarts)

Random search (60000 trials)

(a) Legend

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

0

20

40

60

80

100

F
a
ilu

re
 r

a
te

 [
%

]

Relative error tolerance

(b) Results

Figure 3.13: Failure rate of iterative algorithms with restarts, for several
tolerance thresholds. For each test case and each threshold τ , the run is
considered a failure if the relative error is greater than τ . The parameters
of HYBBRID and the number of restarts have been chosen so that the
computation time is about 1000 seconds for each algorithm.

64 The minimum-volume oriented bounding box problem

number of trials is increased from 30000 to 60000 and in fact, this is
the case even with 300000 trials. Using the post-processing procedure
would also be insufficient: 1000 random trials with post-processing takes
about 2600 seconds for a performance close to the results obtained after
30000 trials without post-processing. This justifies the use of nontrivial
optimization methods.

The constrained smooth optimization approach seems to be able to
find an optimal bounding box in 40% of the test cases but the accuracy
is much lower in the remaining instances. The general behavior of the
performance as a function of the tolerance does not seem to depend on
the formalism even though there is a small difference in Figure 3.12. This
difference can be interpreted as a sign that approaching the constrained
problem (3.1) with the Euler angles formalism seems to produce more
local minima. Thus, a larger number of restarts is required in order to
reach the same performance as with the rotation matrix formalism. In
fact, running fmincon with an even smaller number of restarts shows a
bigger gap: when the algorithm is only run once, the Euler angles version
has a failure rate of 95% for a tolerance τ = 10−10, whereas the rotation
matrix version has a failure rate of 73% at the same tolerance. The
success rate is mostly unaffected by the post-processing step. This is not
so surprising as fmincon is supposed to find a locally optimal solution.

Finally, the Nelder-Mead simplex algorithm applied to the prob-
lem (3.2) appears to yield much better results. This supports our choice
of solving the unconstrained non-smooth problem instead of the con-
strained smooth problem. Still, the Nelder-Mead approach (with restarts)
does not perform better than HYBBRID, which justifies the use of a ge-
netic algorithm instead of just trying random initial points.

3.5.3 Comparison of HYBBRID to the state of the art

In this section, the proposed algorithm is compared to the other methods
described in Section 3.3. First, observations are made on a few very
simple examples to highlight some of the strengths and shortcomings
of the different techniques. Then, all the methods are compared on
the whole set of test cases to extract more information about how they
compare in terms of computation time and reliability.

3.5. Experimental analysis 65

Basic properties of the different methods

The different methods with some of their general characteristics are pre-
sented in Table 3.3. It appears that HYBBRID is the only iterative
method in the table. This is an advantage as iterative methods tend
to be more robust than direct ones. Note that only all-pairs, Korsawe’s
and O’Rourke’s methods are not linear with respect to NV ; the first two
being much easier to implement than the third.

The computation of the convex hull is optional for HYBBRID. In-
deed, keeping only the points on the convex hull does not change the
result returned by HYBBRID but it may reduce the total computation
time depending on the values of N and NV . In the following results, the
computation of conv(X) will be done as this gives a faster algorithm in
nearly all test cases. The situation is different with All-PCA, Max-PCA
and Min-PCA as taking the convex hull of the set of points may result
in a different OBB which is not always smaller.

The number of lines specified in the table is roughly the number
of MATLAB R© code lines that were specifically written to implement
the method. That is why some methods have a particularly low num-
ber of lines, for example Gottschalk et al.’s one. Using another lan-
guage, where more low-level numerical operations would have to be ei-
ther implemented from scratch or imported from a library would require
more code. For other methods, namely PCA and Korsawe’s, the number
shown is for the whole set of variants. For example, writing a dedicated
MATLAB R© script for All-PCA would not require more than ten lines of
code.

Note that both HYBBRID and Barequet and Har-Peled’s algorithm
are methods with parameters (M,K for HYBBRID and ε (or equiva-
lently d) for Barequet and Har-Peled). It is thus possible to obtain sev-
eral compromises between accuracy and computation time, depending
on the application.

It is also interesting to investigate which methods are exact on very
simple examples. A first example is given by an arbitrary rotation of the
following set of points:

S = {(−1,−0.1, 0), (−1, 0.1, 0), (1, 0,−0.1), (1, 0, 0.1)} ,

which is taken from [BHP01]. The bounding boxes obtained by sev-
eral methods are shown in Figure 3.14. Several observations can be

66 The minimum-volume oriented bounding box problem

M
et
ho

d
C
at
eg
or
y

A
cc
ur
ac
y

C
om

pl
ex
it
y

Im
pl
em

en
ta
ti
on

O
’R

ou
rk
e

D
ir
ec
t,
en
um

er
at
io
n

G
ua

ra
nt
ee
d
ex
ac
t

O
(N

3 V
)?

∼
50

0
lin

es

H
Y
B
B
R
ID

It
er
at
iv
e,

op
ti
m
iz
at
io
n

O
ft
en

ex
ac
t
in

pr
ac
ti
ce

O
(N

V
)?
?

∼
40

0
lin

es
P
ar
am

et
ri
c

(e
xp

er
im

en
ta
l)

G
r
id

S
ea

rc
h
-

D
ir
ec
t,
en
um

er
at
io
n

(1
+
ε)
-a
pp

ro
xi
m
at
io
n

O
(N

V
ε3

)?
∼

10
0
lin

es
M

in
V

o
lB

bx
P
C
A

D
ir
ec
t

Su
bo

pt
im

al
O

(N
)

∼
10

0
lin

es
G
ot
ts
ch
al
k
et

al
.

D
ir
ec
t

Su
bo

pt
im

al
O

(N
V

)?
∼

20
lin

es
A
ll-
pa

ir
s

D
ir
ec
t,
en
um

er
at
io
n

Su
bo

pt
im

al
O

(N
3 V

)?
∼

10
0
lin

es
K
or
sa
w
e

D
ir
ec
t,
en
um

er
at
io
n

Su
bo

pt
im

al
O

(N
{2
,3
}

V
)?

∼
20

0
lin

es

T
ab

le
3.
3:

G
en
er
al

ch
ar
ac
te
ri
st
ic
s
of

th
e
m
et
ho
ds
.
C
ol
um

ns
2
an

d
3
sh
ow

th
e
ty
pe

an
d
th
e
ac
cu
ra
cy

of
th
e
m
et
ho
ds
.

T
he

fo
ur
th

co
lu
m
n

gi
ve
s
th
e
w
or
st
-c
as
e
as
ym

pt
ot
ic

ti
m
e
co
m
pl
ex
it
y
of

th
e
al
go
ri
th
m
s,

in
te
rm

s
of

th
e
nu

m
be
r

of
po
in
ts
N

in
th
e
se
t,

an
d
th
e
nu

m
be
r
N
V

of
ve
rt
ic
es

of
th
e
co
nv

ex
hu

ll.
T
he

co
m
pu

ta
ti
on

of
co

n
v
(X

)
(w

it
h

co
m
pl
ex
it
y
O

(N
lo

g
N

),
no

t
in
cl
ud

ed
in

th
e
te
rm

in
th
e
fo
ur
th

co
lu
m
n)

is
ne
ed
ed

fo
r
m
et
ho
ds

la
be
le
d
w
it
h
?
.
It

is
no

t
ne
ce
ss
ar
y
bu
t
ge
ne
ra
lly

re
co
m
m
en
de
d
fo
r
H
Y
B
B
R
ID

,
w
hi
ch

is
in
di
ca
te
d
by

th
e
la
be
l
??
.
T
he

la
st

co
lu
m
n

in
di
ca
te
s
th
e
ap

pr
ox
im

at
e
nu

m
be
r
of

lin
es

of
co
de

of
th
e
im

pl
em

en
ta
ti
on

.

3.5. Experimental analysis 67

made with regard to this example. First of all, O’Rourke’s algorithm
and HYBBRID are able to compute the optimal OBB. Conversely, most
PCA-based methods are suboptimal without the post-processing, but all
are optimal with it. In fact, the post-processing step rotates the bound-
ing box around its three axes to try to find a better OBB. As at least
one of the selected axes is correct in each case (the one corresponding to
the main dimension of the dataset), a rotation around this axis is thus
sufficient to obtain the optimal result. Note that Max-PCA is already
optimal without this post-processing step since the main dimension of
the dataset actually corresponds to the principal axis of the dataset in
this case. A brute-force method like all-pairs or naive variants of Kor-
sawe’s are unable to find the correct solution. Indeed, the optimal OBB
has no face orthogonal to an edge of conv(X), nor parallel to a face of
the convex hull. One would need a more elaborate brute-force method
to reach the optimum.

Concerning the GridSearchMinVolBbx method by Barequet and
Har-Peled’s, the choice of the unit cell of the grid used in the algo-
rithm influences the value of the parameter d that is required for a given
accuracy. This unit cell is determined by an approximation of the di-
ameter of X , which is computed using the AABB. Hence, the grid and
the performance of the algorithm depend on the initial orientation of the
set of points. Even for this simple example rotated arbitrarily, Grid-
SearchMinVolBbx is only guaranteed to yield the optimal volume to
any accuracy for sufficiently large values of d. For example, with the
unrotated set S, GridSearchMinVolBbx finds the optimal solution
with a grid of size d = 1. However, with the rotated set S̃ defined by:

S̃ = RS, R =
1

4

 0 2 2
√

3

2
√

3 −
√

3 1

2 3 −
√

3

 ,

GridSearchMinVolBbx returns a solution whose volume has a rel-
ative error of 14% with d = 20. Hence, although the algorithm will
converge to the optimal value for d → ∞, the orientation of X can sig-
nificantly influence the quality of the results returned by this algorithm
for finite values of d.

Another simple example is the tetrahedron obtained by a random
rotation of the set:

T = {(0, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0)} .

68 The minimum-volume oriented bounding box problem

Points

Convex hull

Optimal OBB

OBB (all−pairs)

OBB (PCA)

Figure 3.14: Bounding boxes obtained by several methods, for the set
S after rotation. O’Rourke’s algorithm, HYBBRID, PCA-based and
Gottschalk et al.’s method with post-processing and a variant of Kor-
sawe’s one are optimal (blue box). The all-pairs method gives the red
suboptimal box that is two times larger, as does another variant of Ko-
rsawe’s algorithm. The green box is obtained using PCA, but without
post-processing.

3.5. Experimental analysis 69

Points

Convex hull

Optimal OBB

OBB (all−pairs)

OBB (PCA)

Figure 3.15: Bounding boxes obtained by several methods, for the tetra-
hedron T after rotation. The optimal bounding box, in blue, is only
obtained by O’Rourke’s algorithm, HYBBRID and one variant of Ko-
rsawe’s method. The red box can be obtained by using all-pairs method,
whereas Min-PCA gives the green one.

70 The minimum-volume oriented bounding box problem

Some results for this test case are shown in Figure 3.15. Again, even if
the geometry is really simple, PCA-based methods fail to find the opti-
mal bounding box, as do the all-pairs heuristic. Variants of Korsawe’s
method trying to build a bounding box aligned with faces of the convex
hull are also bound to fail: as for the previous case, the tetrahedron is
a geometry whose optimal bounding box is only flush with edges of said
convex hull. The only methods that manage to find the optimal bound-
ing box are O’Rourke’s, HYBBRID and one of the variants of Korsawe’s
method. Note that this example illustrates the singularity of the PCA
methods, which arises when the multiplicity of one of the eigenvalues of
the covariance matrix is greater than 1. Then, the corresponding eigen-
vectors are not well-defined. In this case, this is due to the symmetry of
the dataset.

Results on the complete test set

All the methods have been tested on the whole set of test cases; the
obtained results are shown in Figure 3.16 for three accuracy levels. This
figure shows the computation time and the proportion of runs where
the optimal volume has been obtained up to the given accuracy, as in
Figure 3.11. Each method or variant is represented by a particular point
in this time-performance diagram. In fact, Figure 3.11 corresponds to
a close view of Figure 3.16 without the logarithmic scale and displaying
only the points corresponding to HYBBRID.

Barequet and Har-Peled’s GridSearchMinVolBbx method has
been tested with the following values for the grid size parameter: d = 1,
2, . . . , 9, 10, 12, 14, . . . , 28, 30, 35, 40, 45, 50, 60. If an accurate result is re-
quired, then the success rate (as defined in Section 3.5.1) of the method
stalls at about 40% of the test cases for these values of d. Much higher
values of d are thus needed in order to obtain an accurate result for most
examples. Indeed, as d ∈ Θ(1

ε), in order to improve the guaranteed ac-
curacy by a factor k, one needs to increase the grid size d by a factor k.
For instance, in order to reach a guaranteed accuracy of 10−8 instead of
10−3, the value of d needs to be increased by a factor 105. However, if
only a rough approximation such as 10−3 or less is required, this range
of values of d may provide satisfactory results, as shown in Figure 3.16.
Note that to the best of our knowledge, Barequet and Har-Peled’s algo-
rithm was the only method providing such a trade-off between accuracy
and computation time. Moreover, it appears that the values d = 1 and 2

3.5. Experimental analysis 71

AABB

AABB with post−processing

PCA (All, Min, Max)

PCA (All, Min, Max) with post−processing

Gottschalk et al.

Gottschalk et al. with post−processing

All−Pairs

Korsawe (3 variants)

O’Rourke

Barequet and Har−Peled’s GridSearchMinVolBbx

HYBBRID

(a) Legend

10
0

10
2

10
4

10
6

10
8

0

20

40

60

80

100

Computation time [s]

P
e
rf

o
rm

a
n
c
e
 [
%

]

(b) Tolerance = 10−2

Figure 3.16: Performance and computation time of all the algorithms.
Computer specifications are identical to what is described for Table 3.2.
The computation time corresponds to the total time required to approxi-
mate an optimal OBB for each object among the 300 test cases, including
the computation of the convex hulls if it is done by the algorithm. For
HYBBRID, the volume of the OBB and the computation time of each
test case have been obtained by running the algorithm 200 times and av-
eraging the results.

72 The minimum-volume oriented bounding box problem

10
0

10
2

10
4

10
6

10
8

0

20

40

60

80

100

Computation time [s]

P
e
rf

o
rm

a
n
c
e
 [
%

]

(c) Tolerance = 10−3

10
0

10
2

10
4

10
6

10
8

0

20

40

60

80

100

Computation time [s]

P
e

rf
o

rm
a

n
c
e

 [
%

]

(d) Tolerance = 10−6

Figure 3.16: (continued).

3.5. Experimental analysis 73

yield smaller computation times than all other methods for their range
of performance.

Another interesting observation is that the threshold value of 40%
corresponds to the performance obtained by using an AABB on which the
post-processing step is applied. This can be explained by the symmetry
and the natural definition of some objects in the test set, which are
usually oriented in a way that is usual for human beings, and thus aligned
with the principal axes. As such, for these objects, the AABB has a
common axis with an optimal OBB. As GridSearchMinVolBbx is
based on the AABB for the diameter approximation, the symmetry and
the definition of the set of points (more precisely their ordering) also
imply that the orientation of the grid has an axis aligned with one axis
of an optimal OBB. Hence, solving the associated 2D problem will return
an optimal solution.

As far as Korsawe’s method is concerned, the two faster variants
are either faster or more reliable than the other methods, except when
compared to the HYBBRID algorithm. The slower variant demonstrates
very good performances, but unfortunately its computation time is much
too large for practical purposes. The method is in fact even slower than
O’Rourke’s algorithm even if the latter has a guaranteed performance of
100%. Another method enumerating a large set of directions is the all-
pairs method. Unfortunately, its performance is dominated by Korsawe’s
algorithm, i.e., the latter appears to be both faster and more reliable than
all-pairs.

As expected, PCA-based methods are very fast but provide solutions
with a very limited accuracy. The quality may even be worse than the
result obtained by an axis-aligned bounding box. Note that All-PCA,
Min-PCA and Max-PCA are each represented by four points. Indeed, the
obtained OBB may vary depending on if one applies the preprocessing
step and/or the post-processing step, or none of them. In the case of
continuous PCA, the preprocessing step is required by the algorithm;
hence, Gottschalk et al.’s method is only represented by two points.

It appears that HYBBRID is consistently the fastest method deliv-
ering the optimal volume on almost all test cases, with sufficiently large
parameters. Faster methods present considerably lower performance lev-
els. Some implementation details must also be taken into account while
reviewing those results. Regarding the speed of the PCA-based meth-
ods, those only use a few matrix operations, most of which are written in

74 The minimum-volume oriented bounding box problem

highly efficient C code in MATLAB R©. On the other hand, the other algo-
rithms such as HYBBRID and O’Rourke’s mostly use MATLAB R© code,
which is slower. A well-written pure C implementation of those methods
should reduce the execution time, making them better suited for real-life
scenarios.

Another point of interest is the distribution of the error compared
to the optimal solution over all runs for all test cases. This information
is shown in Figure 3.17 for a selected subset of algorithms. To each
method correspond at least one curve in the figure obtained with the
variants yielding the best performance, independently of the computa-
tion time. Of course, O’Rourke’s algorithm is not represented on this
figure since it is optimal and thus, has a failure rate of 0%. A closer view
with a logarithmic scale is also included in order to emphasize the exact
performance of HYBBRID.

Note that the information about the failure rate for relative error
tolerances of 10−2, 10−3 and 10−8 was already contained in Figure 3.16.
However, it is also interesting to see the evolution of the failure rate
with the tolerance between and outside those values. For instance, this
allows one to show that a failure rate of 50% can be achieved with Min-
PCA for smaller tolerances than with AABB without post-processing.
Nevertheless, the latter has a slightly smaller failure rate for tolerances
tending to 0, even though both methods are clearly unsuitable for such
tolerance levels. It also appears that AABB with post-processing has a
failure rate equivalent to that of Min-PCA for relative error tolerances
bigger than 0.05, but is 30% more reliable for very small tolerances.

A similar trade-off between the performances for small and large
tolerances is observed for Barequet and Har-Peled’s GridSearchMin-
VolBbx method (which is shown in Figure 3.17 with parameter d = 60)
with respect to the third variant of Korsawe’s method and all-pairs.
For instance, GridSearchMinVolBbx is more reliable than Korsawe’s
method (resp. all-pairs) for relative error tolerances larger than about
3×10−4 (resp. 4×10−5) but then, the failure rate increases and becomes
worse for smaller tolerances. Indeed, the reliability of the method is then
roughly equivalent to that of AABB with post-processing for tolerances
smaller than 10−6. Of course, the value of the tolerance where Grid-
SearchMinVolBbx becomes equivalent to AABB with post-processing
approaches 0 as d increases.

The behaviors of HYBBRID and the second, slower variant of Kor-

3.5. Experimental analysis 75

AABB

AABB with post−processing

Min−PCA with post−processing

Gottschalk et al. with post−processing

All−Pairs

Korsawe (variant 3)

Korsawe (variant 2)

Barequet and Har−Peled’s GridSearchMinVolBbx (d=60)

HYBBRID(M=50, K=30)

(a) Legend

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

0

20

40

60

80

100

Relative error tolerance

F
a
ilu

re
 r

a
te

 [
%

]

(b) Linear view

Figure 3.17: Failure rate of the different algorithms for several tolerance
thresholds. The same results are displayed with a linear vertical axis in
(b) and with a logarithmic vertical axis in (c). Computations have been
done on the whole set of about 300 objects. For each test case and each
threshold τ , the run is considered a failure if the relative error is greater
than τ . For HYBBRID, the failure rate is based on 200 runs for each
object.

76 The minimum-volume oriented bounding box problem

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

< 0,01

0,1

1

10

100

Relative error tolerance

F
a
ilu

re
 r

a
te

 [
%

]

(c) Logarithmic view

Figure 3.17: (continued).

sawe’s method are better shown with a logarithmic scale. The threshold-
ing of the failure rate at 0.01% is only due to the finite sampling issue,
i.e., only about 300 test cases. It appears that HYBBRID is the most re-
liable method for tolerances smaller than 10−5 ; more precisely, its failure
rate is about twice as small as the second variant of Korsawe’s method.
The fact that HYBBRID is slightly less reliable than the latter for larger
tolerances can be nuanced by taking into account the computation time
as Korsawe’s method is about 10000 times slower than HYBBRID to
complete the set of test cases.

It is also interesting to compare the efficiency of all these methods on
the most complex test case, i.e., globe9306 in Figure 3.9. The errors and
computation times observed for this example are shown in Figure 3.18.
Among the pairs of parameters of HYBBRID represented on this figure,
the one yielding the slowest computation in average is (M,K) = (50, 30)
with a running time of less than 18 seconds. Conversely, O’Rourke’s
algorithm needs about 45 hours to find the optimal OBB, and the three
variants of Korsawe’s method have a computation time ranging from 12
minutes to about 90 days.

3.5. Experimental analysis 77

AABB

AABB with post−processing

PCA (All, Min, Max)

PCA (All, Min, Max) with post−processing

Gottschalk et al.

Gottschalk et al. with post−processing

All−Pairs

Korsawe (3 variants)

O’Rourke

Barequet and Har−Peled’s GridSearchMinVolBbx

HYBBRID

(a) Legend

10
−4

10
−2

10
0

10
2

10
4

10
6

10
8

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Computation time [s]

R
e
la

ti
v
e
 e

rr
o
r

(b) globe9306

Figure 3.18: Accuracy and computation time of all the algorithms on
globe9306, the example with the largest number of vertices on its convex
hull. The computation time corresponds to the time required to approx-
imate an optimal OBB, including the computation of the convex hull if
it is done by the algorithm. For HYBBRID, the volume of the OBB and
computation time of each test case have been obtained by running the al-
gorithm 200 times and averaging the results. For the sake of readability,
errors below 10−5 are displayed at this threshold value.

78 The minimum-volume oriented bounding box problem

3.6 Conclusion

In this chapter, HYBBRID, an algorithm to approximate the minimum-
volume bounding box of a set of points, has been presented. It is a
combination of two optimization components, namely the genetic algo-
rithm and the Nelder-Mead algorithm. Combining those two methods
leads to a method that shows a good convergence rate while still en-
suring a good exploration of the search space in order to try to avoid
local minima. The new idea was to use such a hybrid method on the
rotation group SO(3,R) to determine the orientation corresponding to
the smallest enclosing box, or OBB, of a set of points.

The new method has been compared to currently used algorithms,
and has been shown to be either much faster than the fastest exact
algorithm (O’Rourke’s) or more accurate than the fastest heuristics based
on principal component analysis. HYBBRID was able to find the optimal
volume for each of the test cases we tried it on, which shows the reliability
of the method. In order to test this algorithm, a broad set of methods
was implemented in MATLAB R©. The whole codebase provides what we
believe is a good framework to compare OBB fitting methods.

The scheme presented here could of course become the basis for fur-
ther work. The same algorithm could be used to solve other problems on
SO(3,R), like for example, not finding the minimum-volume OBB, but
the one with the smallest area. It could also be interesting to investigate
if such hybrid combinations of optimization methods could be used for
the computations of other bounding volumes such as spheres or k-DOPs
with arbitrary normals. Moreover, extensions to dimensions higher than
3 may be considered in areas such as data mining.

Another possible extension is the case with several distinct optimal
OBBs. It may be useful to be able to find all the optimal solutions
and select the best one according to another criterion. Since nothing in
HYBBRID prevents the simplices from converging to different local min-
ima, we only have to analyze the populations and detect all the global
solutions that have been found. The genetic algorithm should then be
modified to help the simplices converge to different global minima, e.g.,
by introducing a repulsive component. As there would be no guarantee
that all solutions have been found, it would also be important to mod-
ify the parameters such as the population size in order to increase the
probability of detecting all global minima.

CHAPTER 4
The subset selection problem

In this chapter, we consider the subset selection problem, which consists
in choosing a subset of columns of a matrix, according to some criterion
to optimize. In many cases, we want the subset to be far from being rank
deficient. In other terms, given an m× n matrix A and an integer k, we
attempt to find the k “most linearly independent” columns of A in some
sense. In our case, we will concentrate on finding a subset of k columns
such that the volume of the parallelepiped spanned by these columns is
maximized. For instance, the case with k = 2 can be interpreted as the
selection of two vectors from a set of n vectors in Rm, such that the area
of the parallelogram spanned by the two selected vectors is maximized.
We present an incremental algorithm for the subset selection problem,
aiming at a low computational cost when k is small with respect to m
and n. We also propose several variants, including a randomized version
of the algorithm which combines a technique based on stochastic hill
climbing, a pruning strategy and multiple passes. An article associated
to this work is currently in preparation [CIBD12].

4.1 Introduction

We consider the problem of finding the k best columns of a real m × n
matrix A, where the parameter k is fixed and given in advance. In many
applications, k represents the numerical rank of A, which means that
the k dominant singular values of A are much larger than the remaining
singular values. We assume here that k 6 rank(A). In our work, the
criterion for “best” is that the volume of the selected columns Ak has to
be as large as possible. We define the volume of Ak as

vol(Ak) := det(ATkAk)
1/2 =

k∏
i=1

σi(A),

80 The subset selection problem

where σi(A) denotes the ith singular values of A.

Choosing k columns with maximal volume among n columns is clearly
a combinatorial problem since there are

(
n
k

)
possible choices. Çivril and

Magdon-Ismail [cMI09] show that this problem is hard in the following
sense:

Proposition 4.1 ([cMI09]). Given a real matrix A with rank(A) > k
where all columns have unit two-norm, and a number 0 6 η 6 1, the
problem of finding k columns Ak so that vol(Ak) > η is NP-hard.

Moreover, unless P = NP , our subset selection problem (with the
maximization of the volume) does not admit a polynomial-time approx-
imation algorithm with an approximation factor of 2

√
2

3 + ε [cMI09].

In general, subset selection consists thus in finding the most rep-
resentative or most linearly independent columns of a matrix. This is
very important in the area of data mining, where the selected columns
typically correspond to a selection of the most relevant features in a
particular database. In these applications, one needs to find the most
representative features in order to reduce the dimension of the problem
and drop redundant features. Of course, besides the maximization of the
volume, other criteria can be used. Two others objectives are commonly
used in subset selection problems:

(I) The maximization of the smallest singular value σk of Ak, the ma-
trix formed by the k selected columns.

(II) The minimization of the residual ‖A− PkA‖, where Pk is the pro-
jection onto the space spanned by the columns of Ak. This may
also be interpreted as minimizing minX ‖AkX − Ãk‖, where Ãk is
the matrix formed by the non-selected columns. This second for-
mulation means that the best linear combination of Ak should be
close to Ãk.

Note that maximizing the smallest singular value is not necessarily equiv-
alent to maximizing the volume:

Example 4.2. Let k = 2 and

A =

3 1 1
2 2 0
4 3 2

 .

