Fast oriented bounding box optimization on the rotation group $SO(3,\mathbb{R})$

Chia-Tche Chang¹, Bastien Gorissen^{2,3} and Samuel Melchior^{1,2}

chia-tche.chang@uclouvain.be
bastien.gorissen@cenaero.be
samuel.melchior@uclouvain.be

November 30th, 2012

¹ Department of Mathematical Engineering (INMA), Université catholique de Louvain

² Department of Mechanical Engineering (MEMA), Université catholique de Louvain ³ CENAERO

Coming up next...

The problem: minimum-volume OBB

Exact methods in 2D and 3D Classical approaches for the 3D case Our goal

Bringing optimization into the game

How to solve an optimization problem?

Results

Conclusion

The problem

Given a set of n points \mathcal{X} in 3D, find the minimum-volume arbitrarily oriented bounding box enclosing \mathcal{X} .

Collision detection, intersection tests, object representation, data approximation... (BV trees...)

In 2D: the rotating calipers method

A minimum-area rectangle circumscribing a convex polygon has at least one side flush with an edge of the polygon.

In 2D: the rotating calipers method

A minimum-area rectangle circumscribing a convex polygon has at least one side flush with an edge of the polygon.

Compute the convex hull: $\mathcal{O}(n \log n)$

In 2D: the rotating calipers method

A minimum-area rectangle circumscribing a convex polygon has at least one side flush with an edge of the polygon.

Compute the convex hull:

$$\mathcal{O}(n \log n)$$

Loop on all edges:

 $\mathcal{O}(n) \to \mathsf{easy}$ and efficient

A minimum-volume box circumscribing a convex polyhedron has at least one face flush with a face of the polyhedron?

In 3D: generalization of the rotating calipers?

A minimum-volume box circumscribing a convex polyhedron has at least one face two adjacent faces flush with a face edges of the polyhedron. [O'Rourke, 1985]

In 3D: generalization of the rotating calipers?

minimum-volume box circumscribing a convex polyhedron has at least one face two adjacent faces flush with a face edges of the polyhedron. [O'Rourke, 1985]

Problem:

Loop on all pairs of edges and rotate the box while keeping edges flush $\rightarrow \mathcal{O}(n^3)$ time complexity...

O'Rourke's algorithm is too slow (cubic time)

 \rightarrow use faster but inexact methods:

- O'Rourke's algorithm is too slow (cubic time)
 - \rightarrow use faster but inexact methods:
 - PCA-based methods (covariance matrix):
 very fast and easy to compute but may be very inaccurate

- O'Rourke's algorithm is too slow (cubic time)
 - → use faster but inexact methods:
 - PCA-based methods (covariance matrix):
 very fast and easy to compute but may be very inaccurate
 - Brute-force all orientations with a small angle increment:
 large computation time and/or low accuracy

- O'Rourke's algorithm is too slow (cubic time)
 - → use faster but inexact methods:
 - PCA-based methods (covariance matrix):
 very fast and easy to compute but may be very inaccurate
 - ♦ Brute-force all orientations with a small angle increment: large computation time and/or low accuracy
 - Brute-force a well-chosen set of orientations:
 may sometimes have (very) good accuracy but still too slow

- O'Rourke's algorithm is too slow (cubic time)
 - \rightarrow use faster but inexact methods:
 - PCA-based methods (covariance matrix): very fast and easy to compute but may be very inaccurate
 - Brute-force all orientations with a small angle increment: large computation time and/or low accuracy
 - Brute-force a well-chosen set of orientations: may sometimes have (very) good accuracy but still too slow
 - Quaranteed quality approximation methods: same problem...

What do we want?

Goal:

- Very good accuracy: find an optimal OBB in (nearly?) all cases
- ♦ If a suboptimal solution is returned, it should be close to the best one
- Computational cost has to be low

What do we want?

Goal:

- Very good accuracy: find an optimal OBB in (nearly?) all cases
- ♦ If a suboptimal solution is returned, it should be close to the best one
- Computational cost has to be low

Our approach: iterative algorithm based on optimization methods

Coming up next...

