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An exact algorithm to compute an optimal 3D oriented bounding box was
published in 1985 by Joseph O’Rourke, but it is slow and extremely hard
to implement. In this article we propose a new approach, where the com-
putation of the minimal-volume OBB is formulated as an unconstrained
optimization problem on the rotation group SO(3,R). It is solved using
a hybrid method combining the genetic and Nelder-Mead algorithms. This
method is analyzed and then compared to the current state-of-the-art tech-
niques. It is shown to be either faster or more reliable for any accuracy.

Categories and Subject Descriptors: I.3.5 [Computer Graphics]: Compu-
tational Geometry and Object Modeling—Geometric algorithms; Object
representations; G.1.6 [Numerical Analysis]: Optimization—Global op-
timization; Unconstrained optimization

General Terms: Algorithms, Performance, Experimentation

Additional Key Words and Phrases: Computational geometry, optimization,
manifolds, bounding box

1. INTRODUCTION

This article deals with the problem of finding the minimum-volume
oriented bounding box (OBB) of a given finite set of N points,
denoted by X ⊂ R3. The problem consists in finding the cuboid,
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Fig. 1. Illustration of some of the notation used throughout the article.
The axis-aligned bounding box and the optimal oriented bounding box are
drawn as dotted black and solid blue lines, respectively.

i.e., rectangular parallelepiped, of minimal volume enclosing X .
This is illustrated for the 2D case in Fig. 1. Each OBB is defined
by its center X ∈ R3, its dimension ∆ ∈ R3 and its orientation
R ∈ SO(3,R). This rotation group is the special orthogonal group
of degree 3 over R:

SO(3,R) =
{
R ∈ GL(3,R) | RTR = I = RRT ,det(R) = 1

}
,

whereGL(3,R) is the general linear group of degree 3, i.e., the set
of 3-by-3 invertible real matrices. The matrix R rotates the refer-
ence frame ex onto eξ as shown in Fig. 1. The convex hull of X
and the set of its vertices are denoted by CH(X ) and XC ⊂ X ,
respectively. Just as N = |X |, let NV = |XC | be the number of
vertices of CH(X ). This convex hull can be obtained as a prepro-
cessing step with cost O(N logN).

Computing the minimal OBB is far from trivial, although it
can be solved in polynomial time using O’Rourke’s exact algo-
rithm [O’Rourke 1985]. Approximations can also be obtained using
heuristics such as the ones based on principal component analysis
(PCA) [Jolliffe 2002]. In this article, the orientation of an optimal
OBB is computed by a hybrid global optimization algorithm that
searches in the space of rotation matrices. Optimal OBBs of about
300 test cases can be estimated with relative accuracy of 1 % or
better in 98 % of the runs on average. Running the algorithm once
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on each test case takes about 4 minutes. In comparison, PCA-based
methods only reach such accuracy in less than 60 % of the cases.
For another choice of parameters of our method, we were able to
compute all optimal volumes with a relative error of at most 10−12

in more than 95 % of the runs on average, in about 20 minutes.
In comparison, O’Rourke’s method requires nearly one week of
computation time to compute one optimal OBB for each example.
All these computation times include the computation of the convex
hulls.

The OBB fitting problem is encountered in many applications,
such as fast rendering of 3D scenes [Assarsson and Möller 2000],
collision detection [Jiménez et al. 2000; Garcia-Alonso et al. 1994],
visibility tests [Iones et al. 1998] or mesh reparameterization
[Remacle et al. 2010]. Those applications use a simplified hierar-
chical representation of 3D objects (see [Gottschalk et al. 1996;
Ponamgi et al. 1997]). The various 3D models are usually approxi-
mated by a tree of successively smaller volumes ([Gottschalk et al.
1996] uses such a method), requiring two characteristics:

(1) The volumes themselves, and an intersection test between two
such volumes must be quickly computable.

(2) Those volumes need to be as close as possible to the geometry
defined by X in order to minimize the number of superfluous
tests and thus improve the total running time of the algorithms.

On one side of the spectrum lies the axis-aligned bounding box
(AABB, see [den Bergen 1998]), i.e., the OBB withR chosen as the
identity matrix I . This is the easiest bounding volume to compute,
as only the range of the coordinates of the points in X needs to be
evaluated. However, it is obviously not very good at fitting most
geometries.

On the opposite side, the convex hull of the model provides by
definition the closest convex approximation, but collisions between
these convex polyhedra can be just as hard to detect as those in-
volving the original models. This is why arbitrary OBBs are often
a good compromise.

Other bounding volumes can of course be used, such as bounding
spheres, bounding cylinders, bounding capsules (cylinders capped
by two half-spheres) or k-DOPs (AABB with beveled edges and
corners), all of which compromise computing ease and accuracy
differently (a review of various bounding volumes can be found in
[Ericson 2004]).

The main idea behind this article is that the problem of finding an
optimal OBB can be written as an unconstrained optimization prob-
lem on SO(3,R). Hence, the objective function is continuous but
non-differentiable as it takes into account the geometric constraints.
Therefore, it cannot be written in closed form although it is easy
to evaluate. This is why solving such a formulation of the prob-
lem requires the use of derivative-free optimization methods, such
as those used in the Hybrid Bounding Box Rotation Identification
(HYBBRID) algorithm we propose. It consists in a hybridization
of the genetic and Nelder-Mead algorithms, based on the method
described in [Durand and Alliot 1999]. Such a hybrid scheme com-
bines the strength of the genetic algorithm in terms of exploration
of the search space, and the capacity of the Nelder-Mead method to
quickly converge to locally good solutions.

The article is organized as follows. It starts with an extensive
review of the literature on the subject. Next, the formulation of the
OBB fitting problem as an optimization problem is detailed. Our
HYBBRID algorithm is then described, analyzed and compared to
the other methods.

2. STATE OF THE ART

The problem of computing an optimal OBB for a given set of points
is not trivial. In 2D, an optimal bounding rectangle can be com-
puted in linear time using the so-called rotating calipers method
as proposed in [Toussaint 1983]. This technique is based on the
idea developed by Michael Ian Shamos in his Ph.D. thesis [Shamos
1978] (see also [Preparata and Shamos 1985]) to compute the diam-
eter of a convex polygon. The current best exact algorithm for the
3D problem, published by O’Rourke in 1985 [O’Rourke 1985], has
a time complexity of O(N3

V ). O’Rourke’s algorithm is too slow to
be of practical use and is known to be extremely hard to implement
([Barequet and Har-Peled 2001; Ericson 2004]).

Most of the time, heuristic approaches are used instead. The most
popular ones are based either on principal component analysis [Jol-
liffe 2002] or on brute-force search. Note that given one axis p of
an optimal OBB, the two remaining axes can easily be obtained
by using the rotating calipers method to compute the minimal area
rectangle enclosing the set of points projected on a plane orthog-
onal to p. Several methods use this idea of finding the orientation
of the OBB, aligned with a given direction p, that has the minimal
volume by solving the associated 2D problem.

In this section, these algorithms are presented, but a more de-
tailed discussion can be found in [Ericson 2004]. We have imple-
mented them all with Matlab R© in a unified framework in order
to compare these currently widespread methods for OBB fitting.
Several studies comparing the performances of bounding box algo-
rithms can also be found in [Dimitrov et al. 2009a; Lahanas et al.
2000].

