On the growth rate of matrices with row uncertainties
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Abstract

Let A and B be two n x n matrices with rows denoted by a;
and b;. We consider the discrete linear system characterized
by the equation :

x(t+1)=Mx(t), M;€X(A,B),

where the set X(A,B) consists of all 2" matrices such that
the ith row is either a; or b;.

Here, we are interested in the growth rate and the bounded-
ness of such systems, i.e. the question whether the matrix
products M;M;_ ... My remain bounded for all products. In
particular, we are interested in the case where B is the iden-
tity matrix. Indeed, this particular case can be interpreted as
an asynchronous linear iteration with zero-delay, where only
asubset o C {1,...,n} of the variables are updated with the
matrix A at each time step:

xk(l+1) = Zaij]'(t) ifk € o,
J

(1) ifk¢o.

Such iterations arise in several contexts, for example in par-
allel and distributed computation [1], where a processor i
needs the value x;() to be transferred from processor j in
order to compute x;(z + 1). Update is thus impossible if the
value is not yet available.

Another example is consensus problems where groups of
agents update their opinions asynchronously.

The maximal growth rate of such a discrete linear system
can be measured by a quantity called joint spectral radius
(JSR). The JSR of a set ¥ of matrices is defined by the fol-
lowing expression:

p(E) = lim max{||A;, ... Ay ||'/* | A; € £},

independently of the matrix norm used. For bounded sets
¥, the JSR is also equal to the so-called generalized spectral
radius P, defined by the following equation:

p(X) =limsupmax{p(4;, ...A,-k)l/k |A; €X}.

For the linear iterations we consider, all trajectories con-
verge thus to the origin if and only if the JSR of the cor-
responding set of matrices is strictly less than 1.

The computation of the JSR is notoriously difficult in the
general case: the problem of checking whether p < 1 has
been proved undecidable [2] and the decidability of the
question p < 1 is currently unknown (see [3] for a survey).
However, in our case, i.e. matrices with row uncertainties, if
A is nonnegative, then the JSR p(X(A, 1)) is easy to compute
[4] and is in fact even equal to max{p(A),1}.

If we allow negative entries in the matrix A, it can be seen
that this does not hold anymore, and we show with a simple
example that the JSR can be strictly greater than the spectral
radii of all matrices in X(A,T).

A related open question is thus whether it is possible to com-
pute the joint spectral radius and to decide boundedness of
Y(A,I) in polynomial time. In this talk, we discuss proper-
ties and complexity issues involving such sets of matrices.
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