The problem: minimum-volume OBB

Bringing optimization into the game

OBB fitting as an optimization problem Requirements
Going hybrid

How to solve an entimization problem?

Results

Conclusion

 $\begin{array}{c} \min \\ \text{over size, position, orientation} \\ \text{so that} \end{array} \quad \begin{array}{c} \text{the volume of the bounding box} \\ \text{all the points are in the box} \end{array}$

 $\begin{array}{c} \min \\ \text{over } \Delta \in \mathbb{R}^3, \text{ position, orientation} \\ \text{so that} \end{array} \qquad \begin{array}{c} \text{the volume of the bounding box} \\ \text{all the points are in the box} \end{array}$

 \diamond $\Delta = (\Delta_{\xi}, \Delta_{\eta}, \Delta_{\zeta})$ denotes the dimensions of the OBB,

$$\begin{array}{ccc} \min & \Delta_\xi \Delta_\eta \Delta_\zeta \\ \text{over } \Delta \in \mathbb{R}^3, \text{ position, orientation} \\ \text{so that} & \text{all the points are in the box} \end{array}$$

 $\diamond \ \Delta = (\Delta_{\xi}, \Delta_{\eta}, \Delta_{\zeta})$ denotes the dimensions of the OBB,

$$\begin{array}{ccc} \min & \Delta_\xi \Delta_\eta \Delta_\zeta \\ \text{over } \Delta \in \mathbb{R}^3, \text{ position, orientation} \\ \text{so that} & -\frac{1}{2}\Delta \leq \begin{array}{c} \text{all the rotated and} \\ \text{centered points} \end{array} \leq \frac{1}{2}\Delta \end{array}$$

 $\diamond \ \Delta = (\Delta_{\xi}, \Delta_{\eta}, \Delta_{\zeta})$ denotes the dimensions of the OBB,

$$\begin{array}{ccc} \min & \Delta_\xi \Delta_\eta \Delta_\zeta \\ \text{over } \Delta \in \mathbb{R}^3, \underbrace{\Xi \in \mathbb{R}^3}, \text{ orientation} \\ \text{so that} & -\frac{1}{2}\Delta \leq \text{all the rotated points} -\Xi \leq \frac{1}{2}\Delta \end{array}$$

- $\diamond \ \Delta = (\Delta_{\xi}, \Delta_{\eta}, \Delta_{\zeta})$ denotes the dimensions of the OBB,
- $\diamond \Xi$ is the center of the OBB.

$$\begin{array}{ccc} \min & \Delta_{\xi} \Delta_{\eta} \Delta_{\zeta} \\ \text{over } \Delta \in \mathbb{R}^{3}, \Xi \in \mathbb{R}^{3}, R \in SO(3, \mathbb{R}) \\ \text{so that} & -\frac{1}{2}\Delta \leq R \text{(all the points)} - \Xi \leq \frac{1}{2}\Delta \end{array}$$

- $\diamond \ \Delta = (\Delta_{\xi}, \Delta_{\eta}, \Delta_{\zeta})$ denotes the dimensions of the OBB,
- \diamond Ξ is the center of the OBB.
- $\diamond R \in SO(3,\mathbb{R})$ is a rotation matrix,

$$\begin{array}{ccc} \min & \Delta_{\xi} \Delta_{\eta} \Delta_{\zeta} \\ \text{over } \Delta \in \mathbb{R}^{3}, \Xi \in \mathbb{R}^{3}, R \in \textcolor{red}{SO(3,\mathbb{R})} \\ \text{so that} & -\frac{1}{2}\Delta \leq R (\text{all the points}) -\Xi \leq \frac{1}{2}\Delta \end{array}$$