There are three subsets of size 2. The corresponding values for σ2 and
vol are the following:

4.1. Introduction 81

Criterion Columns 1 and 2 Columns 1 and 3 Columns 2 and 3
σ2 1.036 0.849 1.086
vol 6.708 4.899 4.582

It appears that the two selected subsets are different.

Many algorithms have been proposed for different variants of the
subset selection problem. In [DRVW06, DV06], Deshpande, Vempala et
al. use a volume argument to derive Frobenius norm bounds to measure
the accuracy of adaptively sampled low rank approximations. In [GE96],
Gu and Eisenstat present a rank-revealing QR factorization algorithm
that tries to find a good subset of columns, using the two criteria men-
tioned above ((I) and (II)). In [CI94], Chandrasekaran and Ipsen present
a review of many existing strategies in an unified framework, for the
same two criteria. They also propose hybrid algorithms for (I), (II) or
both. Another approach is the backward greedy algorithm by Couvreur
and Bresler [CB00] for the minimization of the residual. Their strategy
consists in starting with the set of all columns of A and then, greedily
removing columns until there are only k columns left.

Boutsidis, Mahoney and Drineas also proposed a randomized two-
stage algorithm [BMD09] that tries to solve problem (II). Their algorithm
first determines a subset of candidates by randomly selecting columns.
The probabilities to select the different columns depend on estimations
of their “quality”. These scores are constructed by looking at the right
singular vectors of A (see [BMD09] for the details). After this random-
ized stage, a deterministic subset selection procedure is done on the set
of selected candidates. A deterministic version of this algorithm has also
been proposed by Broadbent, Brown and Penner in [BBP10].

Let us look at the algorithm by Gu and Eisenstat. Even though
the original goal is to solve problems (I) and (II), their algorithm is
using the volume as decision criterion. Indeed, starting with an initial
subset of k columns, the algorithm greedily modifies Ak until its volume
cannot be increased by more than a factor f > 1 by exchanging a single
column at a time. That is, the algorithm produces k columns Ak so that
vol(Ãk) 6 f vol(Ak) for all matrices Ãk obtained by exchanging a single
column of Ak with another column of A.

The singular values of the selected columns Ak can be bounded by
the singular values σi of A as follows [GE96, Theorem 3.2]:

σi√
1 + f2k(n− k)

6 σi(Ak) 6 σi i = 1, . . . , k.

82 The subset selection problem

The operation count of this algorithm is O
(
(m+ n logf n)n2

)
. The

above singular value bounds imply the following for the volume of Ak:(
1

1 + f2k(n− k)

)k
6

vol2(Ak)∏k
j=1 σ

2
j

6 1. (4.1)

We propose a window-based technique for the subset selection prob-
lem. The main advantage of this approach is its speed: for an m ×
n matrix A with k � m,n, the running time is O (mk(n− k)). In
contrast, Gu and Eisenstat’s SRRQR algorithm [GE96] has complex-
ity O(n2 max(m,n)), provided that the tolerance f is chosen as a small
power of n, e.g.,

√
n. Its disadvantage is that it yields only a subset of

given dimension k, whereas [GE96, Algorithm 5] proposes subsets of any
order going from 1 to min(m,n). We also present a randomized variant
of the algorithm which uses up to two different heuristics in order to re-
duce the computation time and/or to improve the volume of the selected
columns.

In the following sections, we begin by presenting the key ideas of our
windowed approach for subset selection. Section 4.3 presents different
variants and improvements to the basic windowed approach, including
our randomized algorithm. Implementation details and experimental
results can be found in Section 4.4.

Notation

The identity matrix is denoted by I, the vector containing a single one
at position i is ei, all other entries being zeroes. ‖ · ‖ corresponds to the
two (or Euclidean) norm. The singular values of the m×n matrix A are
denoted by σ1(A) > σ2(A) > . . . > σmin{m,n}(A). By v1:k we denote the
first k elements of the vector v. Similarly, R1:k,1:k denotes the upper-left
k × k submatrix of the matrix R.

The volume of an m× n real matrix A with m > n is defined as

vol(A) := det(ATA)
1
2 =

n∏
i=1

σi(A).

This corresponds to the usual volume of the parallelepiped spanned by
the columns in Ak, as shown by the following proposition.

4.2. The Windowed Subset Selection algorithm (WSS) 83

Proposition 4.3. Let a1, . . . , ak ∈ Rm be k vectors. Then, the k-volume
of the parallelepiped P spanned by those vectors satisfies

vol(P)2 = det(ATA),

where the m× k matrix A is defined by A =
(
a1 a2 · · · ak

)
.

Proof. We will prove this result by induction on k. Let us look at the
base case k = 1. The matrix ATA has size 1 × 1, and its unique entry
is equal to aT1 a1 = ‖a1‖2, which is indeed the square of the length (1-
volume) of the vector.

Now, suppose that the equality holds for any set of k−1 vectors. Let
us consider the set a1, a2, . . . , ak. We may decompose ak as ak = h+ b,
where h is orthogonal to a1, . . . , ak−1 and b is in the span of a1, . . . , ak−1.
Let

A =
(
a1 a2 · · · ak−1 ak

)
,

Ã =
(
a1 a2 · · · ak−1 h

)
,

B =
(
a1 a2 · · · ak−1

)
.

Geometrically, B is thus the base of the parallelepiped P, and h is the
corresponding height. Since b = ak −h is in the span of a1, . . . , ak−1, we
have det(ATA) = det(ÃT Ã). Furthermore,

ÃT Ã =

(
BT

hT

)(
B h

)
=

(
BTB BTh
hTB hTh

)
=

(
BTB 0

0 hTh

)
since h is orthogonal to all columns in B. Hence, we have det(ÃT Ã) =
‖h‖2 det(BTB). By the induction hypothesis, det(BTB) corresponds to
the (k − 1)-volume of the base of P and det(ÃT Ã) corresponds thus to
the k-volume of P.

4.2 The Windowed Subset Selection algorithm
(WSS)

We present a polynomial-time algorithm that can be viewed as a “win-
dowed” approach to the subset selection problem (see Algorithm 4.1).
At each step, we select k columns of maximal volume from a window of
k + 1 columns. The single unproductive column in the window is then

84 The subset selection problem

replaced with the next column waiting outside the window. If the matrix
has n columns then there are always n− k − 1 columns waiting outside
the window, so that after n − k − 1 steps each column of A will have
been considered for inclusion in the window.

Algorithm 4.1 Windowed Subset Selection (WSS)

Input: m× n matrix A =
(
a1 · · · an

)
integer k with k 6 rank(A) and k < n

Output: matrix Ak with k columns of A so that vol(Ak) is “large”
1: Ak :=

(
a1 · · · ak

)
2: for i = k + 1 to n do
3: W :=

(
Ak ai

)
4: Determine permutation matrix Pi so that WPi =

(
Âk âk+1

)
where Âk has maximal volume among all sets of k columns of
W

5: if vol(Âk) > vol(Ak) then
6: Ak := Âk
7: end if
8: end for

In the next section we describe how to implement an iteration of the
for loop in Algorithm 4.1. That is, we consider the problem of finding k
columns of maximal volume amid a set of k + 1 columns.

4.2.1 Throwing out one column

We consider the problem of removing one column from a set of k + 1
columns so that the remaining k columns have maximal volume. There
are k + 1 sets of columns to choose from.

Specifically, let A =
(
a1 · · · ak+1

)
be an m× (k + 1) matrix with

m > k + 1, and let

A(j) =
(
a1 · · · aj−1 aj+1 · · · ak+1

)
, 1 6 j 6 k + 1,

be the m × k matrix without column j. We want to determine which
column l to remove so that

vol(A(l)) = max
16j6k+1

vol(A(j)).

4.2. The Windowed Subset Selection algorithm (WSS) 85

The solution is unique if there exists a set of columns A(l) with

vol(A(l)) > max
j 6=l

vol(A(j)).

How large can vol(A(l)) be? The volume of any submatrix A(j) is
bounded by the singular values σ1 > . . . > σk of A, because the interlac-
ing theorem for singular values:

Proposition 4.4 ([GvL96]). Let A be an m×n matrix with singular val-
ues σ1 > . . . > σmin(m,n). Let B be an m× (n−1) matrix obtained by re-
moving one column from A, with singular values τ1 > . . . > τmin(m,n−1).
Then, for all i > 1,

σi > τi > σi+1.

Here, this result implies that

vol(A(j)) 6
k∏
i=1

σi, 1 6 j 6 k + 1.

This bound can be achieved with equality if the columns of A can be
permuted so that the right singular vector matrix has the form

V =

(
V11 0
0 1

)
,

where V11 is k × k real orthogonal, and the (k + 1)st column of V is
associated with σk+1. In this case, we have vol(A(l)) =

∏k
i=1 σi.

The obvious way of determining k columns of maximal volume would
be a brute-force approach where we inspect the volume of all k + 1 pos-
sible matrices A(j), 1 6 j 6 k + 1. However, we do not need to ex-
plicitly compute k+ 1 determinants. Indeed, the Gu-Eisenstat Criterion
in Section 4.2.2 allows us to find the optimal set of columns at a lower
computational cost.

4.2.2 The Gu-Eisenstat Criterion

The Strong Rank Revealing QR (SRRQR) algorithm by Gu and Eisen-
stat [GE96, Algorithm 4] takes as input an m×n matrix A with m > n,
and aims at determining a (partial) QR decomposition AP = QR, where
P is a permutation matrix, Q is m×n with orthonormal columns, and R

86 The subset selection problem

is n×n with R1:k,1:k upper triangular. Once an initial factorization with
P = I has been determined, the algorithm works on the matrix R and
repeatedly exchanges one pair of columns at a time until the determinant
of the leading k×k principal submatrix of R does not increase anymore.

For the special case of selecting k columns from k + 1 columns, we
present in Algorithm 4.2 below a conceptual version of the SRRQR al-
gorithm with f = 1. This algorithm determines a permutation that puts
columns of maximal volume in positions 1, . . . , k, and the doomed col-
umn in position k + 1. We denote by A(j) the matrix AP with column
j removed.

Algorithm 4.2 Gu-Eisenstat Criterion

Input: m× (k + 1) matrix A =
(
a1 · · · ak+1

)
with m > k + 1

Output: Permutation matrix P2 so that the leading k columns of AP2

have maximal volume among all sets of k columns of A
1: A(k+1) :=

(
a1 · · · ak

)
2: P2 := I
3: while there exists a j with vol(A(j)) > vol(A(k+1)) do
4: A := APj,k+1, where the permutation matrix Pj,k+1 permutes

columns j and k + 1 of A
5: P2 := P2Pj,k+1

6: end while

Theorem 4.5. Let P2 be the permutation matrix produced by Algo-
rithm 4.2 and denote by Ak the leading k columns of AP2. Then vol(Ak)
is maximal among all sets of k columns of A, and(

1

k + 1

)k
6

vol2(Ak)∏k
j=1 σ

2
j

6 1.

Proof. This follows from Equation (4.1) with f = 1 and n = k + 1.

There are several ways to implement the idea of Gu and Eisenstat
and, in particular, the special case in Algorithm 4.2. For example, if
there are several j’s such that vol(A(j)) > vol(A(k+1)), which one should
we choose? In our implementation of SRRQR [GE96, Algorithm 4],
we have chosen to select the j such that vol(A(j)) is maximized (see
Algorithm 4.3). This is thus a greedy strategy. In the following, this

4.2. The Windowed Subset Selection algorithm (WSS) 87

Algorithm 4.3 (Greedy) Strong Rank Revealing QR (SRRQR)

Input: m× n matrix A =
(
a1 · · · an

)
integer k with k 6 rank(A) and k < n

Output: matrix Ak with k columns of A so that vol(Ak) is “large”
1: Ak :=

(
a1 · · · ak

)
2: repeat
3: Determine a permutation matrix P such that the first k columns

of AP are Ak
4: Define ãk+1, . . . , ãn so that AP =

(
Ak ãk+1 · · · ãn

)
5: {jmax, imax} := arg max 16j6k

k+16i6n
vol
(
A

(j)
k ãi

)
6: B :=

(
A

(jmax)
k ãimax

)
7: if vol(B) > vol(Ak) then
8: Ak := B
9: end if

10: until vol(B) 6 vol(Ak)

will be the version of the algorithm we are referring to when mentioning
SRRQR.

Note that we are also using some greedy strategy in the windowed
algorithm (Algorithm 4.1) since we are looking for the Âk with maximal
volume at each iteration, instead of any Âk with a larger volume. In fact,
repeating the windowed approach as long as it is possible to increase
the volume could also be interpreted as an implementation of the Gu-
Eisenstat criterion, since we would effectively be doing column exchanges
until we reach a local maximum for the volume. This corresponds to the
multipass algorithm presented in Algorithm 4.4 (Section 4.3). However,
considering one single column at a time instead of allowing any exchange
to occur at each iteration will yield interesting benefits (see results in
Sections 4.4.3 and 4.4.4).

4.2.3 Selection of the doomed column

The while loop in Algorithm 4.2 terminates after one single iteration if
j is adequately chosen. An explicit expression for the factor of increase
in volume when two columns are permuted can be computed. Hence,
one simply has to choose j such that this factor is maximal and larger

88 The subset selection problem

than 1. If no such j exists, then the leading k columns of A already have
maximal volume and there is no permutation to be done.

Let us consider a permutation between columns k and k+1 for matrix
A at a given iteration. Let

A =
(
Ak−1 ak ak+1

)
,

A(k+1) =
(
Ak−1 ak

)
,

A(k) =
(
Ak−1 ak+1

)
,

where Ak−1 has k − 1 columns.

Algorithm 4.2 permutes columns k and k + 1 of A if

vol(A(k))

vol(A(k+1))
> 1.

Gu and Eisenstat express this ratio in terms of a QR decomposition,

A =
(
Ak ak+1

)
= Q

(
R11 r1:k,k+1

rk+1,k+1

)
, (4.2)

where Q is m × (k + 1) with orthonormal columns, and R11 is a k × k
upper triangular matrix. Note that the (k+1)× (k+1) upper triangular
matrix in Equation (4.2) has the same singular values σ1 > . . . > σk+1

as A.

The ratio of volumes can be expressed (see [GE96, Lemma 3.1]) as

vol2(A(k))

vol2(A(k+1))
=
∣∣(R−1

11 r1:k,k+1)k
∣∣2 + ‖eTkR−1

11 ‖2|rk+1,k+1|2.

In the general case, the factor of increase when swapping out column
j for column k + 1 is given by

ν(j) :=
vol(A(j))

vol(A(k+1))
=

√∣∣(R−1
11 r1:k,k+1)j

∣∣2 + ‖eTj R−1
11 ‖2|rk+1,k+1|2.

(4.3)

Hence, Algorithm 4.2 permutes columns j and k + 1 of A if∣∣(R−1
11 r1:k,k+1)j

∣∣2 + ‖eTj R−1
11 ‖2|rk+1,k+1|2 > 1. (4.4)

By choosing j such that this expression is maximal and larger than
1, no other permutation will be able to increase the volume further.

4.3. Improving the performance of the windowed algorithm89

Once the volume of the leading k columns cannot increase anymore,
Algorithm 4.2 guarantees that

‖R−1
11 r1:k,k+1‖∞ 6 1,

otherwise the condition (4.4) is clearly not satisfied for some j.

4.3 Improving the performance of the windowed
algorithm

The Windowed Subset Selection algorithm presented in the previous sec-
tion has a running time of O (mk(n− k)) as it uses an m × k window
which slides n − k times (see Section 4.4.1 for more details). For suffi-
ciently small values of k, the algorithm is expected to find a good subset
of columns in a short amount of time. That is, the volume of the columns
it selects is expected to be approximately equivalent to the volume re-
turned by the (non-windowed) SRRQR algorithm by Gu and Eisenstat,
while being obtained much faster. When k grows, the performance of
Algorithm 4.1 drops: since each column is only examined once, the final
subset depends heavily on the ordering of the columns of the matrix.
Several modifications can be done in order to increase the reliability of
the method.

4.3.1 Multi-pass Windowed Subset Selection (MWSS)

An obvious way to improve the performance is to run Algorithm 4.1
several times while starting each iteration with the previous selected
columns as initial window. This idea has been used in [BGD12] in the
context of incremental methods for computing dominant singular sub-
spaces.

The number of passes can be fixed if computation time is an issue,
or we can keep sweeping the columns of A until no more change can be
made without decreasing the volume. The second choice corresponds to
Algorithm 4.4 presented below.

The index jmax at line 7 of Algorithm 4.4 may be found using ex-
pression (4.3).

Unlike Algorithm 4.1, this multi-pass version guarantees that the
solution Ak is “locally optimal” in the sense that the volume of Ak cannot

90 The subset selection problem

Algorithm 4.4 Multi-pass Windowed Subset Selection (MWSS)

Input: m× n matrix A =
(
a1 · · · an

)
integer k with k 6 rank(A) and k < n

Output: matrix Ak with k columns of A so that vol(Ak) is “large”
1: Ak :=

(
a1 · · · ak

)
2: unchanged := 0
3: repeat
4: Determine a permutation matrix P such that the first k columns

of AP are Ak, and the ordering of the other columns is preserved
5: Define ãk+1, . . . , ãn so that AP =

(
Ak ãk+1 · · · ãn

)
6: for i = k + 1 to n do
7: jmax := arg max16j6k vol

(
A

(j)
k ãi

)
8: B :=

(
A

(jmax)
k ãi

)
9: if vol(B) > vol(Ak) then

10: Ak := B
11: unchanged := 0
12: else
13: unchanged := unchanged + 1
14: end if
15: end for
16: until unchanged > n− k

4.3. Improving the performance of the windowed algorithm91

be increased by exchanging one column of Ak with another column of A.
This is the same stopping criterion as in [GE96]. Experimental results
show that the volumes obtained by Algorithm 4.4 are as good as those
obtained by the SRRQR algorithm in most cases, but the set of selected
columns may differ.

Two heuristic approaches may be used in order to improve the per-
formance of the Multi-pass Windowed Subset Selection algorithm. With
the first one, we try to find a set of columns with a larger volume (see
Section 4.3.2), whereas the second one aims at decreasing the computa-
tion time of the method (see Section 4.3.3). The two techniques can also
be used at the same time so that the additional computational cost of
the first strategy is more or less counterbalanced by the acceleration due
to the second heuristic.

4.3.2 Non-greedy randomized variant

This small modification to Algorithm 4.4 aims at finding a set of columns
with a larger volume. As shown previously, it is possible to compute the
increase in volume when swapping out column j for column k+ 1, using
expression (4.3). At each iteration, Algorithm 4.4 chooses the column j
that maximizes this increase, if any exists. Since this greedy approach
does not have to produce the best set of columns at the end of the
algorithm, one possible variant would be to use a simulated annealing
approach (see Section 2.2.1).

In the general case, instead of only allowing the best column to be
chosen, one could perform a locally suboptimal operation, possibly even
taking into consideration exchanges that decrease the volume. The col-
umn to be thrown out would be randomly chosen, “better” choices having
a larger probability. Usually, as the number of iterations increases, the
probabilities are modified such that the “better” choices are more and
more favored. At the end, only the best exchanges are accepted.

A disadvantage of simulated annealing-based techniques is that it
may sometimes require a large number of iterations before convergence
to a solution. Furthermore, one has to choose the probability function,
and how it evolves as the computation proceeds. As we want to keep a
small number of iterations, we propose a simulated annealing-like variant
with restricted choices at each step: when exchanging a column of Ak
with the new column ãi, instead of choosing the column jmax with the

92 The subset selection problem

largest increase of volume, all columns j that increase the volume are
considered. Thus, the strategy does not allow permutations that decrease
the volume.

Then, a single column is chosen among all eligible columns, using rel-
ative probabilities that only depend on the factors of increase in volume.
For example, if j1, . . . , jp are the columns such that ν(j1), . . . , ν(jp) > 1,
then each column ji may be taken with probability proportional to
ν(ji)

γ − 1 for some fixed power γ.

This approach is close to the stochastic hill climbing method as it
randomly chooses an improving move. However, in our case, the quality
of all possible moves are evaluated and the probability of selecting a move
depends on its relative quality when compared to the other possibilities.

Finally, it may be useful to run the full randomized algorithm sev-
eral times and keep the best set of columns. The corresponding volume
is typically equivalent or slightly better than the solution found by Al-
gorithm 4.4. Since running the algorithm several times increases the
computation time, it may be interesting to combine the stochastic hill
climbing approach with the pruning heuristic presented below.

4.3.3 Pruning heuristic for the set of columns

The two variants described above improve the reliability of the algo-
rithm, but also increase the expected computation time by increasing
the number of times the window sweeps through the columns. Since the
original objective of the windowed approach is speed (for k � m,n), it
may be wise to use a heuristic to reduce the computational cost. One
possible way to achieve this is to try to remove “bad” columns from the
matrix. Indeed, experimental results tend to show that in most cases,
only a small number of exchanges are done at each pass and moreover,
most columns are never included in the candidate set.

In order to reduce the computation time, we propose to remove
columns that would decrease the volume by a large factor when included
in the current window, whatever column we swap out, i.e., columns such
that ν(j) < τ for all j and a given tolerance τ < 1. Of course, this strat-
egy may decrease the quality of the solution returned by the algorithm,
but numerical experiments (see Section 4.4.3) show that in several cases,
it is possible to obtain a significant improvement in computation time
without sacrificing reliability.

4.4. Numerical experiments 93

The Randomized Multi-pass Windowed Subset Selection (RMWSS)
algorithm which includes both heuristics is presented below in Algo-
rithm 4.5.

The parameter R corresponds to the total number of trials. We recall
that in lines 12 and 17, ν(j) is defined as

ν(j) :=
vol
(
A

(j)
k ãi

)
vol(Ak)

and can be computed using Equation (4.3). Note that each pass in
Algorithm 4 involves at most the same number of columns as the previous
one, and this holds even across different trials. This is a design choice in
order to speed up the algorithm.

Another possibility would be to prune the columns for a limited
“amount of time”. This strategy can be viewed as a kind of tabu search
(see Section 2.2.2). The notion of “amount of time” can be interpreted
in different ways, e.g., a number of column exchanges, of iterations for
the sliding window, of passes or even of trials. In this case, we have
decided not to choose this approach for two reasons. On the one hand,
preliminary results from numerical experiments have shown that pruned
columns tend to remain outside the window when the pruning heuristic
is disabled. On the other hand, the algorithm would be slower because
of the additional cost due to the management of such a tabu list and the
fact that the number of eligible columns would be larger.

4.4 Numerical experiments

In this section, we compare the performance of our three algorithms —
Windowed Subset Selection (WSS), Multi-pass Windowed Subset Selec-
tion (MWSS) and Randomized Multi-pass Windowed Subset Selection
(RMWSS). As reference for the comparison, we use the Strong Rank Re-
vealing QR algorithm (SRRQR) by Gu and Eisenstat [GE96, Algorithm
4], with a tolerance parameter f = 1 in Equation (4.1).

All four algorithms (WSS, MWSS, RMWSS, SRRQR) have been im-
plemented using MATLAB R© 7.4.0.336 (R2007a) and computations have
been performed on an Intel R© CoreTM 2 Quad Q9300 at 2.50 GHz with
3 GiB RAM, running Ubuntu Linux 10.04 LTS. Our implementation of

94 The subset selection problem

Algorithm 4.5 (Non-greedy) Randomized Multi-pass Windowed Subset
Selection (RMWSS)

Input: m× n matrix A =
(
a1 · · · an

)
integer k with k 6 rank(A) and k < n
integer R with R > 1
parameter γ > 0
tolerance τ with 0 < τ < 1

Output: matrix Ak with k columns of A so that vol(Ak) is “large”
1: Â := A
2: for r = 1 to R do
3: Ak :=

(
aj1 · · · ajk

)
where the columns of Ak are k distinct,

randomly selected columns of Â.
4: unchanged := 0
5: repeat
6: Determine a permutation matrix P such that the first k columns

of ÂP are Ak, and the ordering of the other columns is preserved

7: Define p, ãk+1, . . . , ãp so that ÂP =
(
Ak ãk+1 · · · ãp

)
8: for i = k + 1 to p do
9: W :=

(
Ak ãi

)
10: J :=

{
j | vol

(
A

(j)
k ãi

)
> vol(Ak), 1 6 j 6 k

}
11: if J 6= ∅ then
12: Select an index jsel from the set J where each index

jc ∈ J can be selected with a probability equal to
(ν(jc)

γ − 1)
/(∑

j∈J (ν(j)γ − 1)
)

13: Ak :=
(
A

(jsel)
k ãi

)
14: unchanged := 0
15: else
16: unchanged := unchanged + 1
17: if max16j6k ν(j) < τ then
18: Remove column ãi from Â
19: end if
20: end if
21: end for
22: until unchanged > p− k
23: end for

4.4. Numerical experiments 95

SRRQR uses the updating formulas given in [GE96, Section 4], reducing
the running time of SRRQR.

In the following sections, we begin by explaining how our algorithms
have been implemented. Then, we present the test matrices used in the
experiments. Finally, Section 4.4.3 contains the numerical results and
the comparison between the four algorithms.

4.4.1 Implementing the Windowed Subset Selection algo-
rithm

The crucial step in the algorithm is the evaluation of all the ν(j)’s, with
j = 1, . . . , k. This operation has to be done in O (mk) time in order to
have a total time complexity of O (mk(n− k)). Let us recall that ν(j)
is defined by

ν(j) =

√∣∣(R−1
11 r1:k,k+1)j

∣∣2 + ‖eTj R−1
11 ‖2|rk+1,k+1|2,

with the window

W = QR =
(
Q1 qk+1

)(R11 r1:k,k+1

rk+1,k+1

)
,

where W is m× (k+ 1), Q is m× (k+ 1) with orthonormal columns, Q1

is m× k and R11 is k × k upper triangular.

The idea is to keep track of Q1, the first k columns of Q, and R11, i.e.,
the two factors associated to the current set of k columns, and update
them every time we modify the subset. This is also done with R−1

11 as
this matrix is required for the computation of ν(j). These three matrices
can be initialized with a cost of O

(
mk2

)
before the first iteration of the

for loop. At each iteration, both vectors qk+1 and r1:k+1,k+1 can be
computed using a Gram-Schmidt step (including the “twice is enough”
strategy) in O (mk) time.

When the algorithm exchanges columns j and k + 1, we first move
the doomed column j into position k by shifting columns in position
j+1, . . . , k one step to the left, and putting column j in position k. This
translates into a column permutation of R11 and a row permutation of
R−1

11 . The matrix Q is unaffected by the operation.

Then, the new matrix R has to be triangularized again. This can be
done by using (k−j) Givens rotationsGj , . . . , Gk−1, each Givens rotation

96 The subset selection problem

Gi being associated with column i and operating on rows i and i+1 of the
matrix R. The corresponding updates for the two matrices Q and R−1

11

are of course GTi for i = j, . . . , k−1, each rotation operating on columns
i and i+1. The total cost for these operations is O (m(k − j)) ⊂ O (mk).