2.1 O’Rourke’s algorithm

In [O’Rourke 1985], Joseph O’Rourke presented an algorithm that
can be used to compute an optimal OBB of a set of points in 3D.
Although exact, this method has the main drawbacks of being both
extremely complicated and very slow. It can be seen as a gener-
alization of the rotating calipers for the 3D case. Indeed, it is a
smart exhaustive search across all potential optimal orientations of
the bounding box. Thus, this algorithm is based on a property that
must be satisfied by the minimal OBB, and which is stated in the
following theorem:

THEOREM 1 [O’ROURKE 1985]. A box of minimal volume
circumscribing a convex polyhedron must have at least two adja-
cent faces that contain edges of the polyhedron.

These two faces are said to be flush with edges.

Based on this property, O’Rourke then devised an algorithm that
examines every pair (e1, e2) of edges of CH(X ). The idea is to
perform a rotation of the OBB such that a face and an adjacent one
are continuously flush with e1 and e2, respectively. Such a rotation
is shown in Fig. 2. The volume of the OBB is a continuous but non-
smooth function of the rotation matrix R. Indeed, the derivative is
not continuous each time a third edge is flush with one face of the
OBB. Between two such particular rotations, the volume is a ra-
tional function whose local minima can be obtained from the roots
of a polynomial of degree 6. If one of these volumes or the vol-
ume with three flush edges is smaller than the current best volume
found, the incumbent optimal solution is updated.

This algorithm runs in cubic time since the computational cost
for each pair of edges is linear inNV , as in the 2D rotating calipers
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Fig. 2. Illustration of two successive steps of the rotation involved in O’Rourke’s algorithm for the tetrahedron ABCD = {(0, 0, 0), (1, 0, 0), (0, 1, 0),
(0, 0, 1)} . During the whole rotation, the adjacent faces 3784 and 1234 are flush with the edges AB and BC, respectively. Hence, both faces evolve in a
plane rotating around their corresponding edge. In general, the rotation of the other faces are not around a fixed axis as adjacent faces of the OBB have to
stay orthogonal while being flush with at least one vertex of the tetrahedron. The first OBB is the cube in blue of which the faces 1234, 3784 and 2376 are
flush with the faces ABC, ADB and ADC of the tetrahedron, respectively. In fact, the latter is a corner of this cube; hence, all edges are flush with faces
of this particular OBB. In the intermediate bounding box, which is in red (resp. blue) on the left (resp. right), the face 1256 is flush with the edge CD; since
this particular OBB has three edges flush, it corresponds to a salient point of the volume function during the rotation. As far as the last bounding box, in red
on the right, is concerned, the faces 3784 and 5678 are flush with the face ABC and the edge AD, respectively. Note that its vertex 8 is hidden behind the
tetrahedron.

technique, and there are O(N2
V ) pairs of edges. We have imple-

mented O’Rourke’s algorithm in order to compute the optimal vol-
ume and thus verify the accuracy of the other methods.

2.2 PCA-based methods

A very popular class of heuristic methods is the one based on prin-
cipal component analysis. The idea behind it is to first perform a
PCA on X , that is, computing the eigenvectors of its covariance
matrix and choosing them as axes of the orthonormal frame eξ.
The first (resp. last) axis is the direction of largest (resp. smallest)
variance. Either some or all axes resulting from the PCA can then
be used, the choice leading to three different variants of the meth-
ods [Barequet et al. 1996].
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2.2.1 All-PCA. This is the most basic method. It consists in
directly using the three directions given by the PCA as the axes of
the OBB. In practice, X is simply rotated to be placed in the PCA
frame, and the AABB in this frame is obtained by computing the
minimum and maximum for each component.

Though this method is particularly fast and easy to implement,
it can be shown that the ratio between the volumes of the OBB ob-
tained using PCA and the optimal volume is unbounded [Dimitrov
et al. 2009b]. In fact, the PCA is very sensitive to the way points are
distributed, and can fail to give good results even in simple cases.

Fig. 3. Simple case showing the OBBs given by All-PCA or Max-PCA (in
black), and Min-PCA or Continuous PCA (in blue).

For example, the PCA yields a very badly fitted bounding box if
the points form two crosses roughly on two parallel rectangles, as
shown in Fig. 3. This is why one of the two following variants are
often used to improve the quality of the solution.

2.2.2 Max-PCA and Min-PCA. The idea here is to use only
one of the three axes determined by the PCA. The orientation of
the OBB, aligned with this axis, that has the minimal volume can
then be obtained by solving the associated 2D problem obtained by
projecting the points on the plane formed by the two unused axes.
In the Max-PCA variant, the direction of projection is given by
the first axis which is the eigenvector corresponding to the largest
eigenvalue of the covariance matrix. On the other hand, one can
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choose to keep the last axis instead and thus obtain the Min-PCA
variant.

These methods are a little slower, but are always more accu-
rate than All-PCA and may avoid some of its pitfalls. For exam-
ple, using Min-PCA (resp. Max-PCA) will give an almost opti-
mal bounding box ifX has a predominantly two-dimensional (resp.
one-dimensional) shape. Fig. 3 illustrates the case of an object that
has one dimension with a significantly much smaller range than the
others. On sets of points with a real 3D extension, the Min-PCA
variant tends to yield better results in practice.

2.2.3 Continuous PCA. As regular PCA-based algorithms are
too sensitive to the distribution of the points in the set, Stefan
Gottschalk, Ming Lin and Dinesh Manocha have proposed the fol-
lowing two improvements in [Gottschalk et al. 1996]:

(1) Only the vertices of CH(X ) determine the optimal bounding
boxes. Hence, computing the PCA simply on XC should pro-
vide better results.

(2) This reduced set of points can still give poor results; it typically
happens when points are very concentrated in one region of the
convex hull. A resampling of CH(X ) should be performed in
order to obtain a uniformly spread out set.

Those two improvements yield a slightly more complex method
because, to be completely general, the convex hull needs to be re-
sampled “infinitely densely”; this leads to a reformulation of the
covariance matrix as a continuous form. However, it is shown in
[Dimitrov et al. 2009b] that, for an octahedron, the volume of the
bounding box given by this method is still four times bigger than
the optimal volume.

2.3 Brute-force methods

Given the complexity of the problem, a common simple strategy is
to examine a large number of possible orientations and choose the
one yielding the best OBB. These methods are used quite regularly
given the ease of implementation. Some of them are independent of
the distribution of points in the geometry, unlike PCA-based heuris-
tics.

There are two principal classes of heuristics. First, one can de-
cide to sample the search space and try all these possible orienta-
tions. For example, a uniform distribution can be used to sample
SO(3,R), and then try all these rotation matrices. Another possi-
bility is to consider a large set of points on the unit sphere, each
point defining a direction p. The orientation of the OBB, aligned
with p, that has the minimal volume can then be obtained by solving
the associated 2D problem. In either case, the best OBB obtained
can be quite close to the real optimum provided that the number of
considered orientations is sufficiently large. Obviously, the major
drawback of this approach is the large computation time required
to check all these orientations. More details can be found in [Eric-
son 2004].

A second approach is to select a large set of candidates based on
some properties of the geometry. For every direction that connects
any two points of the set, the associated 2D problem can be solved
to obtain the orientations of the OBB. The one that yields the small-
est volume is then selected. This heuristic is described in [Barequet
and Har-Peled 2001] as the all-pairs method.