- $\diamond \ \Delta = (\Delta_{\xi}, \Delta_{\eta}, \Delta_{\zeta})$ denotes the dimensions of the OBB,
- \diamond Ξ is the center of the OBB.
- $\diamond \ R \in SO(3,\mathbb{R})$ is a rotation matrix,
- $\diamond \ SO(3,\mathbb{R}) = \left\{ R \in \mathbb{R}^{3 \times 3} \mid R^T R = I = RR^T, \det(R) = 1 \right\},\,$

$$\begin{array}{ccc} \min & \Delta_{\xi} \Delta_{\eta} \Delta_{\zeta} \\ \text{over } \Delta \in \mathbb{R}^{3}, \Xi \in \mathbb{R}^{3}, R \in SO(3, \mathbb{R}) \\ \text{s.t.} & -\frac{1}{2} \Delta \leq R \mathbf{X}_{\pmb{i}} - \Xi \leq \frac{1}{2} \Delta & \forall i = 1, \dots, N \end{array}$$

- $\diamond \ \Delta = (\Delta_{\xi}, \Delta_{\eta}, \Delta_{\zeta})$ denotes the dimensions of the OBB,
- \diamond Ξ is the center of the OBB.
- $\diamond R \in SO(3,\mathbb{R})$ is a rotation matrix,
- $\diamond SO(3,\mathbb{R}) = \left\{ R \in \mathbb{R}^{3 \times 3} \mid R^T R = I = RR^T, \det(R) = 1 \right\},\,$
- \diamond $\mathcal{X} = \{\mathbf{X}_i \mid i = 1, \dots, N\}$ is the considered set of points

$$\begin{array}{ll} \min_{\Delta \in \mathbb{R}^3, \Xi \in \mathbb{R}^3, R \in SO(3, \mathbb{R})} & \Delta_{\xi} \Delta_{\eta} \Delta_{\zeta} \\ \text{s.t.} & -\frac{1}{2} \Delta \leq R \mathbf{X}_i - \Xi \leq \frac{1}{2} \Delta \quad \forall i = 1, \dots, N \end{array}$$

- $\diamond \ \Delta = (\Delta_{\xi}, \Delta_{\eta}, \Delta_{\zeta})$ denotes the dimensions of the OBB,
- \diamond Ξ is the center of the OBB.
- $\diamond R \in SO(3,\mathbb{R})$ is a rotation matrix,
- $\diamond SO(3,\mathbb{R}) = \left\{ R \in \mathbb{R}^{3 \times 3} \mid R^T R = I = RR^T, \det(R) = 1 \right\},\,$
- \diamond $\mathcal{X} = \{\mathbf{X}_i \mid i = 1, \dots, N\}$ is the considered set of points

Smooth but constrained optimization problem

Unconstrained formulation

$$\min_{R \in SO(3,\mathbb{R})} \underbrace{\left(\begin{array}{cc} \min_{\Delta \in \mathbb{R}^3, \Xi \in \mathbb{R}^3} & \Delta_{\xi} \Delta_{\eta} \Delta_{\zeta} \\ \text{s.t.} & -\frac{1}{2} \Delta \leq R \mathbf{X}_i - \Xi \leq \frac{1}{2} \Delta \ \forall i = 1, \dots, N \end{array} \right)}_{f(R)}$$

Unconstrained formulation

$$\min_{R \in SO(3,\mathbb{R})} \underbrace{\left(\begin{array}{cc} \min & \Delta_{\xi} \Delta_{\eta} \Delta_{\zeta} \\ \Delta \in \mathbb{R}^{3}, \Xi \in \mathbb{R}^{3} \\ \text{s.t.} & -\frac{1}{2} \Delta \leq R \mathbf{X}_{i} - \Xi \leq \frac{1}{2} \Delta \ \forall i = 1, \dots, N \end{array} \right)}_{f(R)}$$

The objective function f(R) is simply the volume of the AABB of ${\mathcal X}$ rotated by R

Unconstrained formulation

$$\min_{R \in SO(3,\mathbb{R})} \underbrace{\left(\begin{array}{cc} \min \\ \Delta \in \mathbb{R}^3, \Xi \in \mathbb{R}^3 \\ \text{s.t.} \end{array} \right. - \frac{1}{2}\Delta \leq R\mathbf{X}_i - \Xi \leq \frac{1}{2}\Delta \ \forall i = 1, \dots, N}_{f(R)} \right)}_{f(R)}$$

The objective function f(R) is simply the volume of the AABB of ${\mathcal X}$ rotated by R

Unconstrained but non-differentiable optimization problem

... a derivative-free method

f(R) is not differentiable everywhere...