After these manipulations, we swap the two columns in position k
and k + 1, retriangularize matrix R using a Givens rotation Gk acting
on rows k and k + 1, and update matrix Q using GTk . Partitioning R

−1
11

as

R−1
11 =

(
R̃ r̃1:k−1

r̃k

)
,

where R̃ is (k−1)× (k−1) upper triangular, the new expression for R−1
11

is then given by

R−1
11,new =

(
R̃ −

(
R̃r̄1:k−1

)/
r̄k

1/r̄k

)
,

where r̄ = (r̄1, . . . , r̄k)
T corresponds to the kth column of R11,new, the

new value of R11. Indeed, we have(
R̃ −

(
R̃r̄1:k−1

)/
r̄k

1/r̄k

)(
r̄1:k−1

r̄k

)
=

(
0
1

)
.

Remark 4.6. Updating the matrix R−1
11 may not always be a good idea.

If the problem is ill-conditioned, significant numerical imprecisions may
arise, for example when the current subset of columns has near-zero vol-
ume and swapping in the new column results in a huge factor of increase.
This can be detected by checking the value of the ν(j)’s. Due to the nature
of the algorithm, this is expected to happen only if the starting subset is
nearly linearly dependent such as with Kahan matrices or GKS matrices
(see Section 4.4.2). In this case, the inverse of the triangular matrix R11

is recomputed instead of updated.

4.4.2 The test matrices

The different algorithms have been tested on the following sets of matri-
ces:

4.4. Numerical experiments 97

1. Kahan matrices. These are upper triangular matrices with all
columns having unit two-norm. The n × n Kahan matrix Kn is
given by Kn = SnTn, where

Sn =

1 0 · · · 0

0 ψ
. . .

...
...

. 0
0 · · · 0 ψn−1

 and Tn =

1 −φ · · · −φ
0 1

. . .
...

...
. −φ

0 · · · 0 1

 ,

where φ and ψ satisfy φ2 + ψ2 = 1, with φ, ψ > 0. These matrices
have been introduced by Kahan [Kah66] and are well-known test
matrices for the subset selection problem. Indeed, many algorithms
based on QR factorization with column pivoting do not perform
any exchange and return a set containing the k first columns.

2. GKS matrices. These are upper triangular matrices Gn where the
jth diagonal entry is equal to 1√

j
, and where the element in position

(i, j) for i < j above the diagonal is equal to − 1√
j
. Their columns

also have all unit two-norm. These matrices have been introduced
in [GKS76].

3. Gap matrices. These are n×n matrices possessing k large singular
values (about 103), and n − k very small singular values (about
10−12).

4. Random matrices. These are n × n matrices where each entry is
drawn from the interval [−1, 1] with a uniform distribution.

Most of these families of matrices are the same type as those used in
[GE96]. Kahan and GKS matrices have been tested with sizes n = 100,
500 and 1000. For the Kahan matrices, we took ψ = 0.9. For the Gap
matrices, we also took n = 100, 500 and 1000 and we used k ∈ {15, 30,
50, 150, 300} with k 6 n

2 . Five matrices have been generated for each
pair (n, k). For the random matrices, we took n ∈ {30, 100, 300, 1000,
3000} and k ∈ {3, 5, 15, 30, 50, 150, 300, 500, 1000}, again with k 6 n

2 .
Depending on the pair (n, k), up to fifty examples have been generated.

98 The subset selection problem

k κ(A:,1:k)
Volume Computation time

Initial set Final set SRRQR WSS/MWSS
20 1.4× 104 3.0× 10−5 1.6× 10−2 0.4 0.1
50 3.0× 1010 6.0× 10−10 1.7× 10−2 1.3 0.1
100 6.3× 1020 8.5× 10−18 1.7× 10−2 3.0 0.2
150 2.2× 1025 1.2× 10−25 1.8× 10−2 6.8 0.3
200 1.9× 1028 1.8× 10−33 1.8× 10−2 8.9 0.5
300 1.6× 1033 3.6× 10−49 1.9× 10−2 24.2 1.0

Table 4.1: Computation time (in seconds) required to return a subset of
k columns for a 1000 × 1000 Kahan matrix A = K1000. The condition
number of the default initial subset of columns is also shown.

4.4.3 Results

In this section, we compare the performance of the different algorithms
on the test matrices, the performance being related to the volume of
the selected columns, and the computation time required to return this
subset. In all results, the volume measure will be normalized such that
σ1σ2 . . . σk = 1. The computation times are not normalized as the raw
measures already provide an interesting information.

Kahan matrices

We begin by presenting results for Kahan matrices. For these matrices,
all algorithms (SRRQR, WSS, MWSS, RMWSS) return the same value
for the objective function. In fact, the same set of columns is selected
each time, namely the set S = {a2, a3, . . . , ak+1}, where ai is the ith

column of the tested matrix A. This set can be obtained after one single
interchange.

Table 4.1 shows the computation time for several values of k and a
1000 × 1000 Kahan matrix. Results for other values of n present the
same behavior. The two-norm condition number of the first k columns
is also shown to indicate the bad quality of the default starting point.

Even though the same set of columns is selected by all algorithms,
windowed methods appear to be much faster than SRRQR, as intended.
The multi-pass windowed algorithm takes about the same computation
time as the simple windowed algorithm in this case. Indeed, there is

4.4. Numerical experiments 99

only one exchange of columns during the algorithm. Furthermore, this
exchange happens at the first iteration of the sliding window. Hence, at
the second pass, only the first column has to be tested. As including
this column does not improve the volume, the algorithm immediately
aborts the search. Note that with this new set of columns, the condition
number immediately decreases by a significant factor. For example, with
k = 100, we have κ(A:,1:100) ≈ 6.3 × 1020 and κ(A:,2:101) ≈ 2.7 × 105.
This can also be observed when we compare the volume of the initial
set and the volume of the final set. The randomized version can also be
used, but there is no improvement in this case. The computation time
will simply be multiplied by the number of trials.

GKS matrices

Results for a GKS matrix of size 1000×1000 are presented in Tables 4.2
and 4.3. The numbers shown for the RMWSS algorithm are the mini-
mum and maximum values obtained across 20 runs. The subscript cor-
responds to the value of R, the number of trials in a single run. In this
experiment, there is no heuristic pruning.

Several observations can be done. First, it is clear that a single-pass
WSS algorithm is very fast (as expected), but has a very poor per-
formance in volume, especially when k grows. Indeed, the number of
subsets is such that several passes are required to find a good solution.
For example, with k = 40, SRRQR did about 150 column interchanges
before returning its solution. For the same matrix, MWSS had to per-
form about 2000 interchanges across a total number of 12 passes. Doing
a single pass is clearly insufficient in this case.

This contrasts with the previous case: the optimal set of columns for
Kahan matrices is {a2, a3, . . . , ak+1}, which is only one swap away from
the initial set {a1, a2, . . . , ak}. The optimal set for GKS matrices is more
difficult to reach and does not correspond to a set of contiguous columns
in the general case. For example, the best subset for k = 4 and n = 100
is {a2, a3, a6, a100}.

If we compare MWSS to SRRQR, it appears that the two methods are
able to find subsets of similar quality. The windowed algorithm returns
slightly higher volumes, but the difference is only apparent for larger
values of k. This is also due to the fact that SRRQR may be very close to
the optimal solution for smaller problems, hence it is not possible to find

100 The subset selection problem

k κ(A:,1:k)
Volume

Initial set SRRQR WSS
20 1.3× 106 5.4× 10−18 1.3× 10−11 1.8× 10−12

40 2.1× 1012 3.5× 10−30 1.1× 10−16 1.5× 10−18

60 9.5× 1018 9.6× 10−41 3.1× 10−20 7.1× 10−23

80 8.2× 1018 2.5× 10−50 5.9× 10−23 2.7× 10−26

100 9.5× 1018 3.1× 10−59 3.4× 10−25 5.8× 10−29

k
Volume/Volume(SRRQR)

MWSS RMWSSR=1 RMWSSR=2

20 1.008 [1.009; 1.009] [1.009; 1.009]
40 1.009 [0.978; 1.010] [0.994; 1.010]
60 1.001 [0.984; 1.012] [1.001; 1.015]
80 1.025 [1.014; 1.034] [1.016; 1.036]
100 1.079 [1.078; 1.111] [1.091; 1.114]

Table 4.2: Volumes and volume ratios for the subsets of columns returned
by the different algorithms for a 1000 × 1000 GKS matrix A = G1000.
The condition number of the default initial subset of columns is also
shown. For the multi-pass windowed algorithms, the results corresponds
to the ratio between the volume obtained by the algorithm, and the volume
obtained by SRRQR. This allows us to compare the performances more
easily.

k
Computation time

SRRQR WSS MWSS RMWSSR=1 RMWSSR=2

20 3.1 0.1 0.8 [0.5; 0.6] [1.0; 1.2]
40 9.4 0.1 1.2 [0.5; 0.7] [1.1; 1.5]
60 4.5 0.2 3.2 [1.4; 3.2] [3.0; 5.7]
80 6.0 0.3 2.0 [1.6; 3.3] [3.8; 6.7]
100 18.8 0.3 2.4 [1.5; 2.1] [3.5; 4.4]

Table 4.3: Computation time (in seconds) required to return a subset of
k columns for a 1000× 1000 GKS matrix A = G1000.

4.4. Numerical experiments 101

a significantly better subset of columns. This can also be seen from the
fact that the volume ratios between MWSS and SRRQR are close to 1. In
fact, the same observations can be done when comparing the randomized
windowed algorithm to SRRQR. However, since the computational cost
of MWSS is much smaller than SRRQR, the windowed algorithm seems
to be more suitable for the problem in this case.

Note that the computation times presented in Table 4.3 do not have
to grow when k grows. Indeed, smaller values of k may sometimes result
in a slower algorithm if the number of interchanges is larger. For example,
SRRQR exchanged about 150 pairs of columns in the case k = 40, but
only 65 pairs in the case k = 60.

In this case, MWSS and RMWSS have similar performance measures.
In general, using a randomized version of the algorithm may be a good
idea if the maximization of the volume has priority over the speed of the
algorithm. The trade-off between the two can for example be set using
the parameter R. This will become more apparent in the next set of test
matrices.

Gap matrices

Tables 4.4 and 4.5 contain results for Gap matrices. As the results for
smaller matrices present the same behavior as those for larger matrices,
we only show the n = 1000 case. The randomized algorithm has been
run with R = 1, 2, 3, 4 with no heuristic pruning. Note that Table 4.4
also shows the average volumes obtained by RMWSS across 20 runs
in addition to the min-max values as the distribution is significantly
asymmetrical.

This third set of matrices behaves quite differently than the previous
ones. Let us look at the volumes in Table 4.4. First, the WSS algorithm
is returning worse results than SRRQR. This is expected, but in this
case, the ratios of volumes are much larger. This may be an indication
that SRRQR itself is returning a subset of columns that is far from
being optimal. Indeed, this is confirmed by the fact that both MWSS
and RMWSS are able to find subsets with a significantly larger volume,
unlike in the previous examples where the ratios of volumes were all
approximately equal to 1.

Another important observation is that the variability of the results
is much higher with these Gap matrices. Even though, in average, the

102 The subset selection problem

k
V
ol
um

e
V
ol
um

e/
V
ol
um

e(
SR

R
Q
R
)

SR
R
Q
R

W
SS

M
W

SS
R
M
W

SS
R
=
1

R
M
W

SS
R
=
2

R
M
W

SS
R
=
3

R
M
W

SS
R
=
4

15
1
.6
×

1
0−

1
3

0.
5

1.
3

1.
2

1.
4

1.
5

1.
6

[0
.8
;1

.8
]

[1
.0
;1

.9
]

[1
.0
;2

.0
]

[1
.2
;2

.0
]

30
4
.2
×

1
0−

2
4

0.
3

1.
1

1.
6

1.
8

2.
1

2.
3

[0
.6
;1

.8
]

[1
.0
;2

.4
]

[1
.0
;2

.6
]

[1
.3
;2

.7
]

50
1
.3
×

1
0−

3
6

0.
2

1.
7

1.
9

2.
4

2.
9

3.
2

[0
.6
;4

.6
]

[0
.9
;5

.4
]

[1
.3
;5

.5
]

[1
.4
;7

.4
]

15
0

1
.9
×

1
0−

8
2

0.
4

17
.9

17
.7

25
.2

24
.6

34
.3

[1
.6
;7

3.
4]

[3
.9
;6

0.
4]

[6
.0
;7

8.
0]

[8
.2
;1

01
.7
]

30
0

1
.5
×

10
−

1
2
1

0.
2

52
.7

60
.9

10
7.
1

14
0.
6

14
0.
6

[2
.2
;2

56
.4
]

[1
1.
7;

34
7.
5]

[1
8.
6;

34
4.
1]

[2
6.
9;

56
9.
8]

T
ab

le
4.
4:

V
ol
um

es
an

d
vo
lu
m
e
ra
ti
os

re
tu
rn
ed

by
th
e
di
ffe

re
nt

al
go
ri
th
m
s
fo
r
se
ts

of
10

00
×

10
00

G
ap

m
at
ri
ce
s

w
it
h
ex
ac
tly

k
la
rg
e
si
ng
ul
ar

va
lu
es
.
A
ll
re
su
lts

ar
e
av
er
ag
es

ac
ro
ss

th
e
di
ffe

re
nt

te
st

m
at
ri
ce
s.

Fo
r
R
M
W
SS

,
th
e

m
in
im

al
an

d
m
ax
im

al
ob
ta
in
ed

vo
lu
m
es

ar
e
al
so

in
di
ca
te
d
in

ad
di
ti
on

to
th
e
av
er
ag
e
re
su
lt.

4.4. Numerical experiments 103

k
C
om

pu
ta
ti
on

ti
m
e

SR
R
Q
R

W
SS

M
W

SS
R
M
W

SS
R
=
1

R
M
W

SS
R
=
2

R
M
W

SS
R
=
3

R
M
W

SS
R
=
4

15
1.
6

0.
1

0.
2

[0
.1
;0

.4
]

[0
.3
;0

.7
]

[0
.5
;1

.0
]

[0
.8
;1

.3
]

30
2.
7

0.
1

0.
4

[0
.3
;0

.7
]

[0
.6
;1

.5
]

[1
.1
;2

.0
]

[1
.6
;2

.6
]

50
3.
3

0.
2

0.
7

[0
.6
;1

.4
]

[1
.2
;2

.8
]

[2
.0
;3

.6
]

[2
.8
;4

.8
]

15
0

4.
8

0.
7

2.
8

[2
.0
;5

.0
]

[4
.5
;8

.8
]

[7
.4
;1

2.
5]

[1
0.
4;

16
.4
]

30
0

6.
2

2.
1

10
.4

[7
.5
;2

2.
0]

[1
8.
9;

37
.0
]

[2
9.
4;

55
.1
]

[4
1.
7;

66
.4
]

T
ab

le
4.
5:

C
om

pu
ta
ti
on

ti
m
e
(i
n

se
co
nd

s)
as
so
ci
at
ed

to
se
ts

of
10

00
×

10
00

G
ap

m
at
ri
ce
s
w
it
h
ex
ac
tly

k
la
rg
e

si
ng
ul
ar

va
lu
es
.

104 The subset selection problem

randomized algorithm finds volumes that are similar to the deterministic
version, the min-max intervals are quite large. Furthermore, increasing
the number of trials R significantly improves the obtained volumes, es-
pecially with large values of the parameter k.

If we now look at the computation times in Table 4.5, it appears
that MWSS (and thus RMWSS with R = 1) is still faster than SRRQR,
except in the k = 300 case. However, windowed algorithms were designed
for k � n, so this is not really a surprise. Even though it is not always
the case, a larger value of k often implies a larger number of interchanges,
and thus a larger number of passes. Hence, the time saved by using a
window-based technique may be lost with multi-pass algorithms if the
number of passes is too high. For example, with k = 15, the average
number of passes was about 5 whereas with k = 300, the number rose
to about 10. Of course, if a low computation cost is crucial to the
application, it would be wise to put a limit to the maximal number of
passes, especially for large values of k.

Note that until now, RMWSS has been run without the pruning
heuristic, which reduces the computation time. The obvious disadvan-
tage is that this may also decrease the volume of the subset returned by
the algorithm. For Gap matrices, using this heuristic may reduce the
computation time by a factor up to 2 without losing too much perfor-
mance in volume by pruning about half of the columns. However, these
results are quite variable depending on the tested matrices. Nevertheless,
in this case, the obtained volumes are still of the same order of magnitude
as results obtained without pruning. The last set of examples, presented
below, will show the effect of this heuristic on larger matrices. In this
case, the size of the subset is thus smaller than the numerical rank of the
matrix.

Random matrices

Let us look at the performance measures for random dense matrices.
Table 4.6 shows the ratios of volumes for WSS and MWSS while Table 4.7
shows the computation times.

As with Gap matrices, the single-pass windowed algorithm returns
subsets with decreasing volume ratios when k is growing. However, the
ratios are even larger than with Gap matrices. This suggests that there
are a large number of possible subsets with a volume comparable to the

4.4. Numerical experiments 105

WSS n = 100 n = 300 n = 1000

k = 15 0.98 0.99 1.00
k = 30 0.92 0.98 1.00
k = 50 0.90 0.95 0.99
k = 150 — 0.72 0.91
k = 300 — — 0.75
k = 500 — — 0.54

MWSS n = 100 n = 300 n = 1000

k = 15 1.00 1.00 1.00
k = 30 1.00 1.00 1.00
k = 50 1.02 1.00 1.00
k = 150 — 1.02 1.00
k = 300 — — 1.03
k = 500 — — 1.09

Table 4.6: Volume ratios obtained by WSS and MWSS on matrices with
uniformly distributed random entries. All results have been averaged
across 50 test cases.

result obtained by SRRQR. This contrasts with Gap matrices where the
range of volumes seems to be much larger.

This is supported by the results of MWSS. Indeed, the multi-pass
algorithm returns subsets of columns with roughly same volumes, even
though the subsets themselves are different. In fact, small improvements
appear only for large values of k. The results with the randomized version
of the algorithm are similar to those of MWSS: all ratios are close to 1,
with slightly better results when k is large.

When comparing computation times, the conclusions are generally
similar to the case with Gap matrices, at least for the deterministic
methods: WSS is the fastest, and MWSS is faster than SRRQR for
sufficiently small values of k. Note that with these random matrices,
the multi-pass algorithm is still significantly faster than SRRQR for n =
1000, k = 300, which differs from the Gap case. However, for Gap
matrices, this was partially due to a much larger ratio which required
a larger number of passes to reach. In the general case, we conclude
that MWSS is able to obtain good subsets of columns while having a
significantly lower computational cost than SRRQR, provided that k is
small with respect to n.

106 The subset selection problem

SRRQR n = 100 n = 300 n = 1000

k = 15 0.04 0.16 1.38
k = 30 0.06 0.31 2.36
k = 50 0.07 0.46 3.79
k = 150 — 0.85 10.31
k = 300 — — 17.73
k = 500 — — 23.98

WSS n = 100 n = 300 n = 1000

k = 15 0.01 0.02 0.07
k = 30 0.02 0.04 0.14
k = 50 0.03 0.09 0.27
k = 150 — 0.30 1.27
k = 300 — — 4.02
k = 500 — — 8.26

MWSS n = 100 n = 300 n = 1000

k = 15 0.01 0.03 0.14
k = 30 0.02 0.07 0.28
k = 50 0.04 0.14 0.57
k = 150 — 0.48 2.77
k = 300 — — 10.70
k = 500 — — 23.89

Table 4.7: Computation time required by SRRQR, WSS and MWSS on
matrices with uniformly distributed random entries. All numbers are in
seconds and have been averaged across 50 test cases.

4.4. Numerical experiments 107

Finally, let us look at the results of RMWSS, depending on the prun-
ing threshold and the number of trials. We concentrate on the case
n = 3000, k = 150 in order to make the differences more apparent. The
observations are similar for other sizes of matrices.

Figures 4.1 and 4.2 present the usual performance measures for the
RMWSS algorithm on a test set of 25 random matrices. Three different
levels of pruning are presented here. The deterministic version of the
algorithm, not represented in the figures, has an average volume ratio
of 1.000. This is consistent with resulted shown in Table 4.6 for smaller
matrices.

The randomized version has an average volume ratio of about 1.002
or 1.004 depending on the parameters. Figure 4.1 shows that with these
test matrices, neither the number of trials nor the pruning level have a
significant impact on the volume of the selected subset. In the general
case for other values of n and k, a slight increase in volume can sometimes
be observed when increasing the number of trials, but the volume ratio
remains close to 1.

Regarding computation times, things are more interesting. For ref-
erence, SRRQR needs more than 80 seconds to select a subset, while
MWSS requires about 25 seconds. The two figures show that with ran-
dom matrices, the pruning heuristic can decrease the computational cost
by a factor of at least 1.5 without losing anything in practice. This con-
trasts with results obtained from Gap matrices where the increased speed
came at the expense of lower volumes.

Taking into account all test examples, we conclude that the random-
ized algorithm with a single trial and without pruning presents similar
behavior to the deterministic case. However, the two parameters allow
a trade-off between volume quality and computation time, which may
be useful depending on the application. For instance, RMWSS is able
to obtain subsets with a larger volume than MWSS in several examples
without losing too much speed, especially with the pruning algorithm.

4.4.4 Comparison between the windowed and the non-
windowed approaches

Among the four algorithms presented in the previous section, it was
expected thatMWSS produces subsets with better volumes thanWSS,
as doing several passes can only improve the result. Both MWSS and

108 The subset selection problem

0.99 0.995 1 1.005 1.01 1.015
0

50

100

150

Low pruning, 1 trial

0.99 0.995 1 1.005 1.01 1.015
0

50

100

150

Low pruning, 2 trials

0.99 0.995 1 1.005 1.01 1.015
0

50

100

150

Low pruning, 3 trials

0.99 0.995 1 1.005 1.01 1.015
0

50

100

150

Med pruning, 1 trial

0.99 0.995 1 1.005 1.01 1.015
0

50

100

150

Med pruning, 2 trials

0.99 0.995 1 1.005 1.01 1.015
0

50

100

150

Med pruning, 3 trials

0.99 0.995 1 1.005 1.01 1.015
0

50

100

150

High pruning, 1 trial

0.99 0.995 1 1.005 1.01 1.015
0

50

100

150

High pruning, 2 trials

0.99 0.995 1 1.005 1.01 1.015
0

50

100

150

High pruning, 3 trials

Figure 4.1: Distribution of volume ratios obtained by RMWSS on 3000×
3000 matrices with uniformly distributed random entries. The algorithm
has been run 20 times with each set of parameters, for each test case (out
of 25). Horizontal axis is the volume ratio, vertical axis is the number of
occurrences (out of 500).

4.4. Numerical experiments 109

0 30 60 90 120 150
0

100

200

300

Low pruning, 1 trial

0 30 60 90 120 150
0

100

200

300

Low pruning, 2 trials

0 30 60 90 120 150
0

100

200

300

Low pruning, 3 trials

0 30 60 90 120 150
0

100

200

300

Med pruning, 1 trial

0 30 60 90 120 150
0

100

200

300

Med pruning, 2 trials

0 30 60 90 120 150
0

100

200

300

Med pruning, 3 trials

0 30 60 90 120 150
0

100

200

300

High pruning, 1 trial

0 30 60 90 120 150
0

100

200

300

High pruning, 2 trials

0 30 60 90 120 150
0

100

200

300

High pruning, 3 trials

Figure 4.2: Distribution of computation times used by RMWSS on 3000×
3000 matrices with uniformly distributed random entries. The algorithm
has been run 20 times with each set of parameters, for each test case (out
of 25). Horizontal axis is the computation time in seconds, vertical axis
is the number of occurrences (out of 500).

110 The subset selection problem

SRRQR satisfy the same local optimality property: it is not possible to
improve the volume with only one exchange. However, in most (but not
all) test cases, MWSS returned subsets with a larger volume than those
obtained by our implementation of SRRQR: the volume ratios shown in
the tables are often larger than 1. This seems surprising but in fact, it can
be explained by the simple fact that the greedy approach is suboptimal.
Our greedy version of SRRQR always chooses the exchange with the
largest improvement on the volume. Hence, although the volume of
the selected subsets will rapidly increase, the search space will be less
explored and we will get more quickly stuck in a local maximum. The
windowed approach only considers a fraction of all possibles exchanges
when a single column is analyzed. Hence, the volume will increase much
slower, but the number of exchanges will be much larger. This also means
that the search space is better explored than with the greedy SRRQR.
Moreover, as an exchange in MWSS is cheaper than an interchange in
SRRQR, having to do more exchanges does not necessarily mean a higher
computational cost.

Let us look at several test cases. We recall that for the Kahan matri-
ces, both algorithms are doing the same exchanges. Things are already
different for GKS matrices. Figure 4.3 shows the evolution of the volume
of the subsets analyzed by SRRQR and MWSS during the computation.
A time-normalized curve for MWSS is also shown for comparison pur-
poses. This means that the red dashed line is an horizontally compressed
version of the red solid curve, with a scaling factor chosen such that the
ratio between the x-ranges of the two curves corresponds to the ratio
between the computation times of SRRQR and MWSS. Indeed, even
though MWSS has done 2402 swaps (in 10 passes) and SRRQR only
113, the first algorithm is faster than the second in this test case. These
curves confirm that the volume is increasing much faster in SRRQR, but
also quickly stalls. The windowed algorithm tries a large number of sub-
sets before climbing to a local maximum, which in this case is a little bit
better than the solution of SRRQR.

This behavior can be seen in Figure 4.4, which shows the number of
distinct subsets during the computation that included each column of
the matrix A. For the non-windowed algorithm, only 207 columns were
included in at least one subset at some point during the computation.
For the windowed algorithm, all 1000 columns have been included at least
once in some subset. This confirms that MWSS does a better exploration
of the search space than SRRQR in this case, which explains why it is

4.4. Numerical experiments 111

10
0

10
1

10
2

10
3

10
4

10
−60

10
−55

10
−50

10
−45

10
−40

10
−35

10
−30

10
−25

10
−20

Number of swaps

V
o

lu
m

e

SRRQR

MWSS

MWSS (time−normalized)

Figure 4.3: Evolution of the volume of the subsets for a GKS matrix
G1000 with k = 100, in function of the number of exchanges done by
the algorithm. The red dashed line corresponds to the results obtained
by MWSS, but normalized with respect to the ratio of computation times
between MWSS and SRRQR, since an iteration in SRRQR is more ex-
pensive than an iteration in MWSS.

