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Abstract. Norway has used e-voting in its last political election in
September 2011, with more than 25 000 voters using the e-voting option.
The underlying protocol is a new protocol designed by the ERGO group,
involving several actors (a bulletin box but also a receipt generator, a
decryption service, and an auditor). Of course, trusting the correctness
and security of e-voting protocols is crucial in that context. Formal def-
initions of properties such as privacy, coercion-resistance or verifiability
have been recently proposed, based on equivalence properties.
In this paper, we propose a formal analysis of the protocol used in Nor-
way, w.r.t. privacy, considering several corruption scenarios. Part of this
study has conducted using the ProVerif tool, on a simplified model.
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1 Introduction

Electronic voting protocols promise a convenient, efficient and reliable way for
collecting and tallying the votes, avoiding for example usual human errors when
counting. It is used or have been used for political elections in several countries
like e.g. USA, Estonia, Switzerland and recently Norway, at least in trials. How-
ever, the recent history has shown that these systems are highly vulnerable to
attacks. For example, the Diebold machines as well as the electronic machines
used in India have been attacked [13,24]. Consequently, the use of electronic vot-
ing raises many ethical and political issues. For example, the German Federal
Constitutional Court decided on 3 March 2009 that electronic voting used for
the last 10 years was unconstitutional [1].

There is therefore a pressing need for a rigorous analysis of the security of
e-voting protocols. A first step towards the security analysis of e-voting pro-
tocols consists in precisely defining security w.r.t. e-voting. Formal definitions
have been proposed for several key properties such as privacy, receipt-freeness,
coercion resistance, or verifiability, most of them in terms of equivalence-based
properties (see e.g. [12,17]). It is however difficult to formally analyse e-voting
protocols for two main reasons. First there are very few tools that can check
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equivalence properties: ProVerif [5,6] is probably the only one but it does not
really work in the context of e-voting (because it tries to show a stronger notion
of equivalence, which is not fulfilled when checking for ballot secrecy). Some
other very recent (yet preliminary) tools have been proposed such as Datep [8]
or AKiSs [7]. However, the cryptographic primitives used in e-voting are rather
complex and non standard and are typically not supported by existing tools.

In this paper, we study the protocol used in last September for political
elections in Norway [2]. E-voting was proposed as trials in several municipalities
and more than 25 000 voters did use e-voting to actually cast their vote. The
protocol is publicly available [15] that has four main components: a Bulletin
Box, a Decryption Service, and a Receipt Generator and an Auditor which aim at
watching the Bulletin Box recording the votes. The resulting protocol is therefore
complex, e.g. using El Gamal encryption in a non standard way. In [15], Gjøsteen
describes the protocol and discusses its security. To our knowledge, there does
not exist any security proof, even for the crucial property of vote privacy.

Our contribution. We conduct a formal analysis of the Norwegian protocol
w.r.t. privacy. Our first contribution is the proposition of a formal model of
the protocol in applied-pi calculus [3]. One particularity of the protocol is to
distribute public keys pk(a1), pk(a2), and pk(a3) for the three authorities, such
that the corresponding private keys a1, a2, and a3 verify the relation a1 + a2 =
a3, allowing one component (here the Bulletin Box) to re-encrypt messages.
The protocol also makes use of signature, of zero-knowledge proofs, of blinding
functions and coding functions. We have therefore proposed a new equational
theory reflecting the unusual behavior of the primitives.

Our second contribution is a formal security proof of privacy, in the presence
of arbitrarily many dishonest voters. Given the complexity of the equational
theory (with e.g. four associative and commutative symbols), the resulting pro-
cesses can clearly not be analyzed with existing tools, even ProVerif. We therefore
proved privacy (expressed as an equivalence property) by hand. The proof hap-
pens to be quite technical. Its first step is rather standard and consists in guessing
a relation such that the two initial processes and all their possible evolutions are
in relation. The second step is more involved: it requires to prove equivalent an
infinite number of frames, the frames representing all possible attacker knowl-
edge. Indeed, unlike most previously analyzed protocols, the Norwegian protocol
emits receipts for the voters, potentially providing extra information to the at-
tacker. Proving static equivalence is also made difficult due to our equational
theory (e.g. four associative and commutative symbols).

Our third contribution is an analysis of the protocol for further corruption
scenarios, using the ProVerif tool in a simplified model (therefore possibly losing
attacks). In conclusion, we did not find any attack, except when the bulletin
box and the receipt generator or the decryption service alone (if no shuffling is
made) are corrupted. These attacks are probably not surprising but we found
interesting to make them explicit.

Related Work. [15] provides a discussion on the security of the Norwegian
protocol but no security proof. We do not know any other study related to
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this protocol. Several other e-voting protocols have been studying using formal
methods. The FOO [14], Okamoto [23] and Lee et al. [21] voting protocols have
been analysed in [12]. Similarly, Helios has been recently proved secure both
in a formal [10] and a computational [4] model. However, all these protocols
were significantly simpler to analyse. The more complex Civitas protocol was
analyzed in [18]. In contrast, the Norwegian protocol is both complex and fully
deployed. There are also been studies of hybrid protocols (not fully electronic),
such as Scantegrity [20] or ThreeBallot [19].

We informally describe the protocol in Section 2. The applied-pi calculus is
briefly defined in Section 3. We then provide a formal modeling of the protocol
in Section 4 and formally state and prove the privacy properties satisfied by
the protocol in Section 5. The results obtained with ProVerif are described in
Section 6. Concluding remarks can be found in Section 7. All the proofs are
provided in a research report [11].