Many other strategies can be used. In [Korsawe 2008], three vari-
ants are described. The fastest one was already proposed in the dis-
cussion section of [O’Rourke 1985] and corresponds to a search
among all bounding boxes of which one side coincides with one
face of the convex hull. It is thus a generalization of the 2D naive
O(N2

V )-time algorithm. This algorithm was based on the theorem
which states that each optimal oriented bounding rectangle has one
side coinciding with one edge of CH(X ) [Freeman and Shapira
1975]. Both other strategies also take edges of the convex hull into
account but are slower.

2.4 (1+ε)-approximation

In [Barequet and Har-Peled 2001], Gill Barequet and Sariel Har-
Peled have proposed algorithms to compute, for any value of ε ∈
]0, 1], an approximating OBB whose volume is at most (1+ε) times
the optimal volume. For that purpose, a grid whose discretization
step d is inversely proportional to ε is built. Its orientation is given
by an OBB whose volume is a constant factor approximation of the
optimal one. This OBB is chosen aligned with an approximation of
the diameter of X that is computed using the AABB.

Based on this grid, two very different methods can be designed.
On the one hand, X can be projected on the grid with a computa-
tional cost that is linear in N . O’Rourke’s algorithm can then be
performed on the projected set. In addition to requiring an imple-
mentation of O’Rourke’s method, a main drawback of this method
is that it can be very slow in practice if d is too large. This first
method is called APPROXMINVOLBBX. On the other hand, each
vector pointing from the center of the grid to one of its nodes can be
taken as a direction p. The orientation of the OBB aligned with p,
that has the minimal volume, can then be obtained by solving the
associated 2D problem. For this variant, it is necessary to choose
how many cells of the grid will be considered to build a candidate
OBB. This is done by considering only the cells that have a Cheby-
shev (or infinity-norm) distance of d or less from the center of the
grid. The way to compute the value of d to reach an accuracy of ε
is exposed in [Barequet and Har-Peled 2001]. This second method
is referred to as GRIDSEARCHMINVOLBBX in the article.

Note that the original technique described in [Barequet and Har-
Peled 2001] can be improved. Indeed, it is possible to reduce the
size of the projected set of points to a smaller set as described in
[Agarwal et al. 2004; Chan 2006].

3. A NEW METHOD BASED ON OPTIMIZATION

The approach used in this article consists in formulating the search
of the minimal volume OBB as an optimization problem defined
on a manifold. To the best of our knowledge, this idea has only
been used in [Lahanas et al. 2000]. In that article, the authors com-
bine Powell’s quadratic convergent method [Press et al. 1992] and
a multi-scale grid search to minimize the volume of the OBB. A
comparison of this scheme with our algorithm can be found in sec-
tion 3.3. The method we propose is based on a formulation of the
minimal OBB problem as an unconstrained optimization problem
on SO(3,R), which is presented below.

3.1 Formulation of the optimization problem

A first direct optimization formulation can be written as follows:
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2 . It appears that
only four of the salient points are local minima. (d.) A close-up view on the global minimum is shown.

min
∆,Ξ∈R3

R∈SO(3,R)

∆ξ∆η∆ζ (1)

s.t. −∆
2
≤ RXi −Ξ ≤ ∆

2
∀i ∈ {1, . . . ,N},

where Xi ∈ X , ∆ = (∆ξ,∆η,∆ζ) denotes the dimensions of the
OBB and Ξ its center after rotation by R. Note that the ≤ operator
is applied componentwise.

The objective function is trilinear and the constraints are linear.
One of the major difficulties in this problem is the feasible set of
R. The minimization over those two vectors in R3 and this rotation
matrix can be carried out as two successive minimizations. One
can single out the minimization with respect to R, and the other
“internal” one is simply given by the AABB after a rotation defined
by a given fixed R of X . Thus, the problem (1) can also be written
in the following form:

min
R∈SO(3,R)

f(R), (2)

where the objective function f(R) is simply the volume of the
AABB of X rotated by R:

f(R) =

(
min

∆,Ξ∈R3
∆ξ∆η∆ζ

s.t. −∆
2
≤ RXi −Ξ ≤ ∆

2
∀i ∈ {1, . . . ,N}

)
.

Note that solving the problem (1) might prove to be more efficient
since it is a relaxation of the problem minR∈SO(3,R) f(R).

This function f(R) is only C0 since it is not differentiable at ev-
ery rotation matrix R that brings at least one face of the OBB to
be flush with one edge of the convex hull. These particular rota-
tions are the equivalent in SO(3,R) of salient points and poten-
tially yield local minima of this objective function. A 2D example
illustrating the function f(R) is presented in Fig. 4. It appears that
this function is formed by the upper envelope of concave functions.
Note that the problem (2) is also interesting in the 2D case, even
though the rotating calipers technique already provides an efficient
— and asymptotically optimal — linear algorithm.

Because of the non-differentiability of the function, especially
at local minima, line search methods, such as Steepest Descent or
Newton, can encounter convergence issues. Therefore, derivative-
free methods have been preferred. Two main families of such algo-
rithms can be distinguished.

The first one consists of the derivative-free optimization (DFO)
methods that are guaranteed to converge to a local minimum. Three
classes of DFOs can be distinguished. The Nelder-Mead simplex
algorithm (see [Nelder and Mead 1965]) is one of the best known
methods of optimization by direct search [Conn et al. 2009] and
has led to many variants. A survey about direct search algorithms
can be found in [Kolda et al. 2003]. The two other classes are
derivative-free line-search methods (see [Kelley 1999]) and trust-
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region methods ([Conn et al. 2000]). A more detailed review on
DFO methods can be found in [Conn et al. 2009].

The second family consists of the metaheuristics that try to ex-
plore the whole search space in order to find a global optimum.
However, they often have a rather slow convergence and might even
fail to converge. Some well-known examples are simulated anneal-
ing (see [Kirkpatrick et al. 1983]), tabu search (see [Glover 1989;
1990]), or genetic algorithm ([Goldberg 1989; Holland 1975]).

In order to find a global minimum of the volume function f(R),
a local search component to ensure the convergence to a minimum
and a global search component to explore the search space can
be combined. Several schemes are possible but in this article, we
have chosen to focus on a hybrid method combining the Nelder-
Mead algorithm and the genetic algorithm, as preliminary tests
were showing very promising results. Another example of an ap-
plicable global-local scheme for this problem is the particle swarm
optimization (see [Borckmans and Absil 2010]).

3.2 The Hybrid Bounding Box Rotation Identification
algorithm

The first method used in HYBBRID is the Nelder-Mead algorithm.
Its principle is simple: it starts with an initial simplex, i.e., a set
of d + 1 affinely independent points, where d is the dimension of
the search space. At each iteration, the worst point is replaced by
its reflection through the centroid of the d remaining points, if this
point is good enough. If this new point is even better than the best
current point, a good search direction may have been found, so the
algorithm tries to explore further in that direction. If the new point
is not good enough, the optimal point may lie inside the simplex,
so we shrink it. More details about these steps are shown in Fig. 5.
This method is not guaranteed to converge to a stationary point
(for example see [McKinnon 1999]), and largely depends on the
initial simplex. Several runs with different initial simplices can be
performed, or more elaborated variants can be used, in order to
increase the probability of reaching a global minimum.