112 The subset selection problem

0 100 200 300 400 500 600 700 800 900 1000
0

50

100

150

Selected columns

N
u

m
b

e
r

o
f

s
e

le
c
ti
o

n
s

SRRQR

0 100 200 300 400 500 600 700 800 900 1000
0

1000

2000

3000

Selected columns

N
u

m
b

e
r

o
f

s
e

le
c
ti
o

n
s

MWSS

Figure 4.4: Evolution of the subsets for a GKS matrix G1000 with k =
100. The histogram shows the number of times each column has been
selected in a distinct subset. The black markers correspond to the columns
present in the final subset.

4.4. Numerical experiments 113

0 10 20 30 40 50 60 70 80 90
10

−30

10
−29

10
−28

10
−27

10
−26

10
−25

10
−24

10
−23

Number of swaps

V
o

lu
m

e

SRRQR

MWSS

MWSS (time−normalized)

Figure 4.5: Evolution of the volume of the subsets for a 1000 × 1000
Gap matrix with k = 30, in function of the number of exchanges done
by the algorithm. The red dashed line corresponds to the results obtained
by MWSS, but normalized with respect to the ratio of computation times
between MWSS and SRRQR, since an iteration in SRRQR is more ex-
pensive than an iteration in MWSS.

possible to obtain better volumes.

The same remarks hold for other types of matrices. For example,
Figures 4.5 and 4.6 show the corresponding results for a Gap matrix of
size 1000× 1000, with subsets of 30 columns. For this example, SRRQR
has found a subset with a volume of 2.96×10−24 after 37 swaps whereas
MWSS reached 3.15×10−24 after 84 swaps in 5 passes. Only 67 columns
have been selected at least once by SRRQR. The corresponding number
for MWSS is 109 columns.

Figures 4.7 and 4.8 present another test case involving a 1000× 1000
Gap matrix with k = 300. Here, the difference between the behaviors

114 The subset selection problem

0 100 200 300 400 500 600 700 800 900 1000
0

10

20

30

40

Selected columns

N
u

m
b

e
r

o
f

s
e

le
c
ti
o

n
s

SRRQR

0 100 200 300 400 500 600 700 800 900 1000
0

20

40

60

80

100

Selected columns

N
u

m
b

e
r

o
f

s
e

le
c
ti
o

n
s

MWSS

Figure 4.6: Evolution of the subsets for a 1000 × 1000 Gap matrix with
k = 30. The histogram shows the number of times each column has
been selected in a distinct subset. The black markers correspond to the
columns present in the final subset.

4.4. Numerical experiments 115

0 50 100 150 200 250
10

−134

10
−132

10
−130

10
−128

10
−126

10
−124

10
−122

10
−120

10
−118

Number of swaps

V
o

lu
m

e

SRRQR

MWSS

MWSS (time−normalized)

Figure 4.7: Evolution of the volume of the subsets for a 1000×1000 Gap
matrix with k = 300, in function of the number of exchanges done by
the algorithm. The red dashed line corresponds to the results obtained
by MWSS, but normalized with respect to the ratio of computation times
between MWSS and SRRQR, since an iteration in SRRQR is more ex-
pensive than an iteration in MWSS.

of the two algorithms is much more apparent. Out of the 1000 columns,
only 360 have been considered by SRRQR and 505 by MWSS. Note
that in this example, the windowed algorithm is slower than SRRQR.
However, this is counterbalanced by a much larger volume: 2.43×10−120

instead of 1.07× 10−122.

Finally, it may be interesting to see what happens with the random-
ized algorithm on this example (a 1000×1000 Gap matrix with k = 300),
since the biggest differences in the previous section were for Gap matri-
ces with a large value of k. On the one hand, the non-greedy variant
(without pruning) has been previously shown to be able to find subsets
with larger volumes. On the other hand, one may wonder how does the

116 The subset selection problem

0 100 200 300 400 500 600 700 800 900 1000
0

20

40

60

80

Selected columns

N
u

m
b

e
r

o
f

s
e

le
c
ti
o

n
s

SRRQR

0 100 200 300 400 500 600 700 800 900 1000
0

100

200

300

Selected columns

N
u

m
b

e
r

o
f

s
e

le
c
ti
o

n
s

MWSS

Figure 4.8: Evolution of the subsets for a 1000 × 1000 Gap matrix with
k = 300. The histogram shows the number of times each column has
been selected in a distinct subset. The black markers correspond to the
columns present in the final subset.

4.4. Numerical experiments 117

τ
Number of columns pruned

in the that were considered by in the final subset of
matrix SRRQR MWSS SRRQR MWSS

0.15 0/1000 0/360 0/505 0/300 0/300
0.17 5/1000 1/360 1/505 1/300 0/300
0.20 48/1000 12/360 17/505 6/300 6/300
0.22 67/1000 14/360 23/505 10/300 9/300
0.25 150/1000 32/360 45/505 22/300 22/300
0.30 452/1000 112/360 180/505 89/300 90/300
0.35 536/1000 128/360 209/505 100/300 110/300
0.40 633/1000 155/360 245/505 124/300 143/300

τ
Fraction of columns pruned

in the that were considered by in the final subset of
matrix SRRQR MWSS SRRQR MWSS

0.15 0.0% 0.0% 0.0% 0.0% 0.0%
0.17 0.5% 0.3% 0.2% 0.3% 0.0%
0.20 4.8% 3.3% 3.4% 2.0% 2.0%
0.22 6.7% 3.9% 4.6% 3.3% 3.0%
0.25 15.0% 8.9% 8.9% 7.3% 7.3%
0.30 45.2% 31.1% 35.6% 29.7% 30.0%
0.35 53.6% 35.6% 41.4% 33.3% 36.7%
0.40 63.3% 43.1% 48.5% 41.3% 47.7%

Table 4.8: Number of columns pruned by the heuristic on several runs of
RMWSS with R = 1, on a 1000 × 1000 Gap matrix with k = 300. The
second table shows the same information using percentages.

pruning strategy behave on this example. Table 4.8 shows some infor-
mation about pruned columns, for a set of runs where the randomized
algorithm was able to find a better subset with R = 1.

Note that the set of pruned columns is not necessarily supposed to
be disjoint with the set of columns considered or selected by the other
algorithms. Indeed, we know that their solutions are not optimal. It
appears that there are relatively more pruned columns among columns
not considered by the deterministic algorithms rather than among con-
sidered columns. For example, with τ = 0.25, 15% of all columns have
been pruned. However, if we look at the columns examined by SRRQR

118 The subset selection problem

or MWSS, the pruning rate drops to about 9%. The ratio is even smaller
(about 7%) among columns present in the final subset. This indicates
that the pruning heuristic tends to remove “bad” columns that would not
be included in the current subset even if they are kept, which fortunately
is the expected behavior.

4.5 Conclusion

In this chapter we propose a window-based approach to the subset se-
lection problem consisting in the selection of k columns of an m × n
matrix such that the volume of the spanned parallelepiped is as large as
possible. The computational cost of the algorithm is O (mk(n− k)) if
the number of passes is bounded.

Experimental results show that our Multi-pass Window Subset Se-
lection algorithm is able to find subsets with a volume comparable, if not
larger, than the ones obtained by the non-windowed algorithm SRRQR,
while requiring a much shorter amount of time if k � m,n.

We also introduce a randomized version of the multi-pass algorithm
which uses two heuristics to improve its performance. On the one hand,
a strategy close to the stochastic hill climbing is used to find subsets with
larger volumes, possibly with several trials. On the other hand, a pruning
heuristic is used to reduce the computational cost. The combination of
these two techniques offers a trade-off between quality of the subset of
columns and computational cost which can be adjusted depending on
the application. In particular, using a single trial without the pruning
heuristic produces results similar to the deterministic case.

Of course, several extensions could be studied. Instead of having
explicit parameters such as the pruning tolerance and the number of
trials, one could consider another algorithm where these parameters are
adaptively modified during the computation. We can also consider multi-
level algorithms: instead of directly selecting k columns among n, such a
method would build a decreasing sequence of nested subsets ending with
a subset of size k.

Furthermore, it could also be interesting to investigate the behavior of
these algorithms with other objective functions. For example, one could
choose to maximize the smallest singular value instead of maximizing
the volume of the subset of columns, or consider minimizing the residual
between the selected columns and the discarded columns.

CHAPTER 5
The joint spectral radius

In this chapter, we present our contributions about the joint spectral
radius, which is a generalization of the spectral radius to sets of ma-
trices. We present a survey of different approaches and methods for
the approximation of the joint spectral radius. These methods are now
implemented in MATLAB R© in the JSR Toolbox [VHJ+11]. We also
propose a new method based on a genetic algorithm, which is shown
to be able to find lower bounds on the joint spectral radius with a low
computational cost. Our main publications related to this chapter are
[CB12a, CB12b, CB11a].

5.1 Introduction

The joint spectral radius characterizes the maximal asymptotic growth
rate of products of matrices drawn from a given set, generalizing the
notion of spectral radius for a single matrix. It was initially introduced
by Rota and Strang in [RS60] and has since then appeared in many
applications such as system theory [Gur95, Koz07], the study of wavelets
[DL92, Mae98], combinatorics and language theory [JPB09], the capacity
of some types of codes [MOS01, MOS07, BJP06], etc. More examples
and a general overview of what is known for the joint spectral radius can
be found in [Jun09]; see also [SWM+07] for more specific results.

In particular, the joint spectral radius is closely related to the stabil-
ity of switching systems such as

x0 ∈ Rn, xt+1 = Mtxt Mt ∈ Σ ⊂ Rn×n, (5.1)

where the transformation Mt applied to the state xt may change at
each iteration, and Σ corresponds to the set of possible transformations.
Such systems appear in many applications, for example when the state

120 The joint spectral radius

variables are updated asynchronously, when the updates depend on the
current state, or in the presence of uncertainty (see [Lib03] for an in-
troduction on switching systems). Of course, the sequence of transition
matrices Mt may also be controlled.

The stability of the system (5.1) under arbitrary switching, in the
sense that limt→∞ xt = 0 for all sequences (Mt)t∈N, is governed by the
joint spectral radius of the set Σ. In the particular case where Mt is
constant, and thus Σ consists of a single matrix, the joint spectral radius
corresponds to the usual spectral radius ρ(·). Note that having ρ(Mt) < 1
for all t does not imply stability for the switching system, as can be seen
with the following simple example.

Example 5.1. Let us consider the matrices

A =

(
3
4 0
1 3

4

)
, B =

(
3
4 1
0 3

4

)
.

It is clear that A and B are both stable: ρ(A) < 1 and ρ(B) < 1. How-
ever, alternating the two matrices results in a growth rate of ρ(AB)

1
2 =(

17
16 + 1

4

√
13
) 1

2 in this case, which is greater than 1. Hence, the system
is unstable.

The problem of approximating the joint spectral radius has been
widely studied. It is known that this quantity is NP-hard to compute
[TB97]. A dozen algorithms have been proposed this last decade for
approximating the joint spectral radius but little is known about their
practical efficiency. Indeed, some of them have only been studied from a
theoretical point of view, and were never implemented in practice. In this
work, we are interested in the practical behavior of these approximation
algorithms. Our implementations can be found in a MATLAB R© toolbox
[VHJ+11], which also contains an algorithm that combines different ex-
isting approaches.

We also propose a new heuristic algorithm whose goal is to compute
lower bounds on the joint spectral radius while aiming at a very short
computation time. This is achieved by the use of a genetic algorithm:
starting with a set of random products of limited length, the method
iteratively generates new products by combining existing ones, based on
the value of their spectral radius. The maximal allowed product length
is slowly increased during the computation so that the search space is
not restricted to products of small length. The lower bound returned by

5.2. Basic properties and results 121

the algorithm corresponds to the best result found by considering all the
products generated during the process.

Even though there is no guarantee on the accuracy of the result, ac-
cording to our simulations, the method may in fact be faster than exist-
ing techniques, depending on the parameters, and can still be used when
the problem size becomes large, i.e., when Σ contains a large number of
matrices and/or the size of the matrices themselves is large. The numer-
ical experiments we present also show that, for large size problems, our
genetic algorithm tends to provide better bounds on the joint spectral
radius than existing techniques, or that it provides bounds for situations
where the computation is simply too expensive with other methods.

This chapter is organized as follows. Section 5.2 presents the basics
about the joint spectral radius. In Section 5.3, we survey the different
approaches and methods for the problem of approximating the joint spec-
tral radius. After that, we present our genetic algorithm in Section 5.4.
The remaining sections detail our numerical experiments and compare
the different algorithms based on the results obtained from these simula-
tions. We also comment on several details related to the implementation
of the methods.

5.2 Basic properties and results

Let Σ ⊂ Rn×n be a set of real matrices. The joint spectral radius ρ(Σ)
is formally defined by

ρ(Σ) = lim
t→∞

ρt(Σ, ‖ · ‖), (5.2)

with
ρt(Σ, ‖ · ‖) = max

{
‖M‖1/t |M ∈ Σt

}
.

Here, Σt denotes the set of products of length t of matrices in Σ. One can
show that the limit in Equation (5.2) exists and that it does not depend
on the matrix norm that is used, provided this norm is submultiplicative.
This is due to Fekete’s Subadditive Lemma:

Lemma 5.2 ([Fek23]). Let (an)n∈N be a subadditive sequence of real
numbers, i.e., am+n 6 am + an for all m,n ∈ N. Then, the limit

lim
n→∞

an
n

exists and is equal to infn
an
n . This limit may be equal to −∞.

122 The joint spectral radius

Let us prove the existence of the limit in Equation (5.2). We consider
the sequence (an)n∈N defined by

an = log ρn(Σ, ‖ · ‖)n = log max
M∈Σn

‖M‖.

This sequence is subadditive because of the submultiplicativity of the
norm ‖ · ‖. Indeed, let Mopt be a product in Σm+n with maximal norm
and let us write Mopt = M1M2 . . .Mm+n with Mi ∈ Σ for all i. Then,

am+n = log ‖Mopt‖
6 log (‖M1 . . .Mm‖‖Mm+1 . . .Mm+n‖)
6 log max

M∈Σm
‖M‖+ log max

M∈Σn
‖M‖

= am + an.

Then, Lemma 5.2 allows us to conclude that the limit in Equation (5.2)
exists since

lim
n→∞

an
n

= lim
n→∞

log ρn(Σ, ‖ · ‖).

Note that if ρn(Σ, ‖ · ‖) = 0 for some value of n, then the corresponding
term an is undefined. However, ρn = 0 implies that ρt = 0 for all t > n,
hence the limit still exists in this case.

In the particular case where Σ contains only one matrix M , the joint
spectral radius is equal to the usual spectral radius, i.e., the largest
magnitude of the eigenvalues. Equation (5.2) is thus a generalization of
the well-known Gelfand formula for the spectral radius of a single matrix:

ρ(M) = lim
t→∞
‖M t‖1/t.

The first algorithms proposed consisted in constructing products of
increasing length and using ρt as upper bounds. Indeed, Fekete’s lemma
also tells us that the limit of the sequence of ρt’s corresponds to its
infimum. Lower bounds can be obtained by considering the generalized
spectral radius ρ̄(Σ) defined by

ρ̄(Σ) = lim sup
t→∞

ρ̄t(Σ), (5.3)

with
ρ̄t(Σ) = max

{
ρ(M)1/t |M ∈ Σt

}
.

5.2. Basic properties and results 123

For all lengths t, the following inequalities are satisfied [BW92]:

ρ̄t(Σ) 6 ρ̄(Σ) 6 ρ(Σ) 6 ρt(Σ, ‖ · ‖). (5.4)

It was moreover proved in [BW92] that the generalized spectral ra-
dius is equal to the joint spectral radius whenever Σ is bounded (or, in
particular, finite). For bounded sets, the inequalities in Equation (5.4)
can thus be used to derive arbitrarily precise approximations for the joint
spectral radius. The fact that this does not hold for unbounded sets can
be illustrated with the following well-known example.

Example 5.3. Let us consider the set Σ defined by

Σ =

{(
1 1
0 1

)
,

(
1 2
0 1

)
, . . . ,

(
1 n
0 1

)
, . . .

}
.

All products of matrices in Σ have a spectral radius equal to 1, hence the
generalized spectral radius satisfies ρ̄(Σ) = 1. However, the joint spectral
radius satisfies ρ(Σ) =∞. Hence, ρ̄(Σ) < ρ(Σ) in this case.

Other spectral quantities can be defined. For example, if we con-
sider the minimal growth rate, the joint spectral subradius (also called
the lower spectral radius) and the generalized spectral subradius can be
defined analogously by replacing the max with a min and the lim sup by
a lim inf in the definitions given previously. Several methods presented
in the following sections can be adapted for the computation of the joint
spectral subradius. However, we will concentrate on the joint spectral
radius of finite sets Σ.

The sequence of upper bounds in (5.4) converges very slowly to ρ(Σ)
except in some particular cases. Hence, any approximation algorithm
directly based on the inequalities (5.4) is bound to be inefficient. This is
not so surprising since the problem of approximating the joint spectral
radius is known to be NP-hard:

Theorem 5.4 ([TB97]). Unless P = NP , there is no algorithm that,
given a set of matrices Σ and a relative tolerance ε, is able to return an
(1 + ε)-approximation of ρ(Σ) in a time polynomial in the size of Σ and
ε, that is, an approximation of ρ(Σ) with a relative error smaller than ε.
This result holds even if Σ is composed of matrices with binary entries.

Another result supports the fact that the joint spectral radius is a
quantity that is difficult to compute:

124 The joint spectral radius

Theorem 5.5 ([BT00]). Given a set of matrices Σ, the problem of de-
termining whether the set of all products of matrices in Σ is bounded
is Turing-undecidable. The problem of determining if ρ(Σ) 6 1 is also
Turing-undecidable. These results remain true even if the matrices in Σ
have nonnegative rational entries.

In other words, it is impossible to construct an algorithm that is
able to determine, in finite time and for all sets Σ, whether the set of
all products of matrices in Σ is bounded, or whether the joint spectral
radius ρ(Σ) is strictly less than 1.

Extremal norms

As the sequence of upper bounds tends to converge very slowly, one may
want to speed up the procedure, for example by finding an appropriate
norm that gives a faster convergence rate in the expression (5.2). In some
cases, it is even possible to find a norm that is extremal with respect to
the set of matrices, that is, a norm such that the joint spectral radius is
reached with a product of length one. More precisely, a norm ‖ · ‖ is said
to be extremal for a set of matrices Σ if ‖M‖ 6 ρ(Σ) for all M ∈ Σ.

Example 5.6. Let us consider the set of matrices Σ = {A,B} with

A =

(
1 −2
−2 4

)
, B =

(
4 2
2 −5

)
.

We have ρ(A) = 5 and ρ(B) = 1
2(1 +

√
97) ≈ 5.424. Hence,

ρ(Σ) > ρ̄1(Σ) = max{ρ(A), ρ(B)} =
1

2
(1 +

√
97).

Let us consider the Frobenius norm. We have ‖A‖F = 5 and ‖B‖F = 7.
Hence,

ρ(Σ) 6 ρ1(Σ, ‖ · ‖F) = max{‖A‖F , ‖B‖F } = 7.

Better upper bounds can be obtained by considering products of several
matrices in Σ:

t 1 2 3 4 5 6

ρt(Σ, ‖ · ‖F) 7.000 5.945 5.6635 5.547 5.491 5.462

Let us now consider the two-norm. We have ‖A‖2 = 5 and ‖B‖2 =
1
2(1 +

√
97) ≈ 5.424. Indeed, the two-norm of a symmetric matrix is

equal to its spectral radius. Thus, the two-norm is extremal in this case,
and ρ(Σ) = 1

2(1 +
√

97).

5.2. Basic properties and results 125

This example also shows that the joint spectral radius of a set of
symmetric matrices is equal to the largest spectral radius of these ma-
trices.

It can be proved that a bounded set Σ that is commonly irreducible
admits an extremal norm ([Bar88, Koz90], see also [Wir02]). We recall
that a set of matrices is commonly reducible if there exists a nontrivial
linear subspace that is invariant under all matrices in Σ. This also means
that the matrices of a commonly reducible set Σ can be simultaneously
block-triangularized by a single invertible matrix:

∃ T ∀Mi ∈ Σ : TMiT
−1 =

(
Ai Bi
0 Ci

)
.

In the commonly reducible case, the joint spectral radius ρ(Σ) is
equal to max{ρ(∆1), ρ(∆2)}, where ∆1 = {Ai} and ∆2 = {Ci}. This is
due to the following properties:

• The usual spectral radius satisfies ρ(A) = ρ(TAT−1) for all invert-
ible matrices T . This still holds for the joint spectral radius since
if we consider any product M1M2 . . .Mk ∈ Σk, we have

ρ((TM1T
−1)(TM2T

−1) . . . (TMkT
−1))

= ρ(T (M1M2 . . .Mk)T
−1) = ρ(M1M2 . . .Mk),

where T is an invertible matrix.

• The usual spectral radius of a block-triangular matrix safisties

ρ

((
A B
0 C

))
= max{ρ(A), ρ(C)}.

• A product M1M2 . . .Mk of such block-triangular matrices has the
same structure, with the two diagonal blocks being A1A2 . . . Ak
and C1C2 . . . Ck.

Finally, we also have the useful property [RS60, BW92]

ρ(Σ) = inf
‖·‖

sup
M∈Σ

‖M‖, (5.5)

where the infimum is taken over the set of all induced matrix norms.

126 The joint spectral radius

The Finiteness Conjecture

It has also been observed that the lower bound in (5.4) often reaches
the joint spectral radius for some finite t. A set of matrices Σ is said to
possess the finiteness property if there exists some product M ∈ Σt such
that ρ(Σ) = ρ(M)1/t. It was first conjectured by Lagarias and Wang
in [LW95] that all sets of matrices do have the finiteness property —
a conjecture known as the Finiteness Conjecture — but this conjecture
was proved to be false [BM02, BTV03, Koz05].

The proofs in these articles are nonconstructive and recently an ex-
plicit counterexample has been provided by Hare et al. in [HMST11] by
extending the results in [BM02, BTV03, Koz07]. Note that the question
of determining if all sets of rational matrices have the finiteness prop-
erty is still open [BJP06, JB08]. This “restricted” finiteness conjecture
is interesting because matrices that appear in applications often have
rational, integer or even binary entries.

Note that stability is decidable for sets of matrices possessing the
finiteness property. Indeed, using (5.4), ρ(Σ) < 1 can be concluded as
soon as we have an upper bound smaller than 1. Moreover, ρ(Σ) > 1
can be detected if we find a (finite) product with a unit spectral radius.

5.3 Methods of computation

The problem of approximating the joint spectral radius is far from trivial,
except in some particular cases. A first naive approach would be to
consider the relations (5.2), (5.3), (5.4) and evaluate all products in
Σt for increasing values of t. Of course, these bounds will converge to
the exact value of the joint spectral radius, but since the number of
products to consider grows exponentially with the product length, one
has to reduce the search space in some way. Several arguments may
be used, e.g., the fact that the spectral radius of a product of matrices
is invariant under cyclic permutations of its factors [Mae96]. Methods
based on enumeration of products are presented in Section 5.3.1.

As mentioned in the previous section, the sequence of upper bounds
may converge very slowly even if a lower bound may reach ρ(Σ) for a
small product due to the finiteness property. A detailed analysis of the
quality of the upper bounds may by found in [Koz09]. Thus, another
possible approach would be to try to find an extremal norm associated

5.3. Methods of computation 127

to the set Σ. Methods for approximating the joint spectral radius with
techniques based on the optimization problem (5.5) are presented in
Section 5.3.2, whereas Section 5.3.3 describes geometric algorithms that
iteratively approximate an extremal norm.

5.3.1 Product enumeration methods

Algorithms based on enumeration of products are mainly branch-and-
bound methods based on (5.4).

Gripenberg’s algorithm

Gripenberg’s branch-and-bound method [Gri96] was one of the first al-
gorithms proposed for approximating the joint spectral radius. Given a
target tolerance ε and a norm ‖ · ‖, this algorithm starts with an initial
set Π1 = Σ of candidates, and the corresponding natural bounds, i.e.,
α1 = maxM∈Σ ρ(M) as lower bound and β1 = maxM∈Σ ‖M‖ as upper
bound. In general, the upper bounds will depend on the chosen norm.

At the kth iteration of the algorithm, let us define the new set of
candidates:

Πk = {MP |M ∈ Σ, P ∈ Πk−1, µ(M,P1, . . . , Pk−1) > αk−1 + ε} ,
where P = P1 . . . Pk−1 and µ(M1, . . . ,Mk) = min16i6k ‖M1 . . .Mi‖1/i.
The bounds are then updated as follows:

αk = max

{
αk−1, max

P∈Πk

ρ(P)1/k

}
,

βk = min

{
βk−1,max

{
αk−1 + ε, max

P∈Πk

µ(P1, . . . , Pk)

}}
,

with P = P1, . . . , Pk in this last expression.

At each iteration, the bounds satisfy αk 6 ρ(Σ) 6 βk and we have
limk→∞(βk − αk) 6 ε. Hence, this method provides arbitrarily precise
approximations of the joint spectral radius ρ(Σ) when given sufficient
computational resources. The number of iterations required to achieve
a given absolute accuracy of ε is not known a priori and may depend on
the choice of the norm ‖ · ‖. Even when it is possible to discard a large
number of products at each step, it may be necessary to reach very long
products in order to obtain an interval of length ε.

128 The joint spectral radius

Moision et al.’s pruning algorithm

In [MOS01], Moision et al. introduces a so-called pruning algorithm for
sets of nonnegative matrices. This method is based on several domi-
nating relations, e.g., the fact that if A > B > 0 componentwise, then
ρ(A) > ρ(B). Similar conditions can also be found for the upper bounds,
depending on the norm used in the algorithm. Of course this does not
lead to a polynomial-time algorithm in the general case, but the number
of products may be significantly reduced in several particular cases.

The pruning algorithm works as follows: at the kth iteration, i.e.,
when products of length k are considered, instead of checking all |Σ|k
candidates, only a smaller subset Γk is analyzed. Let Γ0 = {I}. Given
a subset Γk, the next subset Γk+1 is obtained by building ΓkΣ, then
removing all products B ∈ ΓkΣ that are dominated by another product
A in the same set, i.e., products B such that ‖AM‖ > ‖BM‖ for all
M > 0 componentwise.

This condition ensures that ρk(Σ, ‖·‖) is correctly computed. Indeed,
by construction, we have

max
{
‖M‖1/k

∣∣∣M ∈ Σk
}

= max
{
‖M‖1/k

∣∣∣M ∈ Γk

}
since we have only removed products with smaller norm. A similar strat-
egy can be used for the lower bounds.

