Christian Hagendorf

Contact information

Christian Hagendorf

Université Catholique de Louvain
Institut de Recherche en Mathématique et Physique

Bat. Marc de Hemptinne
Chemin du Cyclotron 2
1348 Louvain-la-Neuve

phone: +32 10 47 31 81
email: firstname.lastname(at)


Research interests and vita

Curriculum vitae (.pdf)


  1. C. Hagendorf and A. Morin-Duchesne Symmetry classes of alternating sign matrices in the nineteen-vertex model. arxiv:1601.01859
  2. L. Huijse and C. Hagendorf On the ground states of the M(l) models. arxiv:1509.08879
  3. C. Hagendorf, T. B. Fokkema, and L. Huijse Bethe ansatz solvability and supersymmetry of the M2 model of single fermions and pairs. Accepted for publication in J. Phys. A, arxiv:1408.4403,
  4. C. Hagendorf The nineteen-vertex model and alternating sign matrices. Submitted to J. Stat. Mech., arxiv:1405.4726
  5. C. Hagendorf Spin chains with dynamical lattice supersymmetry. arXiv:1207.0357,  J. Stat. Phys. 150 (2013) 609-657
  6. M. Beccaria and C. Hagendorf A staggered fermion chain with supersymmetry on open intervals. arXiv:1206.4194, J. Phys. A: Math. Theor. 45 (2012) 365201
  7. C. Hagendorf and P. Fendley The eight-vertex model and lattice supersymmetry. arXiv:1109.4090, J. Stat. Phys. 146 (2012), 1122-1155
  8. P. Fendley and C. Hagendorf Ground-state properties of a supersymmetric fermion chain. arXiv:1011.6386, J. Stat. Mech. (2011) P02014
  9. P. Fendley and C. Hagendorf Exact and simple results for the XYZ and strongly interacting fermion chains. arXiv:1006.0237, J. Phys. A: Math. Theor. 43 (2010) 402004
  10. C. Hagendorf, D. Bernard, and M. Bauer The Gaussian free field and SLE(4) on doubly connected domains. arXiv:1001.4501, J. Stat. Phys. 140, 1-26 (2010)
  11. C. Texier, and C. Hagendorf Effect of boundaries on the spectrum of a one-dimensional random mass Dirac Hamiltonian. arXiv:0909.2205, J. Phys. A: Math. Theor. 43 (2010) 025002
  12. C. Texier, and C. Hagendorf One-dimensional classical diffusion in a random force field with weakly-concentrated absorbers. arXiv:0902.2698, Europhys. Lett. 86 (2009) 37011
  13. C. Hagendorf A generalisation of Schramm's formula for SLE(2). arXiv:0810.4503, J. Stat. Mech. (2009) P02033
  14. C. Hagendorf, and C. Texier Breaking supersymmetry in a one-dimensional random Hamiltonian. arXiv:0805.2883, J. Phys. A: Math. Theor. 41 (2008) 405302
  15. P. Calabrese, C. Hagendorf, and Pierre Le Doussal Time evolution of 1D gapless models from a domain-wall initial state: SLE continued? arXiv:0804.2431, J. Stat. Mech. (2008) P07013
  16. C. Hagendorf, and P. Le Doussal SLE on doubly-connected domains and the winding of loop-erased random walks. arXiv:0803.3249,  J. Stat. Phys. 133 (2008) 231-254
  17. F. David, C. Hagendorf, and K.J. Wiese A toy model for RNA secondary structures. J. Stat. Mech.  (2008) P04008, arXiv:0711.3421
  18. F. David, C. Hagendorf, and K.J. Wiese Random RNA under tension. Europhys. Lett. 78 (2007) 68003,  arXiv:q-bio/0701049

Ph.D. thesis Evolutions de Schramm-Loewner et théories conformes; Deux exemples de systèmes désordonnés de basse dimension (Université Pierre et Marie Curie, Paris VI, 2009, in french): TEL-00422366