By combining Nelder-Mead simplex algorithm and genetic al-
gorithm one could hope to obtain very good solutions in a short
time. This idea has been studied by several authors: in [Chelouah
and Siarry 2003] the authors first use a continuous genetic algo-
rithm with elitist strategy to locate a “promising area” in the search
space, where the Nelder-Mead algorithm is then used to try to find
the best solution situated in that region. Another example is given
in [Durand and Alliot 1999], where the authors apply genetic algo-
rithm with p-tuples of points as population elements, with several
Nelder-Mead iterations applied at each generation.

The combination used here is close to the variant of Durand and
is detailed hereafter, step by step. As the dimension of the rota-
tion group is d = 3, a simplex is a set of four rotation matrices
R = {R1, R2, R3, R4} ⊂ SO(3,R). It forms a tetrahedron on this
manifold with Rj at its vertices. An element Ak of the population
A is a simplex R and its fitness is defined as minj∈{1,...,4} f(Rj).
The HYBBRID algorithm can be decomposed in the following
steps:

(1) Initialization. Let M be the size of the total population. It is
initialized with random simplices, i.e., the four vertices Rj of
each simplex are obtained by QR factorization of random 3-
by-3 matrices.

(2) Selection. The fitness of all the simplices is evaluated. The best
M
2

simplices are selected, the others are discarded. From this
reduced population, four groups AI1,AI2,AII1 ,AII2 are created
at random using a uniform distribution. Each group has M

2
el-

ements, and one population member can be in one group, sev-
eral groups, or none, and can be selected any number of times
in each group.

(3) Crossover I . A standard mixing crossover is applied between
AI1 andAI2. A pair of parents is constituted by choosing the kth

element of both subpopulations: A1 ∈ AI1 and A2 ∈ AI2. They
produce an offspringA0,i. Each vertex of the simplexA0 is ei-
ther the corresponding vertex of A1 or of A2, the selection be-
ing random, but the parent with the best fitness having a higher
probability of being chosen. This gives us M

2
new simplices.

(4) Crossover II . The other M
2

new simplices are given by an
affine combination crossover between AII1 and AII2 . Let A1 ∈
AII1 , A2 ∈ AII2 be the kth pair of parents as before. The four
vertices A0,j of the corresponding offspring A0 are defined by
A0,j = λA1,j + (1 − λ)A2,j , where the value of λ depends
on whether A1 is better or worse than A2. For example, λ can
have the value 0.4 (resp. 0.6) if the fitness ofA1 is smaller than
that of A2.

(5) Mutation. K Nelder-Mead iterations are applied on all these
M new simplices to obtain the new generation of the popula-
tion.

(6) Stopping criterion. This process (Selection – Crossover – Mu-
tation) is repeated until a stopping criterion is met, usually if
the fitness of the best simplex stalls for several iterations w.r.t.
the desired tolerance, or if a maximal number of iterations is
reached. In our case, the algorithm stops after k consecutive
generations where the objective value does not improve by at
least x % compared to the current best value, with k = 5 and
x = 1 as default values for these parameters.

The goal of the genetic component of HYBBRID is to somehow
compute the initial condition so that the Nelder-Mead algorithm
converges to a global minimum. These steps, inspired by evolu-
tionary biology, bring correlations between the initial conditions,
which is better than random simplices.

Using Nelder-Mead simplices seems a better choice than directly
considering rotation matrices with a mutation consisting in a line
search method. Indeed, the use of Nelder-Mead simplices induces
a layer of local cooperation between groups of candidate solutions.
This meshes well with the “global” cooperation introduced by the
genetic algorithm that randomly “resets” the initial conditions of
the Nelder-Mead algorithm.

Experiments showed that using only one of the two crossover
steps yields poorer performances. Combining both ensures that the
simplices move enough to explore the search space sufficiently
(crossover I) while still tending to gather around promising areas
(crossover II). Of course, other crossovers could also be consid-
ered.

The crossover II and the update of the simplices in Nelder-Mead
consist of affine combinations of rotation matrices. The geodesics
can be used in order to take into account the geometry of SO(3,R)
in these computations. On this particular manifold, the exponential
map and the log map [Krakowski et al. 2007] can be used. How-
ever, a high accuracy is not required in our Nelder-Mead method
as only a few iterations are applied to let the population get closer
to the minima at each generation. In this case, the method can take
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(a.) Reflection (b.) Expansion (c.) Contraction (d.) Reduction

Fig. 5. Illustration of the Nelder-Mead algorithm in R2 to minimize a function F (x, y). Let S1S2S3 form a simplex S ⊂ R2 such that F (S1) ≤ F (S2) ≤
F (S3). At each iteration, the worst point, S3 here, is always removed. Let S0 be the centroid of all remaining points, and Sr be the reflection of S3 through
this centroid. (a.) If Sr is better than the current worst remaining point, S2 here, it is chosen to define the new simplex S1SrS2. (b.) If Sr is even better than
the current best point, namely S1, the simplex is expanded in the direction S0Sr , giving SeS1S2 as the new simplex. The expansion is defined such that
Se = Sr + (Sr − S0). If the reflected point is worse than all of the current points, the algorithm tries to contract the simplex. (c.) If the contracted point,
Sc = 1

2 (S0 + S3), is better than S3, then the new simplex is given by ScS1S2. (d.) Otherwise, the whole simplex is reduced around the current best point,
S1. In this case, the new simplex is S1S2′S3′ , with Si′ =

1
2 (S1 + Si) for all i.

advantage of the fact that SO(3,R) is embedded in R3×3. After
computing the affine combination in R3×3, the obtained matrix can
be projected on SO(3,R) with a QR factorization to obtain an ap-
proximation of the affine combination on this manifold [Sarlette
and Sepulchre 2009]. The proper projection on SO(3,R) is actu-
ally the polar factorization which is orthogonal for the inner prod-
uct defining the Frobenius norm [Golub and van Loan 1996]. How-
ever, it requires to perform a singular value decomposition which
is slightly more expensive. In practice, it is observed that using QR
factorization is faster than polar decomposition without losing sig-
nificant accuracy.

The reflection and expansion steps on the simplex R are combi-
nations that are not convex. Nevertheless, such extrapolations can
be avoided as in these particular cases, the geodesic on SO(3,R)
can be followed exactly. Indeed, on this manifold, the mathematical
operation that bringsR3 onR0 is the left multiplication by the rota-
tion matrixR0R

T
3 sinceR0 = (R0R

T
3 )R3 . Let us consider the re-

flection step for instance. By definition,Rr is obtained by perform-
ing the same displacement on the manifold but starting fromR0 in-
stead of R3. Hence, the reflection and expansion points can simply
be computed as Rr = R0R

T
3 R0 and Re = (R0R

T
3 )2R0, respec-

tively. Similarly, the new vertices in the contraction and reduction
step can be written in a closed form, e.g. Rc = (R0R

T
3 )1/2R3.

However, the computation of the square root of a matrix is more ex-
pensive than the QR factorization. Hence, following the geodesics
in the computation of Rr and Re is interesting, which is not the
case for the contraction and reduction of the simplexR.

Finally, a post-processing step can be applied to the OBB ob-
tained from any algorithm: as the 2D problem is easy to solve with
the rotating calipers technique, the set X can be projected along

one of the axes of the candidate OBB and solve the associated 2D
problem. This amounts to a rotation of the box around the normal
of one of the faces and ensures local optimality in that direction.