Product enumeration methods in practice...

The main disadvantages of this family of methods are the large number
of products that we may have to consider when reaching very long prod-
ucts, which may result in a large amount of computation time when a
small interval is required, and the influence of the choice of the norm
on the convergence of the sequence of upper bounds. In the general
case, the sequence of upper bounds converges very slowly to the joint
spectral radius. However, it may be possible to find tight lower bounds
in a short amount of time as the set of matrices may have an optimal
product of small length. Moreover, implementing these methods is usu-
ally straightforward as it mainly consists in manipulating products of
matrices. Hence, this should not give rise to more numerical errors than
basic arithmetic operations, except for one detail: if the length of the
products grows too much, a direct application of the method may reach

5.3. Methods of computation 129

the overflow threshold, depending on the set of matrices. In order to
avoid this issue, it may be wise to use some scaling of the matrices.

5.3.2 Norm optimization methods

Since the value of ρt(Σ, ‖ · ‖) converges slowly to ρ(Σ) in the general
case, another approach is try to find a so-called extremal norm in order
to obtain better upper bounds. This is usually done by considering a
modified version of (5.5). Indeed, optimizing on the space of all matrix
norms is not an easy task, so in practice one may instead consider a
subset of norms. Of course, this subset should preferably be chosen so
that the restricted optimization problem is easy to solve.

The ellipsoidal norm approximation

A first method introduced in [BNT05] is the class of ellipsoidal norms
(also called ellipsoid norms).

Given a positive definite matrix P ∈ Rn×n (denoted by P � 0), let
us consider the so-called ellipsoidal vector norm ‖x‖P =

√
xTPx for

x ∈ Rn. The associated ellipsoidal matrix norm is the corresponding
induced matrix norm:

‖M‖P = max
x 6=0

‖Mx‖P
‖x‖P

= max
x 6=0

√
xTMTPMx√

xTPx
. (5.6)

Similarly to (5.5), the ellipsoidal norm approximation ρ̂Ell(Σ) is then
defined by:

ρ̂Ell(Σ) = inf
P�0

max
M∈Σ

‖M‖P ,

which is obviously an upper bound on the joint spectral radius. This
approximation can be easily computed using semidefinite programming
(SDP). Indeed, Equation (5.6) implies that for each matrix M ∈ Σ we
have:

xT
(
‖M‖2PP −MTPM

)
x > 0, ∀x ∈ Rn.

The ellipsoidal norm approximation corresponds thus to the mini-
mum value of γ such that there exists a positive definite matrix P � 0
with γ2P −MTPM � 0 for all matrices M ∈ Σ. For a given value of
γ, the problem of finding a matrix P corresponds to an SDP feasibility

130 The joint spectral radius

problem that can be solved efficiently, and thus the optimal value of γ
can be found by bisection.

The following bounds are known to hold for the ellipsoidal norm
approximation ρ̂Ell(Σ):

Proposition 5.7 ([AS98, BNT05]). Let Σ be a set of real n× n matri-
ces. Then, the ellipsoidal norm approximation of its joint spectral radius
satisfies

1√
η
ρ̂Ell(Σ) 6 ρ(Σ) 6 ρ̂Ell(Σ),

with η = min {n, |Σ|}, where |Σ| corresponds to the size of Σ, i.e., the
number of matrices in the set.

However, in practice, better lower bounds can easily be obtained by
considering products of small lengths.

The ellipsoidal norm approach can be interpreted as the search for
a quadratic common Lyapunov function in order to prove the stability
of a switched system when the matrices are scaled by 1

γ . Indeed, if the
scaled system xt+1 = Mtxt with Mt ∈ 1

γΣ is asymptotically stable for
all switching schemes, then we have ρ(Σ) < γ. A generalization of this
approach using multiple Lyapunov functions for the approximation of the
joint spectral radius has been proposed in [AJPR11] (see also [DB01]).

The sum-of-squares approximation

The ellipsoidal norm method has been generalized by several authors,
including Parrilo and Jadbabaie. In [PJ08] these authors propose a gen-
eralization by replacing the norms by positive polynomials, based on the
following result:

Proposition 5.8. Let Σ be a set of n×n matrices and p(x) be a (strictly)
positive homogeneous polynomial of degree 2d with n variables that sat-
isfies p(Mx) 6 γ2dp(x)∀x ∈ Rn, for all M ∈ Σ. Then, ρ(Σ) 6 γ.

Even though positive polynomials are hard to characterize, a posi-
tivity constraint can be relaxed into a sum-of-squares (SOS) constraint:
instead of p(x) > 0, we require the existence of a decomposition p(x) =∑

i pi(x)2. Note that although a sum of squares is obviously nonnega-
tive, most but not all nonnegative polynomials can be rewritten as sums
of squares (see [Rez00] for a survey on the problem).

5.3. Methods of computation 131

The sum-of-squares decomposition can also be written as p(x) =(
x[d]
)T
Px[d], where x[d] is a vector containing all monomials of degree

d with n variables, and P � 0 is a positive semidefinite matrix. The
problem of checking if a polynomial is a sum-of-squares is thus equivalent
to a SDP feasibility problem and the sum-of-squares approximation can
thus be expressed as follows:

ρ̂SOS,2d(Σ) = min γ

s.t. ∃ p(x) ∈ R[x]2d homogeneous
p(x) is SOS
γ2dp(x)− p(Mx) is SOS ∀M ∈ Σ.

As with the ellipsoidal approximation, the optimal value of γ can be
found by bisection. In fact, in the particular case d = 1, the problem is
equivalent to the ellipsoidal norm case because all quadratic nonnegative
polynomials can be written as sums of squares.

In the general case, we have the following bounds on the approxima-
tion accuracy:

Proposition 5.9 ([PJ08]). Let Σ be a set of real n× n matrices. Then,
the sum-of-squares approximation of degree 2d of its joint spectral radius
satisfies (

1√
η

) 1
d

ρ̂SOS,2d(Σ) 6 ρ(Σ) 6 ρ̂SOS,2d(Σ),

where η = min
{(

n+d−1
d

)
, |Σ|

}
.

In theory, one can thus obtain arbitrarily sharp approximations by
taking polynomials of sufficiently large degree since limd→∞ η

− 1
2d = 1,

but the computational cost increases accordingly.

The joint conic radius

Another generalization of the ellipsoidal norm approximation was pre-
sented in [PJB10], where the authors extend the SDP problem to general
conic programming. This extension allows one to derive upper and lower
bounds on the joint spectral radius, provided that the matrices in Σ leave

132 The joint spectral radius

a common cone K invariant, i.e., MK ⊂ K for all M ∈ Σ. In this case,
the joint conic radius ρ̂Conic,K(Σ) is defined as

ρ̂Conic,K(Σ) = inf {λ > 0 | ∃v ∈ intK : λv −Mv ∈ K ∀M ∈ Σ} .

For example, if all entries of the matrices in Σ are nonnegative, then Rn+
is an invariant cone.

The joint conic radius satisfies the following property:

Proposition 5.10 ([PJB10]). Given a set Σ of real n×n matrices which
leave a common cone K invariant, let α(K) be the largest number such
that for any compact set G ⊂ K, there exists v ∈ G for which we have
v − α(K)g ∈ K for all g ∈ G. Then,

α(K)ρ̂Conic,K(Σ) 6 ρ(Σ) 6 ρ̂Conic,K(Σ).

For example, the constant α(K) corresponding to the cone Sn+ of
positive semidefinite n×n matrices has value α(Sn+) = 1

n . The same can
be said for cones in Rn bounded by n hyperplanes passing through the
origin.

Note that for an arbitrary set Σ, it is always possible to build a set Σ̃
leaving the cone Sn+ invariant and satisfying ρ(Σ̃) = ρ(Σ)2. This is done
by considering the semidefinite lifting where the lifted matrices M̃i act
as follows on n× n matrices (instead of vectors Rn):

M̃i : Rn×n → Rn×n : X 7→MT
i XMi,

or, if we use the vectorized formalism,

M̃i,vec : Rn
2 → Rn

2
: x = vec(X) 7→ (MT

i ⊗MT
i)x = vec(MT

i XMi),

where ~(X) is a vector formed by stacking the columns of X. When
applying this method on the lifted set Σ̃ with respect to the cone Sn+,
the result obtained is equivalent to the ellipsoidal norm approximation.

Norm optimization methods in practice...

The main idea of all these methods is to formulate an approximation of
the problem in conic optimization and use efficient solving techniques
to obtain the bounds on the joint spectral radius. The implementation
of these methods usually makes use of an external optimization solver.

5.3. Methods of computation 133

The situation is roughly the opposite of product enumeration algorithms
in the sense that norm optimization methods are sometimes able to find
tight upper bounds, but are unable to provide lower bounds of good
quality. However, this approach is usually inadequate for problems of
large size. Indeed, the size of these optimization problems may grow
very fast and computational limitations may thus become a significant
issue since the optimization solver will require a large amount of memory
and of computation time. Moreover, with high-dimensional problems,
numerical issues tend to appear while solving the optimization problem
with numerical solvers.

5.3.3 Extremal norm construction methods

A third approach to joint spectral radius approximation is to explicitly
approximate an extremal norm instead of optimizing over a chosen set of
matrix norms. Several methods have been proposed by different authors,
including Protasov, Guglielmi and Kozyakin. The main idea is to start
with some matrix norm or, equivalently, some region corresponding to
the unit ball of a norm. Iterative algorithms are then applied in order to
produce an adequate sequence of norms that converges to an extremal
norm. These algorithms may explicitly work with the norms, or with the
corresponding unit balls.

Protasov’s method

In [Pro96], Protasov proposes to approximate the unit ball of an extremal
norm with a sequence (Pi)i∈N of polytopes chosen in order to obtain
an (1 + ε)-approximation of the joint spectral radius after a number of
iterations which can be determined a priori, depending on ε and Σ. The
first polytope P0 is taken as

P0 =
{

(x1, . . . , xn) ∈ Rn |
∑
|xi| 6 1

}
.

At the ith iteration, the new polytope Pi is obtained as an approx-
imation of the convex hull of the polytopes obtained by applying the
different matrices of Σ on Pi−1. Note that the computation of a convex
hull may be a significant issue when dealing with high-dimensional sets
of points.

134 The joint spectral radius

The approximation of the joint spectral radius is then obtained de-
pending on the largest distance from the origin to the vertices of the last
polytope Pi.

Guglielmi et al.’s balanced polytope methods

Another geometric approach involving polytopes has been studied in
[GZ09] and in [CGSCZ10]. The method is based on balanced polytopes,
which are polytopes P ⊂ Kn, with K = R or C, such that there exists a
finite set of vectors V = {v1, . . . , vk} satisfying spanV = Kn and:

P = absconv(V) :=

{
x ∈ Kn

∣∣∣∣∣ x =

k∑
i=1

λivi with
k∑
i=1

|λi| 6 1, λi ∈ K

}
.

Here, the abbreviation “absconv” corresponds to absolutely convex hull.

Depending on the choice for K, the polytope is called a balanced real
polytope or a balanced complex polytope. A polytope norm is any norm
whose unit ball is a balanced polytope. It is known [GZ07] that the set
of induced matrix polytope norms is dense in the set of induced matrix
norms, so (5.5) holds even if we take the infimum on all polytope norms.

In order to find such a polytope norm, the authors present an algo-
rithm that essentially considers the trajectories of a vector x̃ under all
possible products of matrices in Σ. If x̃ is well-chosen and some hypothe-
ses hold, then the convex hull of the trajectories will describe a balanced
polytope, that will give the value of the joint spectral radius. In particu-
lar, it is supposed that the set Σ does possess the finiteness property. The
vector x̃ is then taken as a leading eigenvector of a candidate product.
Note that this eigenvector may be complex even if Σ ⊂ Rn×n.

The main idea of the algorithm is given below:

• Let P be the candidate product (of length m) and let the set Σ̃ =
ρ(P)−1/mΣ be a scaled version of Σ. Define the set V0 as V0 =
{x, x̄}, where x is a (possibly complex) leading eigenvector, and let
P0 = absconv(V0).

• Recursively compute Vk+1 = Σ̃Vk.

• At each iteration, define Pk as Pk = absconv(Vk). If Vk+1 ⊂ Pk
for some k then terminate the algorithm with the conclusion that
the product P is optimal.

5.3. Methods of computation 135

More details can be found in [GZ09]. This method requires a good
initial guess, but if the candidate product is indeed optimal, then the al-
gorithm stops after a finite number of steps and provides a certificate for
the product optimality. In [CGSCZ10], a stopping criterion (x ∈ intPk
for some k) is given so that the iteration can be stopped and the candi-
date product discarded if it is not optimal. Apart of the requirement of a
starting point, the main drawback is that this algorithm usually requires
a large amount of computation time, especially with matrices of larger
sizes. Efficiently implementing the algorithm may also be nontrivial (see
Section 5.5.2). Another issue is that the operations such as the compu-
tation of the convex hulls may be subject to numerical inaccuracies or a
large memory usage with high-dimensional sets of points.

Finally, it should be noted that improved versions of these balanced
polytope methods have recently been presented in [GP11] by Guglielmi
and Protasov. The improved algorithms involve a new organization of
computations as well as a new stopping criterion.

Kozyakin’s Barabanov norm construction methods

Two different iterative schemes are proposed in [Koz10] and [Koz11] for
the construction of an extremal norm. More precisely, these algorithms
are mainly designed for building Barabanov norms, a special kind of ex-
tremal norms, but they also give the joint spectral radius as a byproduct.

In the first algorithm (called the Linear relaxation iteration or LR-
procedure), starting with an arbitrary initial norm on Rn, we build a
sequence of norms by using linear combinations of already computed
norms. Bounds on the joint spectral radius are available at every it-
eration. More precisely, the LR-procedure defines a sequence of norms
(‖ · ‖k)k∈N according to the following rules:

• Start with a norm ‖ · ‖0 on Rn and let e be a vector such that
‖e‖0 = 1. Let us also choose λ−, λ+ such that 0 < λ− 6 λ+ < 1.

• At every iteration, bounds on the joint spectral radius are given
by ρ(Σ) ∈ [ρ−k , ρ

+
k] with:

ρ+
k = max

x 6=0

maxi ‖Mix‖k
‖x‖k

, ρ−k = min
x 6=0

maxi ‖Mix‖k
‖x‖k

.

136 The joint spectral radius

• Let λk be in the interval [λ−, λ+] and define the new norm ‖ · ‖k+1

as follows:

‖x‖k+1 = λk‖x‖k + (1− λk)
maxi ‖Mix‖k
maxi ‖Mie‖k

.

This procedure converges to an extremal norm, and the two sequences(
ρ±k
)
k∈N converge to ρ(Σ). Alternatively, one can also apply the Max-

relaxation iteration that replaces the linear combination with a maximum
operation and an averaging function µ:

‖x‖k+1 = max

{
‖x‖k,

maxi ‖Mix‖k
µ(ρ+

k , ρ
−
k)

}
.

In the general case, the averaging function µ has to satisfy

min{s, t} 6 µ(s, t) 6 max{s, t}, ∀ s, t > 0,

with equalities only if s = t. Common examples are the arithmetic mean,
the geometric mean, or the harmonic mean.

The MR-procedure has similar convergence properties as the LR-
procedure. More details can be found in [Koz10] and [Koz11].

In practice, producing an efficient implementation of these two meth-
ods is quite challenging due to the geometric nature of the operations
and the fact that the algorithms are described at a rather high level.
One possibility would be to discretize the space but this may reduce
the practical accuracy of the algorithms, due to discretization errors.
Moreover, this approach can become difficult to manage with matrices
of large sizes as the required number of discretization points would grow
exponentially. More details about our implementation can be found in
Section 5.5.2. This implementation seems to produce acceptable results
of limited accuracy provided that the problem size is small enough.

5.3.4 Lifting techniques

Whatever method is used to approximate the joint spectral radius, it is
always possible to apply a lifting on the set of matrices Σ. This provides
better bounds at the price of a higher computational cost, for example
when combined with the bounds in Proposition 5.7 or 5.9. The main

5.4. A heuristic approach using a genetic algorithm 137

idea is to build a set of matrices Σ̃ such that the relation between ρ(Σ̃)
and ρ(Σ) is known, and then apply the algorithms on Σ̃.

Some examples of liftings are Σt, the set of products of length t, Σ⊗t,
the set of tth Kronecker powers of the matrices in Σ, or Σ[t], the set of
t-lifts of matrices in Σ (see [BN05, PJ08]). Indeed, it can be proved that

ρ(Σ)t = ρ(Σt) = ρ(Σ⊗t) = ρ(Σ[t]).

In these examples the lifted set contains either a larger number of
matrices, or matrices that have a larger dimension. Note that in [BN05],
the authors also propose a recursive approximation method based on
successive liftings of the initial set. In theory, this may provide arbitrarily
accurate bounds on the joint spectral radius, but the exponential growth
of the problem size renders the method intractable except for a very small
number of liftings.

5.4 A heuristic approach using a genetic algo-
rithm

The main objective of the algorithm we propose is to provide approxima-
tions of the joint spectral radius at a low computational cost. Thanks to
Equation (5.4), any product of finite or infinite length produces a lower
bound. Hence, the idea of our method is to initially generate a given
number of products and then try to combine them in order to obtain
new products that can hopefully provide “good” lower bounds.

We have chosen the genetic algorithm framework for these purposes
(see Section 2.3.1). Although there will be no guarantee on the quality of
the bounds returned by the algorithm, this heuristic approach does not
require expensive computation steps, in contrast to classical methods.
Note that the results can also be combined with another algorithm, e.g.,
a method that checks if a given candidate is optimal, or that returns an
upper bound on the joint spectral radius.

When applying the genetic algorithm to the joint spectral radius,
each element of the population P will naturally correspond to a product
of matrices. The different steps of the algorithm are presented below.

138 The joint spectral radius

Initialization

Evaluate the spectral radius of all products of matrices of length at most
κ, where κ is chosen depending on |Σ| in order to limit this step to a small
number of products. The best spectral radius provides an initial lower
bound on the joint spectral radius of Σ. Let K = 2κ be an initial bound
on the length of the products and create a population P0 of fixed size
S. Each element of the set P0 is thus a product of matrices Mi1 . . .Mik ,
satisfying k 6 K. We suppose that the population size is at least 10, as
tiny populations are not really meaningful for this approach. Indeed, the
idea is to combine a large number of different solutions to produce new
ones. Of course, it would be possible to use a smaller population but
several choices mentioned below will have to be modified as the number of
population members produced at each generation may exceed the chosen
population size with the parameters presented below. For example, in
a default setting, we keep at least the two best solutions of the current
population and introduce at least 4 new random products in the new
population. This would be impossible to satisfy if the population size is
less than 6.

Evaluation and controlled mutation

At each generation g, the spectral radius of all products of the corre-
sponding population Pg is evaluated in order to obtain lower bounds on
the joint spectral radius ρ(Σ). If this improves the current lower bound
on ρ(Σ), the algorithm explores the neighborhood of the corresponding
product and tries to obtain a better lower bound.

More precisely, we are using the Levenshtein neighborhood which
corresponds to all products that can be obtained with a single deletion,
substitution or insertion of a matrix in the candidate product. We only
keep products of length of at most K. If an improvement is possible,
then the corresponding product is inserted into the population, replacing
the worst product in the set. In fact, all these operations may also be
interpreted as a controlled mutation on the best element of Pg.

Selection

In order to obtain the next population Pg+1, the current population
Pg is partitioned into several subsets. The nA best products are kept

5.4. A heuristic approach using a genetic algorithm 139

unchanged and the nB worst population elements are discarded and re-
placed by randomly generated products, for some values of nA and nB.
This elitist strategy allows the most promising products to keep produc-
ing offsprings, while new random elements are continuously inserted in
order to ensure diversity. The remaining products are obtained using
crossover operations so that the new population still has a size of S. In
our algorithm, nA ∈ {2, 3} depending on the population size, and nB
has been chosen to max{4,

⌊
S
50

⌋
}.

Crossover

A first crossover operation generates a bunch of products following the
pattern Ma1 . . .MacMbc+1Mbk for some value of c, and where both prod-
ucts Ma1 . . .Mak and Mb1 . . .Mbk are among the 50% best products in
Pg. This corresponds thus to swapping operations between two products.
The number of elements of the next population Pg+1 obtained using this
first crossover is

⌊
S
2

⌋
.

A second crossover gives products of the form Mi1 . . .Mik . For each
product, the matrix Mij at position j corresponds to either Maj or Mbj ,
where Ma1 . . .Mak and Mb1 . . .Mbk are parent products present in Pg.
This corresponds thus to mixing operations between two elements. The
number of products produced by this crossover is such that the total
population still has a size of S.

Random mutation

A mutation operation is applied on the new population Pg+1: each ele-
ment has a given probability µ to be mutated. If this is the case, then
some matrices in the product are replaced by matrices randomly chosen
in Σ. The number of modified positions can be fixed but it can also de-
pend on the value of K, e.g., if we choose to modify x% of the positions.
In our simulations, the following values have been used: µ = 0.3, x = 20.

Stopping criterion

If there is no improvement on the lower bound during T1 generations,
then the maximum allowed length K is increased. Indeed, this could
mean that the lower bound is optimal, but also that the optimal product

140 The joint spectral radius

has a length that is larger than the current value of K. If the best lower
bound continues to stall and the total number of generations reaches
another specified threshold T2 > T1, then the algorithm terminates and
returns the best lower bound found.

Comments

To summarize, the algorithm considers a set of S products of length
at most K, with K slowly increasing during the computation. New
candidates are generated by heuristically combining existing products
according to their performance. The current lower bound is updated
with each new product and the algorithm terminates if there is no im-
provement during several iterations. The generation of new candidates
is mainly done by the crossover steps, and some random perturbation
may be applied at each generation to ensure an exploration of the search
space.

Note that during this process, a significant amount of time is spent
building products of matrices and evaluating their spectral radii. De-
pending on the size of the matrices, it may sometimes be useful to store
these intermediate results and retrieve them instead of rebuilding the
products from scratch. This cache can be built at the initialization step
when all products of matrices of length at most κ are built.

One particular characteristic of the algorithm is the number of pa-
rameters. This is a priori a disadvantage as it is difficult to find the
optimal values for these parameters, but it can also be seen as an advan-
tage as this tuning allows us to choose between a very low computation
time, a large exploration of the search space, or some trade-off between
time and quality of the bound. The most important parameters are S,
the size of the population, and (T1, T2), the stalling thresholds. Indeed,
increasing the size of the population leads to a better exploration of the
search space, with a roughly linear increase of the computation time.

Independently, the stalling thresholds determine the duration of this
exploration. One should avoid a threshold T1 that is too low as the
breeding process may not have enough time to reach a candidate in the
neighborhood of an optimal product, while a very high value is useless
if the length of the shortest optimal product is higher than the current
maximum length K. At the same time, T2 should be large enough,

5.5. Experimental analysis 141

relatively to T1, in order to allow several increases of K while stalling.
A smaller value produces a faster but of course less reliable algorithm.

The main drawback of this algorithm is obviously the absence of
guarantee on the quality of the bound. However, the product associated
to this bound can be used as candidate product in other geometric algo-
rithms described in Section 5.3. Indeed, as previously mentioned, there
exist several methods able to derive upper and lower bounds on the joint
spectral radius by approximating an extremal norm, but that require a
good starting point, i.e., a potentially optimal product. If this product
is indeed optimal then both bounds converge to the value of the joint
spectral radius; if it is suboptimal then this can be detected and a better
product is produced and used as a new starting point. These methods
are thus well-suited as a post-processing step to our algorithm as their it-
erations typically have a much higher computational cost, and one wants
to avoid having to reset the algorithm with a new starting point a large
number of times. Another possibility is to compute a small number of
iterations of Gripenberg’s algorithm to obtain rough upper bounds on
the joint spectral radius if a geometric approach is too expensive.

5.5 Experimental analysis

In practice, the performance of all the methods that we have described in
Section 5.3 varies widely. A branch-and-bound method such as Gripen-
berg’s algorithm provides an interval containing the value of the joint
spectral radius, but the computation time becomes prohibitive when a
small interval is desired due to the growth of the number of products
to consider. The same thing can be said about the pruning algorithm,
when the matrices are nonnegative. Optimization methods based on the
ellipsoidal norm or the sum-of-squares approximations mainly give an
upper bound, and even if they may find the exact value in some cases,
the size of the semidefinite optimization problem becomes huge when
one tries to lift the matrices to improve the bounds in Proposition 5.7
or to increase the degree d in Proposition 5.9. The computation time in-
creases rapidly and numerical problems may become a significant issue.
Geometric algorithms such as the LR-procedure or Protasov’s method
require the manipulation of geometric objects. The accuracy of the re-
sults may thus be significantly influenced by numerical issues such as
discretization errors.

142 The joint spectral radius

Problem size n = 2 n = 4 n = 8

|Σ| = 2 100 sets 100 sets —
|Σ| = 3 100 sets 100 sets —
|Σ| = 4 100 sets 100 sets 100 sets
|Σ| = 8 — — 100 sets

Table 5.1: Characteristics of the randomly generated sets of matrices.
Each instance corresponds to a set Σ of n×n matrices whose entries have
been randomly chosen between −5 and 5 using a uniform distribution.

5.5.1 Details about the test sets

The different methods presented in the previous section have been tested
on a large number of sets of matrices. Most examples are randomly
generated matrices but the test set also includes instances obtained from
applications such as the computation of the capacity of codes subject
to forbidden difference patterns [MOS01]. Indeed, the computation of a
capacity may involve very large sets of matrices and/or high-dimensional
matrices. More information about the random generation may be found
in Table 5.1.

In the case of 2× 2 and 4× 4 matrices, an optimal periodic product
reaching the exact value of the joint spectral radius has been found for
every test case. As the computational cost increases with the size of the
matrices, obtaining the same result for every 8× 8 matrix in the test set
was not possible due to a high computational cost. Note that all these
results have been obtained using either the JSR Toolbox (more details
in Section 5.5.3), or our genetic algorithm, combined with a certification
algorithm as post-processing step.

The exact value of the joint spectral radius allows us to compute the
actual approximation errors for the different algorithms. The minimal
period associated to the different optimal products for a given set Σ
may be considered a rough measure of the difficulty of the problem.
In Table 5.2, the different sets of matrices are classified according to
their minimal period. Note that even with randomly generated matrices,
the test set contains nontrivial instances, e.g., several sets of two 2 × 2
matrices with an optimal product whose length is more than 20. The
smallest minimal period is 1 and the largest is 32.