- ... a derivative-free method
- ... a global search technique

f(R) has many local minima...

- ... a derivative-free method
- ... a global search technique
- ... a fast convergence rate

That was the point!

Our idea: using an hybrid method

1. Use a global exploration component: genetic algorithm (GA)

Our idea: using an hybrid method

- 1. Use a global exploration component: genetic algorithm (GA)
- 2. Speed up convergence using a local exploitation algorithm Nelder-Mead simplex algorithm (NM)

Our idea: using an hybrid method

- Use a global exploration component: genetic algorithm (GA)
- Speed up convergence using a local exploitation algorithm Nelder-Mead simplex algorithm (NM)
 - GA alone would be very slow to converge (GA more suitable for discrete search spaces)
 - NM alone would be stuck in local minima (even with restarts)

Coming up next...

The problem: minimum-volume OBB

Bringing optimization into the game

How to solve an optimization problem?

Genetic algorithms (GA)

The Nelder-Mead algorithm (NM)

HYBBRID: let's mix GA and NM together!

Results

Conclusion

Global exploration: genetic algorithms

Stochastic population-based evolutionary method

(original variant proposed by Holland in the 1970s)

- Population-based: keep a large set of candidates at each iteration
- Evolutionary: generate new candidates by combining current ones depending on their performance

Start with a set of candidates (population) and a performance function (fitness function)

Start with a set of candidates (population) and a performance function (fitness function)

At each generation:

Selection: parents are selected depending on their fitness

```
Start with a set of candidates (population) and a performance function (fitness function)
```

At each generation:

- Selection: parents are selected depending on their fitness
- Crossover: selected parents produce offsprings

```
Start with a set of candidates (population) and a performance function (fitness function)
```

At each generation:

- Selection: parents are selected depending on their fitness
- Crossover: selected parents produce offsprings
- Mutation: offsprings can be subject to mutations
 (random modification, gradient step, SA step, ...)

The Nelder-Mead simplex algorithm

Derivative-free simplicial optimization method

(original algorithm proposed by Nelder & Mead in 1965)

```
Simplex (in \mathbb{R}^n) = set of n+1 affinely independent points
```

- $\diamond \ n=2$: triangle
- \diamond n=3: tetrahedron
- ٥ ...

Ideas of the algorithm (details omitted)

Four main ways to move/transform the simplex depending on the performance of its vertices: affine combinations

Population of M simplices (simplex = set of 4 rotation matrices) Fitness function f(R) (volume of corresponding OBB)

Population of M simplices (simplex = set of 4 rotation matrices) Fitness function f(R) (volume of corresponding OBB)

♦ Selection: Evaluate fitness of all simplices, keep best 50%

Population of M simplices (simplex = set of 4 rotation matrices) Fitness function f(R) (volume of corresponding OBB)

- ♦ Selection: Evaluate fitness of all simplices, keep best 50%
- \diamond Crossover I: Create $\frac{M}{2}$ offsprings by mixing vertices: $A_1B_1C_1D_1\otimes A_2B_2C_2D_2 \to A_{i_1}B_{i_2}C_{i_3}D_{i_4}, \quad i_k\in\{1,2\}$

Population of M simplices (simplex = set of 4 rotation matrices) Fitness function f(R) (volume of corresponding OBB)

- Selection: Evaluate fitness of all simplices, keep best 50%
- \diamond Crossover I: Create $\frac{M}{2}$ offsprings by mixing vertices: $A_1B_1C_1D_1\otimes A_2B_2C_2D_2 \to A_{i_1}B_{i_2}C_{i_3}D_{i_4}, \quad i_k\in\{1,2\}$
- \diamond Crossover II: Create $\frac{M}{2}$ offsprings by affinely combine vertices: $A_1B_1C_1D_1\otimes A_2B_2C_2D_2 \to A_3B_3C_3D_3$ with $A_3=\lambda A_1+(1-\lambda)A_2$