3.3 Comparison with the algorithm of Lahanas et al.

Unfortunately, it is difficult to empirically compare the efficiency
of HYBBRID with the algorithm of [Lahanas et al. 2000] because
the way Powell’s method is applied and the choice of the param-
eters of the multi-scale grid search method are not detailed in the
article. Nevertheless, let us emphasize the main differences from a
theoretical point of view between these two hybrid approaches.

First of all, the formulation of the problem is not defined on the
same search space. On the one hand, the principle of HYBBRID is
to minimize an objective function on the rotation group SO(3,R).
Each evaluation of this cost function requires an AABB compu-
tation which is a trivial optimization subproblem. One important
property of this method is that the search space is viewed as a
manifold without a global parameterization. On the other hand, the
search space on which the optimization problem is formulated in
[Lahanas et al. 2000] is parameterized by the triplet (φ, cos θ, α),
i.e., the azimuth angle, the cosine of the zenith angle and the an-
gle of rotation around the axis defined by φ and θ, respectively. A
drawback of this choice is the singularity induced at the poles. One
main interest of formulating the optimization problem on a mani-
fold is to avoid such issues induced by the parameterization.

Both algorithms consist in a hybridization using an exploration
and an exploitation component. The latter is the Nelder-Mead (resp.
Powell) method for HYBBRID (resp. the algorithm of Lahanas et
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al.). On the one hand, the Nelder-Mead simplex search is an intu-
itive heuristic that is very popular due to its simplicity and empiri-
cal efficiency, at least for problems of dimension less than 5. This
is the case here as the dimension of the SO(3,R) rotation group
is 3. At each iteration of this method, the vertices of the simplex
induce an implicit model that is used to determine the next sim-
plex with just a few evaluations of the cost function. On the other
hand, Powell’s method is a line-search method that requires solving
a succession of one-dimensional minimization subproblems. As far
as the exploration component is concerned, HYBBRID is based on
the genetic algorithm which is stochastic while the multi-scale grid
search method is a priori deterministic.

4. EXPERIMENTAL ANALYSIS

All the methods presented in the previous sections (except
the method of Lahanas et al.) have been implemented using
Matlab R© and tested on about 300 sets of points from [GAMMA
Group 2008]. These examples include a wide selection of different
geometries, ranging from simple shapes to anatomical objects de-
fined by millions of points. As a bounding box only depends on the
convex hull of the object, computing it as a preprocessing step is a
good way to reduce the number of points in the subsequent com-
putations. The distributions of the number of points of the objects
and of vertices on their convex hull, shown in Fig. 6, highlight the
interest of such preprocessing. The characteristics of four of those
examples are given in Table I, while a graphical representation is
shown in Fig. 7. This figure is rendered in GMSH ([Geuzaine and
Remacle 2009]), and the green meshes represent the convex hull of
the objects.

Note that for about 15 % of these objects, the AABB coincides
with an optimal OBB. Furthermore, for about 40 % of the test cases,
the AABB has at least one face parallel to a face of an optimal OBB.

In the remaining of this section, a study of the properties and
behavior of HYBBRID is first presented in 4.1. This method is then
compared to the different techniques introduced in section 2.

4.1 Performance of the Hybrid Bounding Box
Rotation Identification method

The HYBBRID method was tested 200 times on each object of the
test set presented in the previous section. HYBBRID was able to
find an optimal OBB for each dataset. Nevertheless, this solution is
not reached at each run because of the random component of the
genetic algorithm. The actual success rate depends on parameters
such as M and K. With carefully chosen values this success rate
may be brought close to 100 %. However, changing the values of
the parameters also influences the computation time required by
the algorithm. Hence, we will first study the asymptotic time com-
plexity of the algorithm in the following subsection. Then, we will
analyze the effect of the two parameters M and K in terms of per-
formance and computation time. Finally, the reasons why a subop-
timal solution may be returned are explained as well as how it is
possible to modify the algorithm in order to take these facts into
account.

4.1.1 Does it have a linear complexity? One major drawback
of O’Rourke’s algorithm is its cubic time complexity, whereas the
2D problem can be solved with a linear complexity assuming the
convex hull is known. An interesting point to investigate is thus
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Fig. 6. Distribution of the number of points of the different objects and of
vertices on their convex hull.

the time complexity of HYBBRID. In Fig. 8, the computation time
needed by HYBBRID when run on each test case with M = 30
and K = 10 is represented. These experimental results tend to
show that the asymptotic time complexity of this method would be
linear with respect to the number of vertices on the convex hullNV .
Of course, this linear complexity does not include the convex hull
computation done as a preprocessing step. The asymptotic linear
complexity is illustrated by the red dotted line that is obtained us-
ing a weighted linear regression; indeed, data corresponding to test
cases of large size have been given more weight, as we are looking
for an asymptotic behavior.

As each iteration of HYBBRID takes O(NV ) time, which is the
complexity of evaluating the volume of an AABB, the observation
that the asymptotic time complexity of this optimization method
seems linear would imply that the number of generations required
to produce a solution is independent of the set of points. Note also
that taking another pair of parameters would change the compu-
tation times, but the asymptotic complexity is expected to be the
same.

Theoretically, the total asymptotic time growing rate could be
further lowered to O(logNV ) by using the method described in
[Edelsbrunner and Maurer 1985]. Unfortunately, the data structure
described therein is difficult to implement in Matlab R© due to limi-
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(a.) heart482 (b.) hand770

(c.) balljoint4074 (d.) globe9306

Fig. 7. Graphical representation of four examples of tested sets of points, along with their convex hull and the optimal OBB.
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Table I. Characteristics of four examples of tested sets of points. The number in the name corresponds to NV ,
the number of vertices of CH(X ), and the datasets are ordered in increasing values of NV . The second and
third columns give the size of the original set of points and the time required to compute the convex hull,

respectively. For the convex hull computation, the algorithm used is Qhull, which is written in C. The fourth
column corresponds to the volume ratio for the minimal OBB. The fifth and sixth columns show the median

and the maximal volume ratio respectively, obtained by considering 10000 randomly oriented bounding boxes.
All computations have been carried out using Matlab R© 7.6.0 (R2008a) on an Intel R© CoreTM 2 Duo 2.80 GHz

with 3 GiB RAM, running Ubuntu Linux 10.04.
Computation V olume(OBB)/V olume(CH(X ))

Name N time of CH(X ) Optimal OBB Random OBBs (median) Random OBBs (max)
heart482 88608 0.1227 s 2.0070 2.5853 3.0226
hand770 47590 0.0630 s 2.1323 4.9615 6.6021

balljoint4074 137062 0.2337 s 1.9387 2.9988 3.6935
globe9306 19568 0.1108 s 1.8057 2.1185 2.3138
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Fig. 8. Evolution of the computation time required by HYBBRID with
data sets of increasing sizes, excluding the time required to compute the
convex hull. Computer specifications are identical to what is described for
Table I. The results were obtained by running the method 200 times on each
test case and averaging the computation times.

tations in the usage of pointers in the language. Moreover, given the
size of the test cases used, it seems that using this extreme points
locating technique would not improve the total computation time
in practice, as the overhead introduced by the construction of the
structure would be too high.

4.1.2 How do the parameters influence the optimality? In
Fig. 9, the reliability of our algorithm is studied through the per-
formance and the computation time of HYBBRID for different sets
of parameters. The performance is measured by the proportion of
runs where the optimal volume has been obtained up to an accuracy
of 10−12. It is possible to check this as the exact optimal volume
is known, thanks to O’Rourke’s algorithm. Each example has been
tested 200 times in order to take into account the variability due to
the randomness inherent to HYBBRID. The stopping criterion used
in these experiments was the following: “If there is no improve-
ment of at least 1 % during at least 5 iterations, then the search is
stopped”.