5.5. Experimental analysis 143

Minimal period
Problem size [1; 2] [3; 5] [6; 9] [10; 19] 20+

n
=

2 |Σ| = 2 90% 5% 2% 1% 2%
|Σ| = 3 87% 11% 1% 1% —
|Σ| = 4 77% 20% 3% — —

n
=

4 |Σ| = 2 74% 17% 6% 3% —
|Σ| = 3 54% 25% 12% 6% 3%
|Σ| = 4 63% 20% 13% 3% 1%

Table 5.2: Classification of the different instances according to the min-
imal period associated to the optimal products.

5.5.2 Details about the implementations

The approximation methods presented in Section 5.3 have been imple-
mented using MATLAB R© 7.4.0.336 (R2007a) and the computations have
been performed on an Intel R© CoreTM 2 Quad Q9300 at 2.50 GHz with
3 GiB RAM, running Ubuntu Linux 10.04 LTS. The solver used for the
SDP problems is SeDuMi 1.3. For Gripenberg’s method, the implemen-
tation used in the tests is the one written by G. Gripenberg1. This
implementation allows the use of an accuracy threshold and/or a limit
on the number of evaluations of norms and eigenvalues.

Gripenberg’s algorithm

Since the computations are performed with limited numerical accuracy,
several issues may arise in practice. For example, as the upper bound in
Gripenberg’s method converges quite slowly in general, very long prod-
ucts may be required in order to reach the desired accuracy on the ap-
proximation of the joint spectral radius. However, if these products are
too long, the implementation may fail due to overflow problems. This
indeed happens for a small but non-negligible fraction of the test set,
especially with sets containing only two small matrices.

More precisely, given the same amount of computational resources,
this problem is expected to happen less often for larger sets of matri-
ces since the number of different products of a given length would be
much larger. Hence, the maximal reachable product length given the

1available at http://math.tkk.fi/~ggripenb/ggsoftwa.htm

http://math.tkk.fi/~ggripenb/ggsoftwa.htm

144 The joint spectral radius

same computational resources would be lower. This will be analyzed in
Section 5.6 (more precisely, see Table 5.4 in Section 5.6.3).

One possible way to avoid these overflow problems is to rescale the
matrices as often as required during the computation, in order to keep the
growth of the matrices under control. This is done in the implementation
of Gripenberg’s algorithm in the JSR Toolbox.

Norm optimization methods

Norm optimization methods have been implemented as direct trans-
lations of the SDP problems described in the literature into SeDuMi
format. The optimization problem is solved using SeDuMi, which is
based on primal-dual interior-point methods and is freely available at
http://sedumi.ie.lehigh.edu.

When doing an iteration of the bisection method, the description of
the SDP problem (in SeDuMi format) is updated instead of being re-
computed. Hence, there is only a single construction of the full problem,
which is done at the first iteration. Note that the tolerance threshold of
the SDP solver is left as a parameter.

Guglielmi et al.’s balanced polytope methods

For the balanced polytope algorithm, we mainly follow the description
given in [GZ09]: a first remark is that we do not really need to compute
Vk+1 = Σ̃Vk at each iteration: it is possible to prune vectors from the set.
This is done by constructing a so-called essential system of vertices of
Pk, which corresponds to a minimal set of vertices generating Pk via ab-
solutely convex combinations. The minimality of the set is not required,
but it lets us keep a smaller set of vectors during the computation.

The computation of this essential system of vertices can be done via
a convex hull operation in the real case (which is done by Qhull [BDH96]
with the function convhulln in MATLAB R©), or by solving a quadratic
real program in the complex case, by separating the real and imaginary
parts. Testing whether all vectors in Vk+1 are inside the polytope Pk can
be done by solving a linear program in the real case, or again a quadratic
real program in the complex case, as we already have an essential system
of vertices describing the polytope Pk. In our implementation, we are

http://sedumi.ie.lehigh.edu

5.5. Experimental analysis 145

using the MATLAB R© general functions linprog and quadprog but other
solvers can be used.

Kozyakin’s Barabanov norm construction methods

In general, geometric algorithms are subject to more implementation is-
sues since most geometric operations, e.g., the computation of convex
hulls, are done with limited precision. Describing objects such as poly-
topes or ellipsoids is possible, but representing the unit ball of an arbi-
trary norm may be problematic. In these cases, the geometric objects
are usually approximated using some kind of discretization.

This is the case in our implementation of the LR and MR-procedures.
This may lead to two practical problems. On the one hand, as the dimen-
sion of the space increases, one would obviously need an exponentially
increasing number of points, which is not always reasonable. On the
other hand, one has to choose the position of the sampling points. Hence,
while a uniform sampling of a circle (in a space of dimension 2) is easy
to perform, the general problem of uniformly sampling an n-dimensional
hypersphere is difficult.

A possible solution is to use a random sampling with uniform dis-
tribution on the hypersphere but then, the number of points has to be
increased even more in order to obtain good approximations with high
probability. In our implementation, we have chosen a uniform random
sampling by generating vectors using independent standard gaussian dis-
tributions for every component, then rescaling them in order to obtain
unit norm vectors [Knu97].

The different unit balls are then managed by keeping the values
of the norms of the discretization points. The effects of the matri-
ces acting on these discretization points are pre-computed before the
first iteration. Finding the nearest discretization point is done via the
MATLAB R© function dsearchn, which also uses Qhull. Of course in the
two-dimensional case, we can simply use a uniform sampling of the cir-
cle and the problem of finding the nearest discretization point becomes
trivial.

146 The joint spectral radius

5.5.3 The JSR Toolbox

The JSR Toolbox [VHJ+11] is a MATLAB R© toolbox that provides a
large set of methods for the approximation of the joint spectral radius,
but also includes several helper functions, for example for comparison or
analysis purposes, and several demonstration functions. One important
feature is that the toolbox offers a “default” algorithm that computes
bounds on the joint spectral radius by combining several approaches
presented in this article. This may be useful if one does not know which
algorithm is more suitable. The behavior of this algorithm may also be
parameterized as needed, for instance by setting a maximal computation
time or by fine-tuning a particular step in an algorithm.

The main steps of the default algorithm are the following:

• Try to transform the problem into a set of smaller independent
problems. This is possible when the matrices in the set Σ are
simultaneously block-triangularizable.

• If the matrices are nonnegative, start with the pruning algorithm
in order to get some bounds [β−, β+] on the joint spectral radius,
then compute the joint conic radius, using the positive orthant
as cone, and the ellipsoidal norm approximation using [β−, β+] as
initial bounds.

• If some matrices have negative entries, start with a variant of
Gripenberg’s algorithm in order to get some initial bounds and
a candidate product. This variant may rescale the matrices during
the computation in order to avoid overflows. After this first step,
compute the ellipsoidal norm approximation and, if needed, try to
certify optimality or to find a better candidate product using a
balanced complex polytope method or a conitope method, which
is a lifted polytope method.

The results corresponding to this algorithm will also be included in
the following sections for comparison purposes. The parameters will be
left at their default values, except for the allowed computation time per
instance.

5.6. Results 147

Problem size |Σ| = 2 |Σ| = 3 |Σ| = 4

n = 2 ∼ 99% ∼ 99% ∼ 100%
n = 4 ∼ 99% ∼ 97% ∼ 96%

Table 5.3: Percentage of the test instances where the genetic algorithm
was able to find an optimal product.

5.6 Results

In this section, we present numerical results obtained from our experi-
ments. We begin by looking at the behavior of our genetic algorithm.
After that, we proceed with the comparison between the different meth-
ods, including the default algorithm of the JSR Toolbox and the genetic
algorithm.

5.6.1 Accuracy of the genetic algorithm

As there is no a priori guarantee on the quality of the bounds obtained
by the algorithm, it is interesting to examine the practical quality of the
results. Table 5.3 shows the results for sets of 2×2 and 4×4 matrices. The
optimality may be certified when it is possible to obtain an upper bound
matching the lower bound provided by the genetic algorithm, or when the
candidate has been successfully certified as optimal in the post-processing
step with another algorithm. We recall that these geometric algorithms
may have an excessive computational cost in some cases, hence it is not
always practical to check the optimality of such a candidate, for example
in several 8× 8 instances.

The values of the parameters of the genetic algorithm used to obtain
the results shown in Table 5.3 are S = 150 for the population size, and
(T1, T2) = (15, 100) for the two thresholds. This choice has been done
so that the algorithm runs in about one or two seconds for each set
of matrices. Of course, increasing the values of the parameters would
lead to better results in general as more products would be tested, but
these results show that it is often possible to obtain an optimal product
in a small amount of time even for sets of four 4 × 4 matrices, and
the combination with geometric algorithms may be interesting as the
problem of choosing an initial product would be taken care of.

148 The joint spectral radius

5.6.2 Influence of the main parameters of the genetic al-
gorithm

Figure 5.1 shows how the performance of the algorithm varies when the
parameters are modified. Each point corresponds to the average result of
25 runs on a set of 600 instances (sizes 2×2 and 4×4 in Table 5.1), with
the same values for the three main parameters: S, the population size,
T1, the stalling threshold before increasing the maximum allowed product
length, and T2, the stalling threshold before aborting the algorithm.

Note that the computation time may sometimes decrease when the
population size increases. Indeed, even though each iteration is more
expensive, the total number of iterations may be smaller if an optimal
product is found faster. The performance might also slightly decrease
when the population size increases, but the difference is not significant
and may simply be due to the randomness of the method.

A first global observation is that the success rate is significantly high
even if the amount of allowed computation time is very small compared
to usual methods (less than one second per set of matrices in average
for the rightmost part of the figure). This is consistent with the main
objective of the algorithm: being able to provide good lower bounds in
a short amount of time. Even though these results have been averaged
over all sizes of sets and matrices in the test set, the worst success rate is
still at about 87%, which is reached for sets of four 4× 4 matrices, with
S = 10 and (T1, T2) = (5, 50). In this case and for this set of parameters,
the average computation time is less than 0.1 second per set of matrices.

When looking at the effects of the variation of the T1 parameter, it
appears that for sufficiently large population sizes, T1 ∈ {10, 15, 20} gives
roughly equivalent results. The value T1 = 5 seems to be sometimes
inadequate and gives results of lower quality. This is due to the fact
that the algorithm may require several iterations in order to find a good
combination of products, and extending the search space after only 5
stalling iterations may be too early.

Taking T2 = 100 instead of T2 = 50 decreases the failure rate by
about 1

3 while increasing the computation time by a factor of about
2, as expected. In fact, the choice for the values of S and T2 mainly
results from a compromise between computation time and performance,
depending on the needs. The combination used in the Section 5.6.1
(S = 150 and (T1, T2) = (15, 100)) gives an algorithm that is often
optimal while running in a reasonably short amount of time, at least on

5.6. Results 149

15 30 60 120 240 480
93

94

95

96

97

98

99

Computation time [s]

P
e
rf

o
rm

a
n
c
e
 [
%

]

Aggregated results for {2, 3, 4} matrices of size {2x2, 4x4}

(5, 50)

(5, 100)

(10, 50)

(10, 100)

(15, 50)

(15, 100)

(20, 50)

(20, 100)

(T
1
, T

2
)

Figure 5.1: Performance and computation time for different parameter
values of the genetic algorithm. The performance corresponds to the
average percentage of the test cases where the final bound returned by the
algorithm matches the value of the joint spectral radius. The computation
time corresponds to the average total amount of time required to process
the 600 sets of matrices and is represented using a logarithmic scale.
Each line represents the results obtained with one pair of values (T1, T2),
and the markers on each line are associated to the following population
sizes: 10, 15, 20, 30, 40, 50, 100, 150.

150 The joint spectral radius

 Brute−force (depth = 2, 3, 4, 5, 6, 7, 8, 10, 12)

Gripenberg (two−norm; max # evals = 100, 200, 500, ..., 50k, 100k)

Ellipsoidal (SDP solver tolerance = 1e−5, 1e−7, 1e−9)

Sum−of−squares (deg = 2, 4, 6; SDP solver tol. = 1e−5, 1e−7, 1e−9)

LR−procedure (λ = 0.3, 0.5; discr. points = 500, 1k, 2k, ..., 50k, 100k)

MR−procedure (arith. mean; discr. points = 500, 1k, 2k, ..., 50k, 100k)

JSR Toolbox (default params; time limit = 3s, 10s, 30s, 120s, 300s)

Genetic algorithm (threshold T2 = 100)

Genetic algorithm (threshold T2 = 50)

Figure 5.2: Legend associated to the tested methods. For the genetic
algorithm, the other parameters have been tested on the following ranges:
T1 ∈ {5, 10, 15, 20} and S ∈ {10, 15, 20, 30, 40, 50, 100, 150}. This legend
is related to Figures 5.3, 5.6 and 5.7.

this test set. For example, if the product found by the genetic algorithm
is to be used as an initial step of another method that tries to prove its
optimality, choosing a very large value for the population size may be
more adequate. Indeed, it may take a large amount of time to detect
the suboptimality of a candidate using the second method whereas the
genetic algorithm may find a better product in a shorter amount of time.

5.6.3 Comparison to the other algorithms

In order to compare the different methods, the performances of a chosen
subset of methods is shown in Figures 5.3, 5.6 and 5.7. All these figures
show the number of test cases where the algorithm was able to find a
lower bound (left column) or upper bound (right column) close enough
to the value of the joint spectral radius, and the average computation
time required to obtain a result for a single set of matrices with the
corresponding sizes. The common legend can be found in Figure 5.2.

The algorithms used for the comparison are the following. First, the
red squares correspond to a naive brute-force method, i.e., the evaluation
of all products of length at most t, with t ∈ {2, 3, 4, 5, 6, 7, 8, 10, 12},
each square corresponding to one value of t, in this order from the left

5.6. Results 151

to the right. In Figure 5.7, values with t > 8 are not displayed as the
computation time is then too large. The upper bounds are obtained
using (5.4) with the standard two-norm.

Green circles are associated to Gripenberg’s original branch-and-
bound algorithm, using the two-norm and a limitation on the number
of evaluations of norms and eigenvalues. The maximal number of eval-
uations is set to a value among {100, 200, 500, 1000, 2000, 5000, 10000,
20000, 50000, 100000}. More precisely, each set of matrices has been
tested with each one of these values. In the different figures, each green
circle is associated to one of these values. Hence, the left-most green
circle corresponds to the run with maximum 100 evaluations as it is the
fastest, the second one corresponds to 200 evaluations, etc.

The ellipsoidal norm and sum-of-squares approximations (with d ∈
{1, 2, 3}) are represented by cyan pentagrams and magenta plusses (‘+’
symbol), respectively. As these techniques involve solving a sequence
of semidefinite optimization problems, three tolerance values have been
tested for the SeDuMi part: 10−5, 10−7, 10−9. Indeed, this may influence
the computation time and the result, for example if numerical problems
are encountered. The initial bounds associated to the bisection method
are obtained by taking the maximal spectral radius and the maximal
two-norm among all matrices in the set.

The points associated to LR and MR-procedures are displayed using
black and gray triangles. The parameters λ± for the Linear relaxation
iteration have been chosen as λ+ = λ− ∈ {0.3, 0.5}. For the Max-
relaxation iteration, the chosen averaging function correspond to the
arithmetic mean µ(x, y) = x+y

2 . Random uniform sampling is used ex-
cept for 2×2 matrices, where the natural deteministic uniform sampling
of the circle is used. The algorithms have been tested with all the fol-
lowing values for the number of discretization points: 500, 1000, 2000,
5000, 10000, 25000, 50000, 100000. Moreover, as the result may vary due
to the random component, each run has been repeated 25 times. The
corresponding results have been averaged over these 25 repetitions.

The results obtained by the JSR Toolbox are shown using orange
hexagrams. All parameters have been kept at their default values, except
for the maximal allowed computation time. This limit has been set to 3,
10, 30, 120 and 300 seconds, so that bounds are obtained in a reasonable
time.

Finally, the genetic algorithm has been run with the following com-

152 The joint spectral radius

binations of parameters: the values used for the population size are 10,
15, 20, 30, 40, 50, 100 and 150, and the values used for the T1 threshold
are 5, 10, 15, 20. The corresponding points in the figures are the blue
crosses and cyan plusses.

Guglielmi’s balanced polytope methods are not represented in these
figures. Indeed, they correspond more to certification algorithms used
to check whether a given candidate product is optimal. This means that
their performance would heavily depend on the choice of this starting
point, especially when we consider the amount of computation time.
Nevertheless, it should be noted that such certification algorithms are
implicitely used by the JSR Toolbox (see Section 5.5.3). For example,
in our experiments, they allowed us to find the exact value of the joint
spectral radius by producing optimality certificates for given products.

Sets containing two 2× 2 random matrices

A first comparison of the behavior of the different methods can be seen in
Figure 5.3. This corresponds to a set of low-dimensional test cases as we
have n = 2 and |Σ| = 2, which can be considered “easy”. Indeed, a simple
brute-force method is able to quickly reach an optimal lower bound in
nearly all cases, which is consistent with Table 5.2. As expected, the
upper bounds converge very slowly. Even with products of length 12,
the error is higher than 10−2 more than 40% of the time and an accuracy
of 10−6 is never reached. One might hope that this can be improved by
using a branch-and-bound technique, such as Gripenberg’s algorithm.
Indeed, the figure shows that better upper bounds are obtained, at least
when the number of evaluations is low. There is no clear improvement
for lower bounds as the brute-force approach was already nearly optimal.

When the number of allowed evaluations is increased, the results show
a significant drop in performance, which can be explained by overflow
problems. Indeed, since the problem size is very small, a large number
of evaluations corresponds to the evaluation of very long products, and
the algorithm fails as it is unable to manage the corresponding matri-
ces. Hence, increasing the size of the products may not be a good idea
in practice in this case as this problem occured for a large number of
instances. Fortunately, the issue is expected to happen much less often
with instances of larger sizes (see Figures 5.6 and 5.7). Nevertheless, in
order to avoid these numerical issues with small sets of matrices, one

5.6. Results 153

10
−4

10
−2

10
0

10
2

10
4

0

20

40

60

80

100

Computation time [s]

P
e
rf

o
rm

a
n
c
e
 [
%

]

(a) Lower bounds, tolerance of 10−2

10
−4

10
−2

10
0

10
2

10
4

0

20

40

60

80

100

Computation time [s]

P
e
rf

o
rm

a
n
c
e
 [
%

]

(b) Lower bounds, tolerance of 10−6

Figure 5.3: Results on small test instances (sets of two 2 × 2 random
matrices). The performance of an algorithm corresponds to the number
of test cases where it was able to find a bound that is within a given
tolerance of the exact value of the joint spectral radius. The computation
time corresponds to the average time required by the algorithm to produce
a result and is represented using a logarithmic scale.

154 The joint spectral radius

10
−4

10
−2

10
0

10
2

10
4

0

20

40

60

80

100

Computation time [s]

P
e
rf

o
rm

a
n
c
e
 [
%

]

(c) Upper bounds, tolerance of 10−2

10
−4

10
−2

10
0

10
2

10
4

0

20

40

60

80

100

Computation time [s]

P
e
rf

o
rm

a
n
c
e
 [
%

]

(d) Upper bounds, tolerance of 10−6

Figure 5.3: (continued).

5.6. Results 155

Max number of evaluations 500 1000 2000 5000 50000
Sets of two 2× 2 matrices — 34 44 48 50
Sets of four 2× 2 matrices — — 29 49 53
Sets of four 4× 4 matrices — 4 8 11 12
Sets of four 8× 8 matrices — — — 1 1

Table 5.4: Number of instances of the given sizes where Gripenberg’s orig-
inal algorithm had overflow problems, depending on the maximal number
of evaluations. Each of the four categories of test cases contains 100
instances.

possible solution is to modify the algorithm by using successive rescal-
ings of the matrices so that the products remain tractable. This is done
in the branch-and-bound exploration in the first step of the JSR Tool-
box. Table 5.4 shows the number of instances where the original version
of Gripenberg’s algorithm had overflow problems, for several test sets.
Note that in this table, there is no reduction in the number of overflows
between sets of two 2 × 2 matrices and sets of four 2 × 2 matrices, for
5000 and 50000 evaluations. This can be explained by the fact that in
these cases, 5000 evaluations were already enough to produce products
that are too long in most affected instances. There is still a reduction of
the number of overflows before reaching this number of evaluations.

Optimization methods such as the ellipsoidal norm or the sum-of-
squares approximations are able to obtain a much better accuracy, but
only for a subset of all test cases. Indeed, these algorithms may directly
reach the exact value of the joint spectral radius in a non-negligible num-
ber of cases, in contrast to product enumeration algorithms. This can
be seen in the bottom right part of the figure as they are indeed the only
methods (excluding the JSR Toolbox) that have been able to obtain up-
per bounds within a tolerance of 10−6. Note also that even though the
sum-of-squares approximation is supposed to give better bounds than
the simple ellipsoidal norm approximation, this is not always the case
in practice because of the fact that increasing the degree of the polyno-
mials also increases the chances for the optimization solver to run into
numerical problems.

Comparing the results for the two tolerance values also shows that
the LR and MR-procedures are able to obtain upper and lower bounds
most of the time, but only with a limited accuracy due to discretization

156 The joint spectral radius

errors. Indeed, the large number of points required to reach a tolerance
of 10−6 would imply a correspondingly large computation time. In order
to avoid this drawback, algorithms based on successive approximations
of (unit balls of) norms would have to restrict themselves to subsets of
norms, e.g., polytope norms.

The JSR Toolbox seems to be able to reach the exact value in all
cases for this test set. This is due to the fact that most sets of matrices
have a short optimal product that can be found by the branch-and-
bound method. Although the upper bounds obtained by this first step
are still weak, the polytope or conitope algorithm directly tries to prove
the optimality of the candidate. This explains the performance in the
upper bounds subfigures. Note that in these simple cases, the total
computation time is a bit higher than the other algorithms with a high
performance rating since with the standard parameters, three different
methods are launched successively.

Finally, the genetic algorithm does its job well: very good lower
bounds are indeed obtained in a short amount of time. In fact, with this
first set of instances, the bounds obtained by the genetic algorithm are
all optimal or close to optimal, even though there was no guarantee on
the quality of the solution.

Figure 5.4 shows the quality of the upper bounds found by the algo-
rithms when considering different tolerance values. For each algorithm,
one representative has been selected. These representatives have been
chosen so that their computation times are roughly the same. More pre-
cisely, the computation times are all around 7 seconds in this case. This
allows most algorithms to be close to their best performance (see Fig-
ure 5.3). The results shown in Figure 5.4 support the observations given
in the previous paragraphs. This is expected as Figure 5.4 is simply
another view of what happens between the two subfigures in the right
column of Figure 5.3.

Note that for the lower bounds, Figure 5.3 already shows that ex-
cept for Kozyakin’s geometric algorithms, there is little to no difference
in the performance ratings when comparing the two tolerance values.
Therefore, a performance profile such as the one in Figure 5.4 would not
give much more information in this case: an optimal product has been
reached.

5.6. Results 157

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

0

20

40

60

80

100

Relative error

P
e
rf

o
rm

a
n
c
e
 [
%

]

Figure 5.4: Performance of upper bounds found by the different algo-
rithms on sets of two 2× 2 random matrices, with respect to the relative
error tolerance. Parameters have been chosen such that the computa-
tion times are around 7 seconds. The colors correspond to the legend in
Figure 5.2: solid lines are associated to the JSR Toolbox (orange, top),
Gripenberg’s algorithm (green, bottom) and the naive brute-force method
(red, middle); dash-dot lines are the sum-of-squares (magenta, top) and
the ellipsoidal norm (cyan, bottom) approximations; dashed lines are the
LR-procedure (black) and MR-procedure (gray).

158 The joint spectral radius

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

0

20

40

60

80

100

Relative error

P
e
rf

o
rm

a
n
c
e
 [
%

]

Figure 5.5: Performance of the different algorithms on sets of four 4× 4
random matrices, with respect to the relative error tolerance. Parameters
have been chosen such that the computation times are around 50 seconds.
The colors follow the legend in Figure 5.2: solid lines are, from the left
to the right, the JSR Toolbox (orange), Gripenberg’s algorithm (green)
and the naive brute-force method (red); dash-dot lines correspond to the
sum-of-squares (magenta, top) and the ellipsoidal norm (cyan, bottom)
approaches; dashed lines are the LR- (black) and MR-procedures (gray).

Sets containing four 4× 4 random matrices

Figure 5.6 summarizes the results for a set of larger problems, which
allows us to observe the influence of the size of the problem on the
results. The counterpart of Figure 5.4 is also presented as Figure 5.5,
with an average computation time of about 50 seconds.

As expected, the general performance tends to be weaker, while the
computation time is higher. Still, several interesting observations can be
made. First, the improvements of Gripenberg’s algorithm with respect to
a naive brute-force approach begin to appear, at least when there are no
overflow issues. The fact that its performance increases when comparing
Figures 5.4 and 5.5 is due to the fact that overflows only happened in a
small number of instances in this case.

The upper bounds are still quite weak, but this also holds for most
of the other algorithms: for example, the performance of the ellipsoidal

5.6. Results 159

10
−4

10
−2

10
0

10
2

10
4

0

20

40

60

80

100

Computation time [s]

P
e
rf

o
rm

a
n
c
e
 [
%

]

(a) Lower bounds, tolerance of 10−2

10
−4

10
−2

10
0

10
2

10
4

0

20

40

60

80

100

Computation time [s]

P
e
rf

o
rm

a
n
c
e
 [
%

]

(b) Lower bounds, tolerance of 10−6

Figure 5.6: Results for sets of four 4 × 4 random matrices. The perfor-
mance measure is the same as in Figure 5.3.

160 The joint spectral radius

10
−4

10
−2

10
0

10
2

10
4

0

20

40

60

80

100

Computation time [s]

P
e
rf

o
rm

a
n
c
e
 [
%

]

(c) Upper bounds, tolerance of 10−2

10
−4

10
−2

10
0

10
2

10
4

0

20

40

60

80

100

Computation time [s]

P
e
rf

o
rm

a
n
c
e
 [
%

]

(d) Upper bounds, tolerance of 10−6

Figure 5.6: (continued).

5.6. Results 161

norm approximation method is also dropping by a large factor compared
to the 2 × 2 case. In fact, the only method that is still able to obtain
tight upper bounds around the exact value with nearly all instances is the
algorithm of the JSR Toolbox. Note that the success rate shown in the
figure is a bit less than 100%. In fact, it is possible to reach a performance
rating of exactly 100%, by increasing a little bit the threshold on the
computation time. Indeed, optimal products for all 600 test sets with
n ∈ {2, 4} are known thanks to results obtained with this algorithm.

The implementations of the LR and MR-procedures are also close to
their limits as a large number of discretization points are required even
for a tolerance of 10−2. Of course, the threshold at 10−6 is unreachable
in a reasonable time. Note also that in practice, for an arbitrary set of
matrices, it is even possible to obtain an interval that does not contain
the actual value of the joint spectral radius due to discretization errors
and thus depending on the quality of the discretization. As we need an
exponentially growing number of points when the size of the problem
increases, it is clear that this approach does really not scale well to high-
dimensional problems.