Population of M simplices (simplex = set of 4 rotation matrices) Fitness function f(R) (volume of corresponding OBB)

- Selection: Evaluate fitness of all simplices, keep best 50%
- \diamond Crossover I: Create $\frac{M}{2}$ offsprings by mixing vertices: $A_1B_1C_1D_1\otimes A_2B_2C_2D_2 \to A_{i_1}B_{i_2}C_{i_3}D_{i_4}, \quad i_k\in\{1,2\}$
- \diamond Crossover II: Create $\frac{M}{2}$ offsprings by affinely combine vertices: $A_1B_1C_1D_1\otimes A_2B_2C_2D_2 \to A_3B_3C_3D_3$ with $A_3=\lambda A_1+(1-\lambda)A_2$
- ♦ Mutation: Apply K Nelder-Mead iterations on each offspring

HYBBRID

Nelder-Mead algorithm \oplus Genetic algorithm on the special orthogonal group SO(3) to solve the optimal OBB problem

HYBBRID

Nelder-Mead algorithm \oplus Genetic algorithm on the special orthogonal group SO(3) to solve the optimal OBB problem

_

HYbrid Bounding Box Rotation IDentification algorithm

Coming up next...

The problem: minimum-volume OBB

Bringing optimization into the game

How to solve an optimization problem?

Results

Behaviour of HYBBRID Comparison to other algorithms

Conclusion

Behavior of HYBBRID

All algorithms tested on a benchmark set of ~ 300 objects (Gamma db) Implementations done in MATLAB (built-in functions are used)

Behavior of HYBBRID: yes, it works!

All algorithms tested on a benchmark set of ~ 300 objects (Gamma db) Implementations done in MATLAB (built-in functions are used)

Error is less than 10^{-12} in 90%+ of the cases!

How does it scale?

Experimental results show a roughly linear complexity!

Trying random orientations does not work...

Constrained smooth opti: success rate $\sim 40\%$ but mainly AABBs...

Unconstrained non-diff. opti, random initializations: much better results!

HYBBRID: combining potential solutions does improve the success rate!

First, let's ignore the computational cost and look at the failure rates...

A reference point: the simple AABB

First, let's ignore the computational cost and look at the failure rates...

PCA-based methods: limited accuracy

First, let's ignore the computational cost and look at the failure rates...

Brute-forcing on a set of orientations may be OK... if well chosen!

First, let's ignore the computational cost and look at the failure rates...

Guaranteed approximation algorithms: limited by computational resources

First, let's ignore the computational cost and look at the failure rates...

HYBBRID: more accurate than these other methods

What are the computation times? (Tolerance: 10^{-3})

AABB – PCA – Continuous PCA – Brute-force on a set of orientations O'Rourke's exact algorithm – Guaranteed approximation – HYBBRID

What are the computation times? (Tolerance: 10^{-6})

AABB – PCA – Continuous PCA – Brute-force on a set of orientations O'Rourke's exact algorithm – Guaranteed approximation – HYBBRID

Coming up next...

The problem: minimum-volume OBB

Bringing optimization into the game

How to solve an optimization problem?

Results

Conclusion

 \diamond HYBBRID: Nelder-Mead \oplus Genetic algorithm able to approximate optimal OBBs using optimization on SO(3)

- \diamond HYBBRID: Nelder-Mead \oplus Genetic algorithm able to approximate optimal OBBs using optimization on SO(3)
- More accurate and/or faster than other algorithms

- \diamond HYBBRID: Nelder-Mead \oplus Genetic algorithm able to approximate optimal OBBs using optimization on SO(3)
- More accurate and/or faster than other algorithms
- Still has room for improvements...

- \diamond HYBBRID: Nelder-Mead \oplus Genetic algorithm able to approximate optimal OBBs using optimization on SO(3)
- More accurate and/or faster than other algorithms
- Still has room for improvements...

Thank you for your attention!