It appears that increasing the number of Nelder-Mead iterations
K yields the same general trend as increasing the population size
M : this increases both the reliability and the computation time.
Because of this natural trade-off, the optimal choice of parameters
depends on the requirements for each particular application. For a
given population size, the performance increases significantly with
the number of Nelder-Mead iterations until about K = 20. As ex-
pected, for very small values of K such as 0 or 1, the performance
is very weak. Indeed, this corresponds to a nearly pure genetic al-
gorithm, whereas the main idea of HYBBRID is to keep locally
improving the candidates found by exploring the search space, and
repeatedly combine these improved solutions. After this threshold
value of 20, the performance gain seems much less interesting, es-
pecially for large population sizes. Hence, one interpretation of this
figure is that using 20 Nelder-Mead iterations is somehow optimal;
the population size can then be chosen depending on the needs. As
expected, the performance gain obtained by increasing the popu-
lation size is more significant for small values of M : increasing
M = 10 by 10 units is equivalent to an increase of 100 %, whereas
going from M = 40 to 50 is only an increase of 25 %.

To summarize, based on these experimental results, we suggest
taking K = 20 and then choosing M depending on the available
time and the desired reliability. Note that if parallelization is con-
sidered for HYBBRID, one should take into account the fact that
the genetic component is easily parallelizable whereas at each gen-
eration and for each population member, the Nelder-Mead itera-
tions have to be applied sequentially. Hence in this case, it may be
less expensive to increase the size M of the population than the
number K of Nelder-Mead iterations and another value of K may
be more appropriate.

4.1.3 Why is it not always optimal? Two main reasons may ac-
count for the fact that HYBBRID may sometimes miss the optimal
volume (for example with our set of test cases, in about 4 % of the
runs on average with the pair of parameters (M,K) = (50, 30)).

On the one hand, the algorithm consists in exploring the search
space thanks to the evolution of a population of simplices. If the
search is interrupted too early, a good exploration cannot be en-
sured; hence, a suboptimal solution may be returned. As there is
no simple way to verify whether a given candidate bounding box
is optimal, a time-accuracy trade-off has to be made with the stop-
ping criterion. We have chosen a stopping criterion of the form: “If
there is no improvement of at least x % during at least k iterations,
then the search is stopped”. Typical values used in the experiments
are x = 1 and k = 5. Increasing k for example would increase
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Fig. 9. Computation time and performance of the HYBBRID algorithm for different sets of parameters (M,K). The color of the points corresponds to the
population size, whereas the numerical labels correspond to the value of Nelder-Mead iterations at each generation. The computation time corresponds to the
total time required to approximate the OBBs of all 300 objects, including the computation of the convex hulls. For each test case, the results were obtained by
running the method 200 times and averaging the results.

the expected number of iterations and thus the exploration of the
search space. Many different schemes are possible, and the choice
between a faster algorithm and more exploration should be made
depending on the application.

On the other hand, it is possible that all simplices get stuck in
a local minimum after some iterations. This behavior is desired if
the minimum is global, but this may sometimes happen with sub-
optimal solutions. One way to avoid such a situation could be to
introduce random mutations, e.g., at each iteration, one population
member is replaced by a random simplex. Another possibility is to
apply random perturbations on some or all simplices with a given
small probability. The choice of such a random mutation strategy
is again a trade-off problem as using too many random mutations
may reduce the effect of the improvements given by the Nelder-
Mead algorithm. Conversely, with a small random mutation factor,
the simplices may remain at a suboptimal solution for too long,
possibly activating the stopping criterion. In this work, we have
chosen not to use such random mutations for the sake of simplicity,
but this strategy can be easily included in the algorithm. Moreover,
the results show that the correct bounding box is found in nearly all
cases, and at least a good solution is found in all cases, as it can be
observed in the figures in the previous subsection.

4.2 Comparison of HYBBRID to the state of the art

In this section, the proposed algorithm is compared to the other
methods described in section 2. First, observations are made on a
few very simple examples to highlight some of the strengths and
shortcomings of the different techniques. Then, all the methods are
compared on the whole set of test cases to extract more information
about how they compare in terms of computation time and reliabil-
ity.

4.2.1 What are the methods’ basic properties? The different
methods with some of their general characteristics are presented
in Table II. It appears that HYBBRID is the only iterative method
in the table. This is an advantage as iterative methods tend to be
more robust than direct ones. Note that only all-pairs, Korsawe’s
and O’Rourke’s methods are not linear with respect toNV ; the first
two being much easier to implement than the third.

The computation of the convex hull is optional for HYBBRID.
Indeed, keeping only the points on the convex hull does not change
the result returned by HYBBRID but it may reduce the total com-
putation time depending on the values ofN andNV . In the follow-
ing results, the computation of CH(X ) will be done as this gives
a faster algorithm in nearly all test cases. The situation is differ-
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Table II. General characteristics of the methods. Columns 2 and 3 show the type and the accuracy of the methods. The fourth
column gives the worst-case asymptotic time complexity of the algorithms, in terms of the number of points N in the set, and the
number NV of vertices of the convex hull. The computation of CH(X ) (with complexity O(N logN), not included in the term in
the fourth column) is needed for methods labeled with ?. It is not necessary but generally recommended for HYBBRID, which is

indicated by the label ??. The last column indicates the approximate number of lines of code of the implementation.
Method Category Accuracy Complexity Implementation

O’Rourke Direct, enumeration Guaranteed exact O(N3
V )? ∼ 500 lines

HYBBRID Iterative, optimization Often exact in practice, parametric O(NV )?? (experimental) ∼ 400 lines
GRIDSEARCHMINVOLBBX Direct, enumeration (1 + ε)-approximation O(NV

ε3
)? ∼ 100 lines

PCA Direct Suboptimal O(N) ∼ 100 lines
Gottschalk et al. Direct Suboptimal O(NV )? ∼ 20 lines

All-pairs Direct, enumeration Suboptimal O(N3
V )? ∼ 100 lines

Korsawe Direct, enumeration Suboptimal O(N2
V )? or O(N3

V )? ∼ 200 lines

 

 

Points

Convex hull

Optimal OBB

OBB (all−pairs)

OBB (PCA)

Fig. 10. Bounding boxes obtained by several methods, for the set S af-
ter rotation. O’Rourke’s algorithm, HYBBRID, PCA/Gottschalk et al.’s
method with post-processing and a variant of Korsawe’s one are optimal
(blue box). The all-pairs method gives the red suboptimal box that is two
times larger, as does another variant of Korsawe’s algorithm. The green box
is obtained using PCA, but without post-processing.

ent with All-PCA, Max-PCA and Min-PCA as taking the convex
hull of the set of points may result in a different OBB which is not
always smaller.

The number of lines specified in the table is roughly the num-
ber of Matlab R© code lines that were specifically written to imple-
ment the method. That is why some methods have a particularly low
number of lines, for example Gottschalk et al.’s one. Using another
language, where more low-level numerical operations would have
to be either implemented from scratch or imported from a library
would require more code. For other methods, namely PCA and Ko-
rsawe’s, the number shown is for the whole set of variants. For ex-
ample, writing a dedicated Matlab R© script for All-PCA would not
require more than ten lines of code.