This last remark is also valid for optimization-based methods. In-
deed, Figure 5.6 shows that the ellipsoidal norm approximation and thus
the sum-of-squares approximation of degree 2 are now inadequate in most
of the test cases and even increasing the degree of the polynomial does
not always yield much better results in the general case.

If we concentrate on the lower bounds, Figure 5.6 also shows that
both the genetic algorithm and the combined algorithm of the JSR Tool-
box are able to find an optimal product in nearly all cases. Of course,
the genetic algorithm is faster as expected, but the JSR Toolbox is able
to provide a certificate of the optimality of the products. As the di-
mension of the sets of matrices is still reasonably small in this case, the
time required for this certification is rather low, which allows a perfor-
mance of about 95% or more. Note that in the same amount of time, a
naive brute-force approach would have given lower bounds of comparable
quality, but without guarantees.

Sets containing eight 8× 8 random matrices

In Figure 5.7, a partial comparison between four algorithms is shown.
The other algorithms are not represented as the size of the problem is

162 The joint spectral radius

now too large to be able to obtain relevant results in reasonable time.
Moreover, in some cases, operations such as the computation of a convex
hull may become problematic due to the high dimension of the problem.
In these cases, allowing more computation time does not always improve
the situation. The performance is measured with respect to the best
known bound because the exact value of the joint spectral radius is not
available in general. Thus, a performance of 100% does not mean that
the exact value is reached in all cases, but only that the other algorithms
have not found better bounds.

Due to the large number of possible products for a set of eight ma-
trices, Gripenberg’s algorithm does not run into overflow problems and
is clearly ahead of the other two methods. In this case, the JSR Toolbox
did not find very good bounds. This is due to the fact that the first
step is only a limited version of a variant of Gripenberg’s algorithm, i.e.,
only short products are tested. The main part of the algorithm is the
conitope step, that tries to certify the optimality of the candidate found
in the first step if it is possible, while the candidate is replaced if the
algorithm finds a better one. This main step is thus time-consuming,
and the maximum time limit of 5 minutes is generally too low for sets of
eight 8× 8 matrices.

Indeed, the typical behavior of the performance of this algorithm cor-
responds to a lower threshold where only “particularly easy” instances
are completely solved, a transition region where the performance rat-
ing improves rapidly, and an upper threshold associated to “particularly
hard” instances. The three situations shown in Figures 5.3, 5.6 and 5.7
correspond to points in the upper threshold, the transition region, and
the lower threshold, respectively. Usually, the algorithm of the JSR Tool-
box gives much more accurate results than Gripenberg’s method start-
ing from this transition region, especially when we consider the upper
bounds. This is even more apparent in Figures 5.4 and 5.5.

Results obtained by the genetic algorithm are still of better qual-
ity and/or obtained faster than with other algorithms. Indeed, only
Gripenberg’s algorithm was able to find better products but a much
larger amount of computation time was needed. This supports the fact
that our approach may give bounds of good quality in a short amount
of time, even for larger sizes of problems. Although the products are
not necessarily optimal, they can still be useful as initial points for other
algorithms, such as the conitope algorithm used by the JSR Toolbox.

5.6. Results 163

10
−4

10
−2

10
0

10
2

10
4

0

20

40

60

80

100

Computation time [s]

P
e
rf

o
rm

a
n
c
e
 [
%

]

(a) Lower bounds, tolerance of 10−2

10
−4

10
−2

10
0

10
2

10
4

0

20

40

60

80

100

Computation time [s]

P
e
rf

o
rm

a
n
c
e
 [
%

]

(b) Upper bounds, tolerance of 10−2

Figure 5.7: Results for large sets of eight 8 × 8 random matrices. The
exact value of the joint spectral radius is not known for all cases. The
performance is therefore measured with respect to the best lower or upper
bound available.

164 The joint spectral radius

10
−2

10
0

10
2

10
4

1.6

1.63

1.65

1.67

1.69

1.71

1.75
1.8

2

Computation time [s]

B
o

u
n

d
s
 o

n
 ρ

(Σ
)

Best combined bounds : [1.673772, 1.786302]

Figure 5.8: Evolution of the bounds on the joint spectral radius ρ(Σ) for
the set associated to the difference pattern +0−00. The values of the
parameters used for the genetic algorithm are (T1, T2) = (15, 100), with
a population size growing from S = 10 to S = 3250.

Capacity of codes avoiding difference patterns

The joint spectral radius appears in several applications. One of them
is the computation of the capacity of codes avoiding difference patterns.
Let us consider the binary alphabet B = {0, 1}. Let x, y ∈ B, then the
difference alphabet D is defined to be the possible values of x−y. Hence,
D = {−1, 0,+1}, which is usually written as D = {−, 0,+}, omitting
the character “1”.

A binary code of length n is defined to be a subset of Bn, i.e., a set
of words of length n containing zeroes and ones. Let p be a difference
pattern of length k, i.e., an element of Dk. A code C is said to avoid
the difference pattern p if for all x, y ∈ C, x − y does not contain p
as a substring. For example, the code {11010, 11100, 01001} does not
avoid the difference pattern +00+ since 11010−01001 = +00+−, which
contains +00+ as a substring.

Given a difference pattern p and a length n, we are interested in the
maximal size δn(p) of a binary code of length n avoiding p. The capacity

5.6. Results 165

cap(p) is then defined as follows:

cap(p) = log2 lim
n→∞

δn(p)
1
n .

In [MOS01], the authors show that the value 2cap(p) can be computed as
the joint spectral radius of a set Σ of binary matrices. In particular, this
set contains 22z matrices of size 2k−1 × 2k−1, where z is the number of
zeroes in p. In fact, more complex sets Σ can be obtained by considering
codes that avoid a given set of difference patterns instead of a single one.

Figure 5.8 shows the behavior of three algorithms on a set Σ of 256
matrices with size 16 × 16 and with binary entries, associated with the
difference pattern p = +0−00.

Due to the large size of the problem, only three algorithms have been
tested. The green lines correspond to the upper and lower bounds ob-
tained by Gripenberg’s branch-and-bound algorithm with respect to the
computation time. The red crosses correspond to the bounds obtained
by evaluating all products of length one and two. Going to depth 3 is
already too expensive: there are more than 16 million products of length
3. The pruning algorithm could also be used with this set of matrices as
all matrices have nonnegative entries, but it does not give better results.

The third algorithm is our genetic algorithm, which only computes
lower bounds. The two external lines in blue corresponds to the best and
worst results obtained when running the algorithm 50 times for one set
of parameters, whereas the average result is represented in cyan. The
evolution is not monotone because of the randomness inherent to our
method: increasing the population size tends to give better results but
this is not guaranteed for all runs. It is interesting to remark that the
default algorithm of the JSR Toolbox is unable to handle this set of
matrices; one has to modify the different parameters in order to obtain
bounds in a reasonable amount of time.

By comparing the bounds obtained by Gripenberg’s algorithm and
the genetic algorithm, one can see that the latter has indeed been able
to obtain good lower bounds in a short amount of time, despite the size
of the problem. Indeed, the computation time of the genetic algorithm
is much lower and the results are never worse than the results obtained
with the branch-and-bound algorithm. Moreover, the genetic algorithm
has been able to find a better bound in most of the cases.

As the best lower bound seems to stabilize at about 1.6738 with a
product of length 6, one could conjecture that this is the exact value of

166 The joint spectral radius

the joint spectral radius. Unfortunately, none of the algorithms was able
to prove this in a reasonable amount of time.

Tables 5.5 and 5.6 show the results obtained by both Gripenberg’s
algorithm and our method, on several sets related to the capacity of
codes. We first present results for all difference patterns of length at
most 4, then several problems with larger sizes.

Note that several rows have been merged in these tables. For exam-
ple, it can be proved that cap(0+) = cap(0−) = cap(+0) = cap(−0).
Hence, we only present the results for the pattern 0+ in the tables. This
is due to the following properties:

• Reversing the string does not change the capacity:

cap(pkpk−1 . . . p1) = cap(p1p2 . . . pk)

for all difference patterns p1p2 . . . pk ∈ Dk. For instance, we have
cap(0 + +0−) = cap(−0 + +0).

• Taking the complement of the string does not change the capacity:

cap(p1p2 . . . pk) = cap(p1p2 . . . pk),

where + = −, 0 = 0 and − = +. For instance, we have cap(0+
+0−) = cap(0−−0+).

• Replacing the symbols at odd positions by their complements does
not change the capacity. For instance, we have cap(+++++) =
cap(−+−+−).

• Replacing the symbols at even positions by their complements does
not change the capacity. For instance, we have cap(+++++) =
cap(+−+−+).

These results confirm the behavior observed in Figure 5.8. Our ge-
netic algorithm was able to find a lower bound at least as good as the
result obtained by Gripenberg’s algorithm and is still able to produce
results with large size problems.

5.6. Results 167

Difference |Σ| Size of the Genetic Gripenberg’s
pattern matrices algorithm algorithm

0+ 4 2× 2 1.000 6 ρ 1.000 6 ρ 6 1.040
++ 2 2× 2 1.618 6 ρ 1.618 6 ρ 6 1.618

00+ 16 4× 4 1.000 6 ρ 1.000 6 ρ 6 1.190
0+0 16 4× 4 1.414 6 ρ 1.414 6 ρ 6 1.414

0++ 4 4× 4 1.618 6 ρ 1.618 6 ρ 6 1.622
+0+ 4 4× 4 1.618 6 ρ 1.618 6 ρ 6 1.618
+0− 4 4× 4 1.618 6 ρ 1.618 6 ρ 6 1.618

+++ 2 4× 4 1.839 6 ρ 1.839 6 ρ 6 1.839
++− 2 4× 4 1.755 6 ρ 1.755 6 ρ 6 1.755

000+ 256 8× 8 1.000 6 ρ 1.000 6 ρ 6 1.414
00+0 256 8× 8 1.414 6 ρ 1.356 6 ρ 6 1.606

00++ 16 8× 8 1.618 6 ρ 1.618 6 ρ 6 1.668
0+0+ 16 8× 8 1.658 6 ρ 1.658 6 ρ 6 1.675
0+0− 16 8× 8 1.658 6 ρ 1.658 6 ρ 6 1.675
0++0 16 8× 8 1.735 6 ρ 1.735 6 ρ 6 1.736
+00+ 16 8× 8 1.618 6 ρ 1.618 6 ρ 6 1.618

0+++ 4 8× 8 1.839 6 ρ 1.839 6 ρ 6 1.840
0++− 4 8× 8 1.755 6 ρ 1.755 6 ρ 6 1.767
+0++ 4 8× 8 1.839 6 ρ 1.839 6 ρ 6 1.839
+0−+ 4 8× 8 1.797 6 ρ 1.797 6 ρ 6 1.800

++++ 2 8× 8 1.928 6 ρ 1.928 6 ρ 6 1.928
+++− 2 8× 8 1.867 6 ρ 1.867 6 ρ 6 1.871
++−− 2 8× 8 1.891 6 ρ 1.891 6 ρ 6 1.891

Table 5.5: Results obtained with sets of matrices associated to difference
patterns of lengths 2, 3 and 4. All non-equivalent patterns are represented
in the table. The computation time has been limited to about 30 seconds.
The parameters for the genetic algorithm are (T1, T2) = (15, 100), with
a maximal population size of S = 3000.

168 The joint spectral radius

Difference |Σ| Size of the Genetic Gripenberg’s
pattern matrices algorithm algorithm
0000+ 65536 16× 16 1.000 6 ρ Timeout
000+0 65536 16× 16 1.414 6 ρ Timeout
00+00 65536 16× 16 1.498 6 ρ Timeout
000++ 256 16× 16 1.618 6 ρ 1.611 6 ρ 6 1.871
00++0 256 16× 16 1.741 6 ρ 1.722 6 ρ 6 2.000
00+0+ 256 16× 16 1.674 6 ρ 1.666 6 ρ 6 2.000
00+0− 256 16× 16 1.674 6 ρ 1.666 6 ρ 6 2.000
0+0+0 256 16× 16 1.717 6 ρ 1.705 6 ρ 6 2.000
0+0−0 256 16× 16 1.709 6 ρ 1.705 6 ρ 6 2.000

0000++ 65536 32× 32 1.618 6 ρ Timeout
000++0 65536 32× 32 1.759 6 ρ Timeout
000+0+ 65536 32× 32 1.674 6 ρ Timeout
000+0− 65536 32× 32 1.666 6 ρ Timeout
00++00 65536 32× 32 1.762 6 ρ Timeout
00+00+ 65536 32× 32 1.685 6 ρ Timeout
00+0+0 65536 32× 32 1.717 6 ρ Timeout
00+0−0 65536 32× 32 1.705 6 ρ Timeout
0+00+0 65536 32× 32 1.705 6 ρ Timeout

Table 5.6: Results obtained with sets of matrices associated to several dif-
ference patterns of lengths 5 and 6 The computation time has been limited
to about 60 seconds (length 5) or 300 seconds (length 6). The parame-
ters for the genetic algorithm are (T1, T2) = (15, 100), with a maximal
population size of S = 3000. In several cases (“timeout”), Gripenberg’s
algorithm was unable to return any bounds, even after a much longer
period of time, e.g., more than 20 minutes for the pattern 0000+.

5.7. Conclusion 169

5.7 Conclusion

The approximation of the joint spectral radius is a difficult computational
problem. Different methods had previously been proposed to approxi-
mate the joint spectral radius, but most of them have only been studied
from a theoretical point of view. In practice, most of them require a
large amount of computation time to obtain an accurate approximation.

In this chapter, a large set of approximation methods for the joint
spectral radius has been presented. These algorithms have been imple-
mented in MATLAB R© and released as part of the JSR Toolbox, a project
available to the public via MATLAB R© Central. These implementations
can be used to compare the performance of the different algorithms on
a set of benchmarks. A default algorithm combining several approaches
can also be found in the toolbox, which may be useful if one wants to
approximate the joint spectral radius of a set without having to decide
between the different available algorithms.

We also propose a new heuristic method that computes lower bounds
on the joint spectral radius at a low computational cost. This is done
using a genetic algorithm that tries to investigate promising products
of matrices. Although there is no a priori guarantee on the quality of
the bounds, numerical experiments done on a large number of sets of
matrices show that this approach may give good bounds in practice.
Furthermore, it is able to handle problems of large size, whereas other
methods simply fail or are unable to terminate in a reasonable amount
of time. The products associated to the lower bounds may be used as
an initial point in several other algorithms, e.g., methods that check if
a given product is optimal and return upper and lower bounds on the
joint spectral radius.

The results in Section 5.6 show that although all the usual methods
are able to derive bounds that theoretically converge to the exact value
of the joint spectral radius, this is often not observed in practice due to
limitations such as numerical problems, sometimes even if a large com-
putation time is allowed. Using a combination of several methods seems
to be a good approach. For example, one can use a branch-and-bound
technique or our genetic algorithm to quickly find a good lower bound,
and then use the corresponding product as starting point of a slower ge-
ometric algorithm. Indeed, the numerical experiments also confirm that
the exact value of the joint spectral radius is often reached by a finite
product, and that most of the time, such a finite product can be found

170 The joint spectral radius

in a reasonable amount of time. Of course, the main difficulty is to cer-
tify that this product is indeed optimal, but this shows the difference in
difficulty between deriving good lower and upper bounds.

The technique presented in this article can also become the basis for
further work. A better integration of the optional post-processing step
can be done, e.g., if the second algorithm detects that the candidate
product is not optimal, it may be wise to insert the new candidate in the
population and restart the genetic algorithm. One can also consider in-
vestigating other spectral quantities, such as the joint spectral subradius
which represents the minimum (instead of the maximum) asymptotic
growth rate associated to the set of matrices.

CHAPTER 6
Conclusion

Optimization is a key aspect in many domains. Indeed, solving a prob-
lem typically involves finding a solution that is the best one with respect
to some criteria. However, despite all the progress in algorithms, com-
puting technology and hardware, finding the optimal solution may be
computationally intractable. Indeed, some problems may be time crit-
ical while we are expected to handle larger and larger problem sizes.
Other problems may be inherently difficult in the sense of complexity
theory. In practical applications, one may be satisfied with suboptimal
solutions, provided that they are “good enough”. For example, it may
happen that the considered problem possesses a large number of very
good solutions that are close to optimality. Using such nearly optimal
solutions may be sufficient in some cases.

Heuristic strategies consist in algorithmic approaches that aim at
finding a good solution, even if it is not optimal. As the framework is
very general, it can be — and has successfully been — applied to many
difficult problems. Of course, for the same reason, heuristics can be
adapted in a suitable manner to the particular problem we are interested
in if we want to improve the performance. These methods present two
main features: on the one hand, algorithms such as simulated annealing,
tabu search or simple greedy approaches are designed to improve a single
candidate solution. On the other hand, population-based methods such
as genetic algorithms or particle swarm optimization algorithms use a
large set of individuals that exchange information in order to produce
new candidate solutions.

Different heuristics may also be combined or hybridized in order to
improve their performance. For example, a population-based algorithm
can be used for the exploration of the search space while a local im-
provement method is applied on the population elements in order to find
locally optimal solutions in the neighborhood of the current candidates.

172 Conclusion

This is the strategy we have taken in this thesis. Indeed, we investigate
the performance of combinations of heuristics for three specific applica-
tions belonging to different domains.

In Chapter 3, we have studied the problem of the minimum-volume
arbitrarily oriented bounding box in the three-dimensional real space
where one wants to find the smallest rectangular parallelepiped enclosing
a set of points. Even though the exact optimal solution can be obtained
in O(n3) time for a set of n points, the corresponding algorithm is much
too expensive as computation time is critical in many relevant appli-
cations, mostly in the field of computer graphics. Hence, in practice,
different heuristics are used to solve the problem. Although these ap-
proaches may be very fast, the solutions are sometimes very far from the
optimal one. We have designed a hybrid algorithm combining the genetic
and the Nelder-Mead algorithms on the manifold SO(3,R), which has
been able to find very good solutions at a low computational cost. The
different parameters can be used to adjust a trade-off between accuracy
and speed. In our experiments in particular, optimal bounding boxes
have been obtained much faster than with the O(n3) exact algorithm.

Chapter 4 was devoted to the column subset selection problem. Here,
we are interested in selecting k columns from a givenm×nmatrix A such
that they are the “most independent” possible. This problem appears in
fields such as data mining as it can be interpreted as an approximation
of the information encoded in the matrix A, with a much smaller matrix.
Dimensionality reduction techniques are indeed very important as they
allow the analysis of large databases by decreasing the complexity of the
problem. Our specific version of the column subset selection problem
minimizes the volume of the subset and is known to be NP-hard. Here,
we propose a heuristic approach consisting of a windowed algorithm at
the core, with possible combinations with simulated annealing, stochas-
tic hill climbing or tabu search variants. These heuristic approaches are
designed with the intent of being faster than the non-windowed algo-
rithm, in particular if k � m,n. In our numerical experiments, these
algorithms have been able to find a subset of similar or better quality
than the non-windowed algorithm while being significantly faster.

Finally, Chapter 5 described our research about the joint spectral ra-
dius. This quantity is a generalization of the usual spectral radius to
sets of matrices, and appears in many applications in system and control
theory and also in fields related to discrete mathematics. The problem
of approximating the joint spectral radius is also known to be NP-hard.

Conclusion 173

Many different approaches have been proposed for its computation, but
at the same time, many algorithms have only been studied from a theo-
retical point of view. Hence, our goal here was twofold. Firstly, we have
implemented the different algorithms in order to compare their practical
performances, both in accuracy and in computational cost. These algo-
rithms are now available as part of a MATLAB R© toolbox. Secondly, we
have proposed a heuristic approach to derive lower bounds on the joint
spectral radius at a low computational cost. This algorithm is based on
a genetic algorithm combined with several local improvement rules. Our
experiments show that this heuristic strategy has been able to find very
good solutions that are often optimal for small-size problems, and that is
able to manage problems with larger dimensions, where other algorithms
are simply too expensive.

Perspectives and future research

We have proposed heuristic approaches tackling three problems in very
different fields. The common goal was to develop algorithms which
quickly yield good solutions with respect to some fitness function. As a
by-product, they also have more tolerance for increasing problem sizes.
Another common characteristic is the presence of tunable parameters
that affect the accuracy of the result or the computation time.

Although it may be possible to infer the effect of a small modification
of the parameters (for example, increasing the population size in a genetic
algorithm will probably produce more accurate results while possibly
increasing the computation time), one problem remains: what “initial
value” should we use a priori, without performing a full experimental
analysis? For instance, if one wants to approximate the joint spectral
subradius using the same approach as in Chapter 5, can one keep the
same range of parameters?

In the last decades, research has been done on developing methods
that try to tune the parameters of an optimization method in an auto-
matic fashion. This strategy is sometimes known as meta-optimization
or hyper-heuristic approaches. Investigating this area of research should
allow us to better understand the behavior of the heuristics applied to
our problems. Furthermore, this would also facilitate the usage of al-
gorithms for non-experts of the field. Such an algorithm would then be
considered as a black box since no user input would be required, except
for the problem data itself.

174 Conclusion

Independently, there is also room for improvement for experts of the
problems. Indeed, even though the algorithms we have presented in this
thesis are heuristics adapted to the problems we consider, they do not
use all the available information. For example, the optimal bounding
box of a set of points cannot have an arbitrary orientation: possible can-
didates are related to the edges of the convex hull. Taking into account
such information about the structure of the problem may lead to bet-
ter performance, if one finds a way to exploit it wisely. It is thus clear
that there are still many remaining things to investigate, whether one
moves up to general meta-optimization approaches, or concentrates on
the exploitation of particular features of the problems.

If we consider particular problems, then there is still another impor-
tant point: as we have seen in Chapter 5, “In theory there is no difference
between theory and practice. In practice there is.” The practical behav-
ior of an algorithm may be very implementation dependent. Without
going into low-level implementation details, the performance of numer-
ical algorithms depends on choices such as the data structures used to
store some relevant information, or the methods used to approximate
complex objects. Such design choices have to be investigated thoroughly
if we want to produce optimized implementations of our algorithms for
practical applications.

Finally, there is also the fact that our heuristic algorithms usually
involve randomness. This is a key component in the exploration of the
search space and one may want to analyze how this randomness affects
the behavior of the algorithm. For example, it may be possible to design
deterministic algorithms with similar performances to our randomized
algorithms. This may be useful in several applications where the process
has to be deterministic and would also facilitate any theoretical analysis
of the algorithms. Such analysis would also allow us to even better
understand the behavior of our algorithms.

Bibliography

[AHPV04] Pankaj K. Agarwal, Sariel Har-Peled, and Kasturi R.
Varadarajan. Approximating extent measures of points.
Journal of the ACM (JACM), 51(4):606–635, 2004.

[AJPR11] Amir Ali Ahmadi, Raphaël M. Jungers, Pablo A. Parrilo,
and Mardavij Roozbehani. Analysis of the joint spectral
radius via lyapunov functions on path-complete graphs. In
Proceedings of the 14th international conference on Hybrid
systems: computation and control, pages 13–22. ACM, 2011.

[AM00] Ulf Assarsson and Tomas Möller. Optimized view frustum
culling algorithms for bounding boxes. Journal of graphics,
GPU, and game tools, 5(1):9–22, 2000.

[AS98] Tsuyoshi Ando and Mau-Hsiang Shih. Simultaneous con-
tractibility. SIAM Journal on Matrix Analysis and Appli-
cations, 19(2):487–498, 1998.

[BA10] Pierre B. Borckmans and Pierre-Antoine Absil. Oriented
bounding box computation using particle swarm optimiza-
tion. In Proceedings of the 20th European Symposium on
Artificial Neural Networks, Computational Intelligence and
Machine Learning (ESANN2010), pages 345–350, Bruges,
Belgium, 2010. D-side publications.

[Bar88] Nikita Barabanov. Lyapunov indicators of discrete inclu-
sions i-iii. Automation and Remote Control, 49:152–157,
283–287, 558–565, 1988.

[BBP10] Mary E. Broadbent, Martin Brown, and Kevin Penner.
Subset selection algorithms: Randomized vs. deterministic.
SIAM Undergraduate Research Online, 3, 2010.

[BCG+96] Gill Barequet, Bernard Chazelle, Leonidas J. Guibas,
Joseph S.B. Mitchell, and Ayellet Tal. Boxtree: A hierarchi-
cal representation for surfaces in 3d. In Computer Graphics

176 Bibliography

Forum, volume 15, pages 387–396. Wiley Online Library,
1996.

[BDH96] C. Bradford Barber, David P. Dobkin, and Hannu Huhdan-
paa. The quickhull algorithm for convex hulls. ACM Trans-
actions on Mathematical Software (TOMS), 22(4):469–483,
1996.

[BGD12] Christopher G. Baker, Kyle A. Gallivan, and Paul Van
Dooren. Low-rank incremental methods for computing
dominant singular subspaces. Linear Algebra and its Ap-
plications, 436(8):2866–2888, 2012.

[BHP01] Gill Barequet and Sariel Har-Peled. Efficiently approxi-
mating the minimum-volume bounding box of a point set
in three dimensions. Journal of Algorithms, 38(1):91–109,
2001.

[BJP06] Vincent D. Blondel, Raphaël M. Jungers, and Vladimir Y.
Protasov. On the complexity of computing the capacity of
codes that avoid forbidden difference patterns. IEEE Trans-
actions on Information Theory, 52(11):5122–5127, 2006.

[BM02] Thierry Bousch and Jean Mairesse. Asymptotic height op-
timization for topical ifs, tetris heaps, and the finiteness
conjecture. Journal of the AMS, 15(1):77–111, 2002.

[BMD09] Christos Boutsidis, Michael W. Mahoney, and Petros
Drineas. An improved approximation algorithm for the col-
umn subset selection problem. In Proceedings of the 20th
Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 968–977. Society for Industrial and Applied Math-
ematics, 2009.

[BN05] Vincent D. Blondel and Yurii Nesterov. Computationally
efficient approximations of the joint spectral radius. SIAM
Journal on Matrix Analysis and Applications, 27(1):256–
272, 2005.

[BNT05] Vincent D. Blondel, Yurii Nesterov, and Jacques Theys.
On the accuracy of the ellipsoid norm approximation of the
joint spectral radius. Linear Algebra and its Applications,
394(1):91–107, 2005.

Bibliography 177

[Bro70] Charles G. Broyden. The convergence of a class of double-
rank minimization algorithms. IMA Journal of Applied
Mathematics, 6(1):76–90, 1970.

[BS09] Jordan Bell and Brett Stevens. A survey of known re-
sults and research areas for n-queens. Discrete Mathematics,
309(1):1–31, 2009.

[BT00] Vincent D. Blondel and John N. Tsitsiklis. The boundedness
of all products of a pair of matrices is undecidable. Systems
& Control Letters, 41(2):135–140, 2000.

[BTV03] Vincent D. Blondel, Jacques Theys, and Alexander A.
Vladimirov. An elementary counterexample to the finite-
ness conjecture. SIAM Journal on Matrix Analysis and Ap-
plications, 24(4):963–970, 2003.

[BW92] Marc A. Berger and Yang Wang. Bounded semi-groups of
matrices. Linear Algebra and its Applications, 166:21–27,
1992.

[CB00] Christophe Couvreur and Yoram Bresler. On the optimality
of the backward greedy algorithm for the subset selection
problem. SIAM Journal on Matrix Analysis and Applica-
tions, 21(3):797–808, 2000.

[CB10] Chia-Tche Chang and Vincent D. Blondel. A comparison of
approximation algorithms for the joint spectral radius. In
Book of Abstracts of the 29th Benelux Meeting on Systems
and Control (BMSC10), page 85, Heeze, The Netherlands,
Mar. 2010.

[CB11a] Chia-Tche Chang and Vincent D. Blondel. Approximating
the joint spectral radius using a genetic algorithm frame-
work. In Proceedings of the 18th IFAC World Congress
(IFAC WC2011), pages 8681–8686, Milano, Italy, Aug.
2011.

[CB11b] Chia-Tche Chang and Vincent D. Blondel. A genetic algo-
rithm approach for the approximation of the joint spectral
radius. In Book of Abstracts of the 30th Benelux Meeting
on Systems and Control (BMSC11), page 105, Lommel, Bel-
gium, Mar. 2011.

178 Bibliography

[CB12a] Chia-Tche Chang and Vincent D. Blondel. An experimen-
tal study of approximation algorithms for the joint spectral
radius. Numerical Algorithms, 2012. Accepted for publica-
tion.

[CB12b] Chia-Tche Chang and Vincent D. Blondel. A genetic based
algorithm for fast approximations of the joint spectral ra-
dius. Submitted to Systems & Control Letters, 2012.

[CGM11] Chia-Tche Chang, Bastien Gorissen, and Samuel Mel-
chior. Fast oriented bounding box optimization on the ro-
tation group SO(3,R). ACM Transactions on Graphics,
30(5):122:1–122:16, Oct. 2011.

[CGSCZ10] Antonio Cicone, Nicola Guglielmi, Stefano Serra-
Capizzano, and Marino Zennaro. Finiteness property
of pairs of 2 × 2 sign-matrices via real extremal polytope
norms. Linear Algebra and its Applications, 432(2-3):796–
816, 2010.

[CGT00] A. R. Conn, N. I. M. Gould, and P. L. Toint. Trust Region
Methods. Society for Industrial and Applied Mathematics,
Philadelphia, PA, USA, 2000.

[Cha06] Timothy M. Chan. Faster core-set constructions and data-
stream algorithms in fixed dimensions. Computational Ge-
ometry: Theory and Applications, 35(1-2):20–35, 2006.

[CI94] Shivkumar Chandrasekaran and Ilse C.F. Ipsen. On rank-
revealing factorisations. SIAM Journal on Matrix Analysis
and Applications, 15:592, 1994.

[CIBD12] Chia-Tche Chang, Ilse Ipsen, Vincent D. Blondel, and
Paul Van Dooren. Polynomial-time subset selection via up-
dating. In preparation, 2012.

[CJB09] Chia-Tche Chang, Raphaël M. Jungers, and Vincent D.
Blondel. On the growth rate of matrices with row uncer-
tainties. In Book of Abstracts of the 14th Belgian-French-
German Conference on Optimization (BFG09), page 86,
Leuven, Belgium, Sept. 2009.

Bibliography 179

[cMI09] Ali Çivril and Malik Magdon-Ismail. On selecting a maxi-
mum volume sub-matrix of a matrix and related problems.
Theoretical Computer Science, 410(47):4801–4811, 2009.

[CS03] Rachid Chelouah and Patrick Siarry. Genetic and nelder-
mead algorithms hybridized for a more accurate global op-
timization of continuous multiminima functions. European
Journal of Operational Research, 148(2):335–348, 2003.

[CSV09] Andrew R. Conn, Katya Scheinberg, and Luis N. Vicente.
Introduction to Derivative-Free Optimization. Society for
Industrial and Applied Mathematics, Philadelphia, PA,
USA, 2009.

[DA99] Nicolas Durand and Jean-Marc Alliot. A combined nelder-
mead simplex and genetic algorithm. In Proceedings of the
1999 Genetic and Evolutionary Computation Conference
(GECCO99), pages 1–7, Orlando, FL, USA, 1999. Morgan
Kaufmann.

[Dav91] Lawrence D. Davis. Handbook Of Genetic Algorithms. Van
Nostrand Reinhold, 1991.

[dB98] Gino Van den Bergen. Efficient collision detection of com-
plex deformable models using AABB trees. Journal of
Graphics Tools, 2(4):1–13, 1998.

[DB01] Jamal Daafouz and Jacques Bernussou. Parameter depen-
dent lyapunov functions for discrete time systems with time
varying parametric uncertainties. Systems & Control Let-
ters, 43(5):355–359, 2001.

[DHKK09] Darko Dimitrov, Mathias Holst, Christian Knauer, and
Klaus Kriegel. Closed-form solutions for continuous pca and
bounding box algorithms. Computer Vision and Computer
Graphics. Theory and Applications, 24:26–40, 2009.

[Dij59] Edsger W. Dijkstra. A note on two problems in connexion
with graphs. Numerische Mathematik, 1(1):269–271, 1959.

[DKKR09] Darko Dimitrov, Christian Knauer, Klaus Kriegel, and
Günter Rote. Bounds on the quality of the pca bounding
boxes. Computational Geometry: Theory and Applications,

180 Bibliography

42(8):772–789, 2009. Special Issue on the 23rd European
Workshop on Computational Geometry.

[DL92] Ingrid Daubechies and Jeffrey C. Lagarias. Two-scale differ-
ence equations ii. local regularity, infinite products of matri-
ces and fractals. SIAM Journal on Mathematical Analysis,
23(4):1031–1079, 1992.

[Dor92] Marco Dorigo. Optimization, learning and natural algo-
rithms. PhD thesis, Politecnico di Milano, Milano, Italy,
1992.

[Dós07] György Dósa. The tight bound of first fit decreasing bin-
packing algorithm is FFD(I) 6 11/9 OPT (I) + 6/9.
Combinatorics, Algorithms, Probabilistic and Experimental
Methodologies, pages 1–11, 2007.

[DP85] Rina Dechter and Judea Pearl. Generalized best-first search
strategies and the optimality of a*. Journal of the ACM
(JACM), 32(3):505–536, 1985.

[Dre06] David W. Dreisigmeyer. Direct search algorithms over rie-
mannian manifolds. Technical report, Los Alamos National
Laboratory, USA, 2006.

[DRVW06] Amit Deshpande, Luis Rademacher, Santosh Vempala, and
Grant Wang. Matrix approximation and projective cluster-
ing via volume sampling. Theory of Computing, 2:225–247,
2006.

[DV06] Amit Deshpande and Santosh Vempala. Adaptive sam-
pling and fast low-rank matrix approximation. Approxi-
mation, Randomization, and Combinatorial Optimization.
Algorithms and Techniques, 4110:292–303, 2006.

[EM85] Herbert Edelsbrunner and Hermann A. Maurer. Finding
extreme points in three dimensions and solving the post-
office problem in the plane. Information processing letters,
21(1):39–47, 1985.

[Eri04] Christer Ericson. Real-Time Collision Detection (The Mor-
gan Kaufmann Series in Interactive 3-D Technology). Mor-
gan Kaufmann, Dec. 2004.

Bibliography 181

[Fek23] Michael Fekete. über die verteilung der wurzeln bei gewis-
sen algebraischen gleichungen mit ganzzahligen koeffizien-
ten. Mathematische Zeitschrift, 17(1):228–249, 1923.

[Fle70] Roger Fletcher. A new approach to variable metric algo-
rithms. The Computer Journal, 13(3):317–322, 1970.

[FM93] Stephanie Forrest and Melanie Mitchell. Relative building-
block fitness and the building-block hypothesis. In Founda-
tions of Genetic Algorithms 2. Morgan Kaufmann, 1993.

[FR64] Roger Fletcher and Colin M. Reeves. Function minimization
by conjugate gradients. The Computer Journal, 7(2):149–
154, 1964.

[FS75] Herbert Freeman and Ruth Shapira. Determining the
minimum-area encasing rectangle for an arbitrary closed
curve. Communications of the ACM, 18(7):409–413, 1975.

[GASF94] Alejandro Garcia-Alonso, Nicolás Serrano, and Juan Fla-
quer. Solving the collision detection problem. IEEE Com-
puter Graphics and Applications, 14(3):36–43, 1994.

[GE96] Ming Gu and Stanley C. Eisenstat. Efficient algorithms for
computing a strong rank-revealing qr factorization. SIAM
Journal on Scientific Computing, 17(4):848–869, 1996.

[GJ79] Michael R. Gary and David S. Johnson. Computers and
Intractability: A Guide to the Theory of NP-completeness.
W.H. Freeman and Company, New York, 1979.

[GJF09] Christophe Geuzaine and cois Remacle Jean-Fran˙Gmsh: a
three-dimensional finite element mesh generator with built-
in pre- and post-processing facilities. International Journal
for Numerical Methods in Engineering, 79(11):1309–1331,
2009.

[GKS76] Gene H. Golub, Virginia Klema, and Gilbert W. Stewart.
Rank degeneracy and least squares problems. Technical
Report TR-456, Dept. of Computer Science, University of
Maryland, College Park, MD, 1976.

[GL98] Fred W. Glover and Manuel Laguna. Tabu search, volume 1.
Springer, 1998.

182 Bibliography

[GLM96] Stefan Gottschalk, Ming C. Lin, and Dinesh Manocha.
Obbtree: a hierarchical structure for rapid interference
detection. In Proceedings of the 23rd annual Conference
on Computer Graphics and Interactive Techniques (SIG-
GRAPH96), pages 171–180, New York, NY, USA, 1996.
ACM.

[Glo89] Fred W. Glover. Tabu search — part i. ORSA Journal on
Computing, 1(3):190–206, 1989.

[Glo90] Fred W. Glover. Tabu search — part ii. ORSA Journal on
Computing, 2(1):4–32, 1990.

[Gol70] Donald Goldfarb. A family of variable-metric methods de-
rived by variational means. Mathematics of Computation,
24(109):23–26, 1970.

[Gol89] David E. Goldberg. Genetic Algorithms in Search, Opti-
mization and Machine Learning. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 1989.

[GP11] Nicola Guglielmi and Vladimir Y. Protasov. Exact compu-
tation of joint spectral characteristics of linear operators.
Foundations of Computational Mathematics, pages 1–61,
2011.

[Gri96] Gustaf Gripenberg. Computing the joint spectral radius.
Linear Algebra and its Applications, 234:43–60, 1996.

[Gro08] GAMMA Group. 3D meshes research database of the
group Génération Automatique de Maillages et Méth-
odes d’Adaptation (GAMMA), INRIA, France, 2008.
Website. Available at http://www-roc.inria.fr/gamma/
gamma/download/download.php.

[Gur95] Leonid Gurvits. Stability of discrete linear inclusion. Linear
Algebra and its Applications, 231:47–85, 1995.

[GvL96] Gene H. Golub and Charles F. van Loan. Matrix Com-
putations. Johns Hopkins University Press, Baltimore, 3rd
edition, 1996.

http://www-roc.inria.fr/gamma/gamma/download/download.php
http://www-roc.inria.fr/gamma/gamma/download/download.php

Bibliography 183

[GZ07] Nicola Guglielmi and Marino Zennaro. Balanced complex
polytopes and related vector and matrix norms. Journal of
Convex Analysis, 14:729–766, 2007.

[GZ09] Nicola Guglielmi and Marino Zennaro. Finding extremal
complex polytope norms for families of real matrices. SIAM
Journal on Matrix Analysis and Applications, 31(2):602–
620, 2009.

[HMST11] Kevin G. Hare, Ian D. Morris, Nikita Sidorov, and
Jacques Theys. An explicit counterexample to the lagarias-
wang finiteness conjecture. Advances in Mathematics,
226(6):4667–4701, 2011.

[HNR68] Peter E. Hart, Nils J. Nilsson, and Bertram Raphael. A for-
mal basis for the heuristic determination of minimum cost
paths. Systems Science and Cybernetics, IEEE Transac-
tions on, 4(2):100–107, 1968.

[Hol75] John H. Holland. Adaptation in Natural and Artificial Sys-
tems. University of Michigan Press, Ann Arbor, MI, 1975.
Second edition, 1992.

[IZK98] Andrei Iones, Sergey Zhukov, and Anton Krupkin. On op-
timality of obbs for visibility tests for frustum culling, ray
shooting and collision detection. In Proceedings of the Com-
puter Graphics International Conference (CGI98), pages
256–263, Los Alamitos, CA, USA, 1998. IEEE Computer
Society.

[JB08] Raphaël M. Jungers and Vincent D. Blondel. On the finite-
ness property for rational matrices. Linear Algebra and its
Applications, 428(10):2283–2295, 2008.

[JFGCM10] cois Remacle Jean-Fran Christophe Geuzaine, Gaëtan
Compère, and Emilie Marchandise. High-quality surface
remeshing using harmonic maps. International Journal for
Numerical Methods in Engineering, 83(4):403–425, 2010.

[Jol02] Ian T. Jolliffe. Principal Component Analysis. Springer,
New York, NY, USA, 2002.

184 Bibliography

[JPB09] Raphaël M. Jungers, Vladimir Y. Protasov, and Vincent D.
Blondel. Overlap-free words and spectra of matrices. The-
oretical Computer Science, 410(38):3670–3684, 2009.

[JTT00] Pablo Jiménez, Federico Thomas, and Carme Torras. 3d
collision detection: A survey. Computers and Graphics,
25:269–285, 2000.

[Jun09] Raphaël M. Jungers. The Joint Spectral Radius: Theory
and Applications. Springer, Berlin, Germany, 2009.

[Kah66] William Kahan. Numerical linear algebra. Canadian Math-
ematical Bulletin, 9:757–801, 1966.

[KB07] Dervis Karaboga and Bahriye Basturk. A powerful and
efficient algorithm for numerical function optimization: ar-
tificial bee colony (abc) algorithm. Journal of Global Opti-
mization, 39(3):459–471, 2007.

[KE95] James Kennedy and Russell C. Eberhart. Particle swarm
optimization. In Proceedings of the 1995 IEEE Interna-
tional Conference on Neural Networks, volume 4, pages
1942–1948. IEEE, 1995.

[Kel99] Carl T. Kelley. Iterative Methods for Optimization. Num-
ber 18 in Frontiers in Applied Mathematics. Society for In-
dustrial and Applied Mathematics, Philadelphia, PA, USA,
1999.

[KGV83] Scott Kirkpatrick, C. Daniel Gelatt, and Mario P. Vec-
chi. Optimization by simulated annealing. Science,
220(4598):671–680, 1983.

[KHM07] Krzysztof A. Krakowski, Knut Hüper, and Jonathan H.
Manton. On the computation of the karcher mean on
spheres and special orthogonal groups. In RoboMat 2007,
Workshop on Robotics and Mathematics, pages 119–124,
Coimbra, Portugal, Sep. 2007.

[KLT03] Tamara G. Kolda, Robert Michael Lewis, and Virginia Tor-
czon. Optimization by direct search: New perspectives
on some classical and modern methods. SIAM Review,
45(3):385–482, 2003.

Bibliography 185

[Knu97] Donald E. Knuth. The Art of Computer Programming, Vol-
ume 2: Seminumerical Algorithms. Addison-Wesley, Read-
ing, MA, 1997.

[Kor08] Johannes Korsawe. Minimal bounding box.
MATLAB R© Central File Exchange, January 2008.
Software, MATLAB R© function. Available at http://www.
mathworks.com/matlabcentral/fileexchange/18264.

[Koz90] Victor S. Kozyakin. Algebraic unsolvability of problem of
absolute stability of desynchronized systems. Automation
and Remote Control, 51(6):754–759, 1990.

[Koz05] Victor S. Kozyakin. A dynamical systems construction of
a counterexample to the finiteness conjecture. In Proceed-
ings of the 44th IEEE Conference on Decision and Control
(CDC05), pages 2338–2343, Seville, Spain, 2005. IEEE.

[Koz07] Victor S. Kozyakin. Structure of extremal trajectories of
discrete linear systems and the finiteness conjecture. Au-
tomation and Remote Control, 68(1):174–209, 2007.

[Koz09] Victor S. Kozyakin. On accuracy of approximation of the
spectral radius by the gelfand formula. Linear Algebra and
its Applications, 431(11):2134–2141, 2009.

[Koz10] Victor S. Kozyakin. Iterative building of barabanov norms
and computation of the joint spectral radius for matrix sets.
Discrete and Continuous Dynamical Systems - Series B,
14(1):143–158, 2010.

[Koz11] Victor S. Kozyakin. A relaxation scheme for computation of
the joint spectral radius of matrix sets. Journal of Difference
Equations and Appllications, 17(2):185–201, 2011.

[Lib03] Daniel Liberzon. Switching in systems and control.
Birkhäuser, 2003.

[LKM+00] Michael Lahanas, Thorsten Kemmerer, Natasa Milickovic,
Kostas Karouzakis, Dimos Baltas, and Nikolaos Zamboglou.
Optimized bounding boxes for three-dimensional treatment
planning in brachytherapy. Medical Physics, 27(10):2333–
2342, 2000.

http://www.mathworks.com/matlabcentral/fileexchange/18264
http://www.mathworks.com/matlabcentral/fileexchange/18264

186 Bibliography

[LW95] Jeffrey C. Lagarias and Yang Wang. The finiteness conjec-
ture for the generalized spectral radius of a set of matrices.
Linear Algebra and its Applications, 214:17–42, 1995.

[Mae96] Mohsen Maesumi. An efficient lower bound for the gener-
alized spectral radius of a set of matrices. Linear Algebra
and its Applications, 240:1–7, 1996.

[Mae98] Mohsen Maesumi. Calculating joint spectral radius of ma-
trices and hölder exponent of wavelets. Approximation the-
ory IX, 2:1–8, 1998.

[McK99] Ken I.M. McKinnon. Convergence of the nelder-mead sim-
plex method to a nonstationary point. SIAM Journal on
Optimization, 9(1):148–158, 1999.

[Moa02] Maher Moakher. Means and averaging in the group of rota-
tions. SIAM Journal on Matrix Analysis and Applications,
24(1):1–16, 2002.

[MOS01] Bruce E. Moision, Alon Orlitsky, and Paul H. Siegel. On
codes that avoid specified differences. IEEE Transactions
on Information Theory, 47(1):433–442, 2001.

[MOS07] Bruce E. Moision, Alon Orlitsky, and Paul H. Siegel. On
codes with local joint constraints. Linear Algebra and its
Applications, 422(2–3):442–454, 2007.

[MS70] Bruce A. Murtagh and Roger W.H. Sargent. Computa-
tional experience with quadratically convergent minimisa-
tion methods. The Computer Journal, 13(2):185–194, 1970.

[NCM12] Ferrante Neri, Carlos Cotta, and Pablo Moscato. Handbook
of memetic algorithms, volume 379. Springer, 2012.

[NM65] John A. Nelder and Roger Mead. A simplex method for
function minimization. The Computer Journal, 7(4):308–
313, Jan. 1965.

[NN94] Yurii Nesterov and Arkadii Nemirovskii. Interior-Point
Polynomial Algorithms in Convex Programming. Society
for Industrial and Applied Mathematics, 1994.

Bibliography 187

[NW06] Jorge Nocedal and Stephen J. Wright. Numerical optimiza-
tion. Springer-Verlag, 2nd edition, 2006.

[O’R85] Joseph O’Rourke. Finding minimal enclosing boxes. In-
ternational Journal of Computer & Information Sciences,
14:183–199, Jun. 1985.

[PJ08] Pablo A. Parrilo and Ali Jadbabaie. Approximation of the
joint spectral radius using sum of squares. Linear Algebra
and its Applications, 428(10):2385–2402, May 2008.

[PJB10] Vladimir Y. Protasov, Raphaël M. Jungers, and Vincent D.
Blondel. Joint spectral characteristics of matrices: a conic
programming approach. SIAM Journal on Matrix Analysis
and Applications, 31(4):2146–2162, 2010.

[PML97] Madhav K. Ponamgi, Dinesh Manocha, and Ming C.
Lin. Incremental algorithms for collision detection between
polygonal models. IEEE Transactions on Visualization and
Computer Graphics, 3(1):51–64, 1997.

[PR69] Elijah Polak and Gérard Ribière. Note sur la convergence
de méthodes de directions conjuguées. Revue Française
d’Informatique et de Recherche Opérationnelle, 3(16):35–43,
1969.

[Pro96] Vladimir Y. Protasov. The joint spectral radius and invari-
ant sets of linear operators. Fundamentalnaya i prikladnaya
matematika, 2(1):205–231, 1996.

[PS85] Franco P. Preparata and Michael Ian Shamos. Computa-
tional geometry: an introduction. Springer, New York, NY,
USA, 1985.

[PTVF92] William Press, Saul Teukolsky, William Vetterling, and
Brian Flannery. Numerical Recipes in C. Cambridge Uni-
versity Press, Cambridge, UK, 2nd edition, 1992.

[Rez00] Bruce Reznick. Some concrete aspects of Hilbert’s 17th
Problem, volume 253 of Contemporary Mathematics, pages
251–272. American Mathematical Society, 2000.

188 Bibliography

[RS60] Gian-Carlo Rota and Gilbert Strang. A note on the joint
spectral radius. Indagatione Mathematicae, 22:379–381,
1960.

[Sha70] David F. Shanno. Conditioning of quasi-newton methods
for function minimization. Mathematics of Computation,
24(111):647–656, 1970.

[Sha78] Michael Ian Shamos. Computational geometry. PhD thesis,
Yale University, New Haven, CT, USA, 1978.

[Ski98] Steven S. Skiena. The algorithm design manual. Springer-
Verlag, 1998.

[SS09] Alain Sarlette and Rodolphe Sepulchre. Consensus opti-
mization on manifolds. SIAM Journal on Control and Op-
timization, 48(1):56–76, 2009.

[SWM+07] Robert Shorten, Fabian Wirth, Oliver Mason, Kai Wulff,
and Christopher King. Stability criteria for switched and
hybrid systems. SIAM Review, 49(4):545–592, 2007.

[TB97] John N. Tsitsiklis and Vincent D. Blondel. The lyapunov
exponent and joint spectral radius of pairs of matrices are
hard — when not impossible — to compute and to ap-
proximate. Mathematics of Control, Signals, and Systems,
10(1):31–40, 1997.

[Tou83] Godfried Toussaint. Solving geometric problems with the
rotating calipers. In Proceedings of the IEEE 1983 Mediter-
ranean Electrotechnical Conference (MELECON83), vol-
ume 9, pages 1–8, Athens, Greece, May 1983.

[VHJ+11] Guilllaume Vankeerbergen, Julien Hendrickx, Raphaël
Jungers, Chia-Tche Chang, and Vincent Blondel.
The JSR Toolbox. MATLAB R© Central File Ex-
change, 2011. Software, MATLAB R© toolbox. Avail-
able at http://www.mathworks.com/matlabcentral/
fileexchange/33202-the-jsr-toolbox.

[vLA87] Peter J.M. van Laarhoven and Emile H.L. Aarts. Simulated
annealing: theory and applications, volume 37. Springer,
1987.

http://www.mathworks.com/matlabcentral/fileexchange/33202-the-jsr-toolbox
http://www.mathworks.com/matlabcentral/fileexchange/33202-the-jsr-toolbox

Bibliography 189

[Wir02] Fabian Wirth. The generalized spectral radius and extremal
norms. Linear Algebra and its Applications, 342(1):17–40,
2002.

[Wol69] Philip Wolfe. Convergence conditions for ascent methods.
SIAM Review, 11(2):226–235, 1969.

[Yan09] Xin-She Yang. Firefly algorithms for multimodal optimiza-
tion. Stochastic algorithms: foundations and applications,
pages 169–178, 2009.

[YD09] Xin-She Yang and Suash Deb. Cuckoo search via lévy
flights. In Proceedings of the 2009 World Congress on Na-
ture & Biologically Inspired Computing (NaBIC2009), pages
210–214. IEEE, 2009.

	Contents
	List of Figures
	List of Tables
	List of Algorithms
	List of Publications
	Introduction
	From classical optimization to heuristic approaches
	Classical optimization methods as starting point
	Hill climbing and steepest ascent methods
	Optimization methods in the continuous case
	Nelder-Mead simplex algorithm

	Local search heuristic methods
	Simulated annealing
	Tabu search

	Population-based heuristic methods
	Genetic algorithm
	Other population-based approaches
	Hybridizations and memetic algorithms

	The minimum-volume oriented bounding box problem
	Introduction
	Notation and basic properties
	State of the art
	O'Rourke's algorithm
	PCA-based methods
	Brute-force methods
	(1+)-approximation

	A new method based on optimization
	Formulation of the optimization problem
	The HYbrid Bounding Box Rotation IDentification (HYBBRID) algorithm
	Taking into account the structure of SO(3, R)
	Comparison with the algorithm of Lahanas et al.

	Experimental analysis
	Performance of the HYBBRID method
	Comparison of HYBBRID to other simple iterative strategies
	Comparison of HYBBRID to the state of the art

	Conclusion

	The subset selection problem
	Introduction
	The Windowed Subset Selection algorithm (WSS)
	Throwing out one column
	The Gu-Eisenstat Criterion
	Selection of the doomed column

	Improving the performance of the windowed algorithm
	Multi-pass Windowed Subset Selection (MWSS)
	Non-greedy randomized variant
	Pruning heuristic for the set of columns

	Numerical experiments
	Implementing the Windowed Subset Selection algorithm
	The test matrices
	Results
	Comparison between the windowed and the non-windowed approaches

	Conclusion

	The joint spectral radius
	Introduction
	Basic properties and results
	Methods of computation
	Product enumeration methods
	Norm optimization methods
	Extremal norm construction methods
	Lifting techniques

	A heuristic approach using a genetic algorithm
	Experimental analysis
	Details about the test sets
	Details about the implementations
	The JSR Toolbox

	Results
	Accuracy of the genetic algorithm
	Influence of the main parameters of the genetic algorithm
	Comparison to the other algorithms

	Conclusion

	Conclusion
	Bibliography