Note that both HYBBRID and Barequet & Har-Peled’s algo-
rithm are methods with parameters (M,K for HYBBRID and ε
(or equivalently d) for Barequet & Har-Peled). It is thus possible
to obtain several compromises between accuracy and computation
time, depending on the application.

It is also interesting to investigate which methods are exact on
very simple examples. A first example is given by an arbitrary ro-
tation of the following set of points:

S = {(−1,−0.1, 0), (−1, 0.1, 0), (1, 0,−0.1), (1, 0, 0.1)} ,

 

 

Points
Convex hull
Optimal OBB
OBB (all−pairs)
OBB (PCA)

Fig. 11. Bounding boxes obtained by several methods, for the tetrahedron
T after rotation. The optimal bounding box, in blue, is only obtained by
O’Rourke’s algorithm, HYBBRID and one variant of Korsawe’s method.
The red box can be obtained by using all-pairs method, whereas Min-PCA
gives the green one.

which is taken from [Barequet and Har-Peled 2001]. The bounding
boxes obtained by several methods are shown in Fig. 10. Several
observations can be made with regard to this example. First of all,
O’Rourke’s algorithm and HYBBRID are able to compute the op-
timal OBB. Conversely, most PCA-based methods are suboptimal
without the post-processing, but all are optimal with it. In fact, the
post-processing step rotates the bounding box around its three axes
to try to find a better OBB. As at least one of the selected axes is
correct in each case (the one corresponding to the main dimension
of the dataset), a rotation around this axis is sufficient to obtain the
optimal result. Note that Max-PCA is already optimal without this
post-processing step since the main dimension of the dataset actu-
ally corresponds to the principal axis of the dataset in this case. A
brute-force method like all-pairs, or naive variants of Korsawe’s,
are unable to find the correct solution. Indeed, the optimal OBB
has no face orthogonal to an edge of CH(X ), nor parallel to a face
of the convex hull. One would need a more elaborate brute-force
method to reach the optimum.

Concerning Barequet & Har-Peled’s GRIDSEARCHMIN-
VOLBBX method, the choice of the unit cell of the grid used
in the algorithm influences the value of the parameter d that is
required for a given accuracy. This unit cell is determined by an
approximation of the diameter of X , which is computed using
the AABB. Hence, the grid and the performance of the algorithm
depend on the initial orientation of the set of points. Even for this
simple example rotated arbitrarily, GRIDSEARCHMINVOLBBX is
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AABB

AABB with post−processing

PCA (All, Min, Max)

PCA (All, Min, Max) with post−processing

Gottschalk et al.

Gottschalk et al. with post−processing

All−Pairs

Korsawe (3 variants)

O’Rourke

Barequet & Har−Peled’s GridSearchMinVolBbx

HYBBRID

Fig. 12. Performance and computation time of all the algorithms. Computer specifications are identical to what is described for Table I. The computation
time corresponds to the total time required to approximate an optimal OBB for each object among the 300 test cases, including the computation of the convex
hulls if it is done by the algorithm. For HYBBRID, the volume of the OBB and the computation time of each test case have been obtained by running the
algorithm 200 times and averaging the results.

only guaranteed to yield the optimal volume to any accuracy for
sufficiently large values of d. For example, with the unrotated set
S, GRIDSEARCHMINVOLBBX finds the optimal solution with a
grid of size d = 1. However, with the rotated set S̃ defined by:

S̃ = RS, R =
1

4

 0 2 2
√

3
2
√

3 −
√

3 1
2 3 −

√
3

 ,

GRIDSEARCHMINVOLBBX returns a solution whose volume has
a relative error of 14 % with d = 20. Hence, although the algorithm
will converge to the optimal value for d → ∞, the orientation of

X can significantly influence the quality of the results returned by
this algorithm for finite values of d.

Another simple example is the tetrahedron obtained by a random
rotation of the set:

T = {(0, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0)} .
Some results for this test case are shown in Fig. 11. Again, even
if the geometry is also really simple, PCA methods fail to find the
optimal bounding box, as do the all-pairs heuristic. Variants of Ko-
rsawe’s method trying to build a bounding box aligned with faces
of the convex hull are also bound to fail: as for the previous case,
the tetrahedron is a geometry whose optimal bounding box is only
flush with edges of said convex hull. The only methods that man-
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age to find the optimal bounding box are O’Rourke’s, HYBBRID
and one of the variants of Korsawe’s method. Note that this ex-
ample illustrates the singularity of the PCA methods, which arises
when the multiplicity of one of the eigenvalues of the covariance
matrix is greater than 1. Then, the corresponding eigenvectors are
not well-defined. In this case, this is due to the symmetry of the
dataset.

4.2.2 Where are they in the performance-computation time di-
agram? All the methods have been tested on the whole set of test
cases; the obtained results are shown in Fig. 12 for three accuracy
values. This figure shows the computation time and the proportion
of runs where the optimal volume has been obtained up to the given
accuracy, as in Fig. 9. Each method or variant is represented by a
particular point in this time-performance diagram. In fact, Fig. 9
corresponds to a close view of Fig. 12 without the logarithmic scale
and displaying only the points corresponding to HYBBRID.

Barequet & Har-Peled’s GRIDSEARCHMINVOLBBX method
has been tested with the following values for the grid size param-
eter: d = 1, 2, . . . , 9, 10, 12, 14, . . . , 28, 30, 35, 40, 45, 50, 60. If
an accurate result is required, then the success rate (as defined in
section 4.1.2) of the method stalls at about 40 % of the test cases
for these values of d. Much higher values of d are thus needed in
order to obtain an accurate result for most examples. Indeed, as
d ∈ Θ( 1

ε
), in order to improve the guaranteed accuracy by a factor

k, one needs to increase the grid size d by a factor k. For instance,
in order to reach a guaranteed accuracy of 10−8 instead of 10−3,
the value of d needs to be increased by a factor 105. However, if
only a rough approximation such as 10−3 or less is required, this
range of values of d may provide satisfactory results, as shown in
Fig. 12. Note that to the best of our knowledge, Barequet & Har-
Peled’s algorithm was the only method providing such a trade-off
between accuracy and computation time. Moreover, it appears that
the values d = 1 and 2 yield smaller computation times than all
other methods for their range of performance.

Another interesting observation is that the threshold value of
40 % corresponds to the performance obtained by using an AABB
on which the post-processing step is applied. This can be explained
by the symmetry and the natural definition of some objects in the
test set, which are usually oriented in a way that is usual for hu-
man beings, and thus aligned with the principal axes. As such, for
these objects, the AABB has a common axis with an optimal OBB.
As GRIDSEARCHMINVOLBBX is based on the AABB for the di-
ameter approximation, the symmetry and the definition of the set
of points (more precisely their ordering) also imply that the orien-
tation of the grid has an axis aligned with one axis of an optimal
OBB. Hence, solving the associated 2D problem will return an op-
timal solution.

As far as Korsawe’s method is concerned, the two faster vari-
ants are either faster or more reliable than the other methods, ex-
cept when compared to HYBBRID algorithm. The slower variant
demonstrates very good performances, but unfortunately its com-
putation time is much too large for practical purposes. The method
is in fact even slower than O’Rourke’s algorithm even if the latter
has a guaranteed performance of 100 %. Another method enumer-
ating a large set of directions is the all-pairs method. Unfortunately,
its performance is dominated by Korsawe’s, i.e., the latter appears
to be both faster and more reliable than all-pairs.

As expected, PCA-based methods are very fast but provide solu-
tions with a very limited accuracy. The quality may even be worse
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AABB

AABB with post−processing

Min−PCA with post−processing

Gottschalk et al. with post−processing

All−Pairs

Korsawe (variant 3)

Korsawe (variant 2)

Barequet & Har−Peled’s GridSearchMinVolBbx (d=60)

HYBBRID (M=50, K=30)

Fig. 13. Failure rate of the different algorithms for several tolerance
thresholds. The same results are displayed with a linear vertical axis in (a.)
and with a logarithmic vertical axis in (b.). Computations have been done
on the whole set of about 300 objects. For each test case and each threshold
τ , the run is considered as a failure if the relative error is greater than τ . For
HYBBRID, the failure rate is based on 200 runs for each object.
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than the result obtained by an axis-aligned bounding box. Note that
All-PCA, Min-PCA and Max-PCA are both represented by four
points. Indeed, the obtained OBB may vary depending on if one
applies the preprocessing step and/or the post-processing step, or
none of them. In the case of continuous PCA, the preprocessing
step is required by the algorithm; hence, Gottschalk et al.’s method
is only represented by two points.

It appears that HYBBRID is consistently the fastest method de-
livering the optimal volume on almost all test cases, with suf-
ficiently large parameters. Faster methods present considerably
lower performance levels. Some implementation details must also
be taken into account while reviewing those results. Regarding the
speed of the PCA-based methods, those only use a few matrix op-
erations, most of which are written in highly efficient C code in
Matlab R© . On the other hand, the other algorithms such as HYB-
BRID and O’Rourke’s mostly use Matlab R© code, which is slower.
A well-written pure C implementation of those methods should re-
duce the execution time, making them better suited for real-life sce-
narios.

Another point of interest is the distribution of the error compared
to the optimal solution over all runs for all test cases. This informa-
tion is shown in Fig. 13 for a selected subset of algorithms. To each
method correspond at least one curve in the figure obtained with the
variants yielding the best performance, independently of the com-
putation time. Of course, O’Rourke’s algorithm is not represented
on this figure since it is optimal and thus, has a failure rate of 0 %.
A closer view with a logarithmic scale is also included in order to
emphasize the exact performance of HYBBRID.

Note that the information about the failure rate for relative er-
ror tolerances of 10−2, 10−3 and 10−8 was already contained in
Fig. 12. However, it is also interesting to see the evolution of the
failure rate with the tolerance between and outside those values.
For instance, this allows to show that a failure rate of 50 % can be
achieved with Min-PCA for smaller tolerances than with AABB
without post-processing. Nevertheless, the latter has a slightly
smaller failure rate for tolerances tending to 0, even though both
methods are clearly unsuitable for such tolerance levels. It also ap-
pears that AABB with post-processing has a failure rate equivalent
to that of Min-PCA for relative error tolerances bigger than 0.05,
but is 30 % more reliable for very small tolerances.

A similar trade-off between the performances for small
and large tolerances is observed for Barequet & Har-Peled’s
GridSearchMinVolBbx method (which is shown in Fig. 13 with
parameter d = 60) with respect to the third variant of Kor-
sawe’s method and all-pairs. For instance, GridSearchMinVolBbx
is more reliable than Korsawe’s method (resp. all-pairs) for rela-
tive error tolerances larger than about 3 × 10−4 (resp. 4 × 10−5)
but then, the failure rate increases and becomes worse for smaller
tolerances. Indeed, the reliability of the method is then roughly
equivalent to that of AABB with post-processing for tolerances
smaller than 10−6. Of course, the value of the tolerance where
GridSearchMinVolBbx becomes equivalent to AABB with post-
processing approaches 0 as d increases.

The behaviors of HYBBRID and the second variant of Korsawe’s
method are better shown with a logarithmic scale. The thresholding
of the failure rate at 0.01 % is only due to the finite sampling issue,
i.e., only about 300 test cases. It appears that HYBBRID is the most
reliable method for tolerances smaller than 10−5 ; more precisely,
its failure rate is about twice as small as the second variant of Ko-
rsawe’s method. The fact that HYBBRID is slightly less reliable
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Fig. 14. Errors and computation time of all the algorithms on the example
with the largest number of vertices on its convex hull. Computer specifica-
tions are identical to what is described for Table I. The computation time
corresponds to the time required to approximate an optimal OBB, includ-
ing the computation of the convex hulls if it is done by the algorithm. For
HYBBRID, the volume of the OBB and computation time of each test case
have been obtained by running the algorithm 200 times and averaging the
results. The legend is the same as in Fig. 12. For the sake of readability,
errors below 10−5 are displayed at this threshold value.

than the latter for larger tolerances can be nuanced by taking into
account the computation time as Korsawe’s method is about 10000
times slower than HYBBRID to complete the set of test cases.

It is also interesting to compare the efficiency of all these meth-
ods on the most complex test case, i.e., globe9306 in Fig. 7. The
errors and computation times observed for this example are shown
in Fig. 14. Among the pairs of parameters of HYBBRID repre-
sented on this figure, the one yielding the slowest computation in
average is (M,K) = (50, 30) with a running time of less than 18
seconds. Conversely, O’Rourke’s algorithm needs about 45 hours to
find the optimal OBB, and the three variants of Korsawe’s method
have a computation time ranging from 12 minutes to about 90 days.

5. CONCLUSION

In this article, HYBBRID, an algorithm to approximate the
minimal-volume bounding box of a set of points, has been pre-
sented. It is a combination of two optimization components, namely
the genetic algorithm and the Nelder-Mead algorithm. Combining
those two methods leads to a method that shows a good conver-
gence rate while still ensuring a good exploration of the search
space in order to try to avoid local minima. The new idea in this arti-
cle was to use such a hybrid method on the rotation group SO(3,R)
to determine the orientation corresponding to the smallest enclos-
ing box, or OBB, of a set of points.

The new method has been compared to currently used algo-
rithms, and has been shown to be either much faster than the fastest
exact algorithm (O’Rourke’s) or more accurate than the fastest
heuristics based on principal component analysis. HYBBRID was
able to find the optimal volume for each of the test cases we tried it
on, which shows the reliability of the method. In order to test this
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algorithm, a broad set of methods was implemented in Matlab R© .
The whole codebase provides what we believe is a good framework
to compare OBB fitting methods.

The scheme presented in this article could of course become the
basis for further work. The same algorithm could be used to solve
other problems on SO(3,R), like for example, not finding the min-
imal volume OBB, but the one with the smallest area. It could
also be interesting to investigate if such hybrid combinations of
optimization methods could be used for the computations of other
bounding volumes such as spheres or k-DOPs with arbitrary nor-
mals. Moreover, extensions to dimensions higher than 3 may be
considered in areas such as data mining.

Another possible extension is the case with several distinct opti-
mal OBBs. It may be useful to be able to find all the optimal solu-
tions and select the best one according to another criterion. Since
nothing in HYBBRID prevents the simplices from converging to
different local minima, we only have to analyze the populations and
detect all the global solutions that have been found. The genetic al-
gorithm should then be modified to help the simplices converge to
different global minima, e.g., by introducing a repulsive compo-
nent. As there would be no guarantee that all solutions have been
found, it would also be important to modify the parameters such as
the population size in order to increase the probability of detecting
all global minima.
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