2 Norwegian E-Voting Protocol

V P B

R

D

A

Norwegian protocol features several players including four players represent-
ing the electronic poll’s infrastructure : a ballot box (B), a receipt generator (R),
a decryption service (D) and an auditor (A). Each voter (V) can log in using a
computer (P) in order to submit his vote. Channels between computers (voters)
and the ballot box are considered as authenticated channel, channels between
infrastructure’s player are untappable channels and channel between voters and
receipt generator is a unidirectional out-of-band channel. (Example of SMS is
given in [15].) The protocol can be divided in three phases : the setting phase,
the submission phase, where voters submit their votes, and the counting phase,
where ballots are counted and auditor verifies the correctness of the election.

2.1 Setting phase

Before the election, private keys a1, a2, and a3 (such that a1 + a2 = a3) are
distributed over, respectively D, B, and R, while the corresponding public keys
are made publicly available. The receipt generator R is assumed to have a signing
key idR which corresponding verification key is distributed to P. The voters are
also assume to each have a signing key idV with the corresponding verification
key distributed to B. The bulletin board B is provided with a table V 7→ sV
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V P B R

x← gr ,
w ← y1

r f (o) ,
p← pfk ,
si ← sign((x ,w , p) , idv)

v

x̌ ← x
sV ,

w̌ ←w sV x̌a2 ,
p̌← pfk '

b=(x ,w , p , si)

ř

b '=(b , x̌ , w̌ , p̌)

ř ←dV (w̌ x̌
−a3) ,

h ←hash((vk (idV ) , b)) ,
siR ← sign(h ,id R)

siR

Ok

(o ,dV ( f (o)sV))
o∈O

a2 , vk ( idV ) ,
(v , sV ) ,V ∈EV

g , idV ,

y1=g
a2

a3 , idR , vk ( idV )
(v ,dV ) ,V ∈EV

Fig. 1. Submission of one vote.

with a blinding factor sV for each voter V . The receipt generator R is given a
table V 7→ dV with a permutation function dV for each voter V . Finally, each
voter V is assumed to received by post a table where, for each voting option o
corresponds a precomputed receipt code dV (f(o)sV ) where f is some encoding
function for voting options.

2.2 Submission phase

The submission phase is depicted in Figure 1. We detail below the expected
behavior of each participant.

Voter (V). Each voter tells his computer what voting option o to submit and
allows it to sign the corresponding ballot on his behalf. Then, he has to wait for
an acceptance message coming from the computer and a receipt ř sent by the
receipt generator through the out-of-band channel. Using the receipt, he verifies
that the correct vote was submitted, that is, he checks that ř = dV (f(o)sV ) by
verifying that the receipt code ř indeed appears in the line associated to o.

Computer (P). Voter’s computer encrypts voter’s ballot with the public key
y1 using standard El Gamal encryption. The resulting ballot is (gr, yrf(o)). P
also proves that the resulting ciphertext corresponds to the correct vote, by
computing a standard signature proof of knowledge pfk . How pfk is computed
exactly can be found in [15]. P also signs the ballot with idV and sends it to the
ballot box. It then waits for a confirmation siR coming from the latter, which
is a hash of the initial encrypted ballot, signed by the receipt generator. After
checking this signature, the computer notifies the voter that his vote has been
taken into account.
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Bulletin Box (B). Receiving an encrypted and signed ballot b from a computer,
the ballot box checks first the correctness of signatures and proofs before re-
encrypting with a2 and blinding with sV the original encrypted ballot, also
generating a proof pfk ′, showing that its computation is correct. B then sends
the new modified ballot b′ to the receipt generator. Once the ballot box receives
a message siR from the receipt generator, it simply checks that the receipt gen-
erator’s signature is valid, and sends it to the computer.

Receipt generator (R). When receiving an encrypted ballot b′ = (b, x̌, w̌, p̌) from
the ballot box, the receipt generator first checks signature and proofs (from the
computer and the ballot box). If the checks are successful, it generates:

– a receipt code ř = dV (w̌x̌a3) sent by out-of-band channel directly to the
voter. Intuitively, the receipt generator decrypts the (blinded) ballot, apply-
ing the permutation function dV associated to the voter. This gives assurance
to the voter that the correct vote was submitted to the bulletin board.

– a signature on a hash of the original encrypted ballot for the ballot box.
Once transmitted by the bulletin board, it allows the computer to inform
the voter that his vote has been accepted.

2.3 Counting phase

Once the ballot box is closed, the counting phase begins (Figure 2). The bal-
lot box selects the encrypted votes x1, . . . , xk which need to be decrypted (if
a voter is re-voting, all the submitted ballots are in the memory of the ballot
box and only the last ballot should be sent) and sends them to the decryption
service. The whole content of the ballot box b1, . . . , bn (n ≥ k) is revealed to
the auditor, including previous votes from re-voting voters. The receipt gener-
ator sends to the auditor the list of hashes of ballots it has seen during the
submission phase. The decryption service decrypts the incoming ciphertexts
x1, . . . , xk received from the ballot box and mix the results before outputting
them dec(xσ(1), a1), . . . , dec(xσ(k), a1) where σ denotes the permutation obtained
by shuffling the votes. It also provides the auditor with a proof pfk showing that
the input ciphertexts and the outcoming decryption indeed match. Using the
ballot box content and the list of hashes from the receipt generator, the auditor
verifies that no ballots have been inserted or lost and computes his own list of
encrypted ballots which should be counted. He compares this list with the one
received from the decryption service and verifies the proof given by the latter.

3 Applied Pi Calculus

We use the framework of the applied-pi calculus [3] for formally describing the
Norwegian protocol. To help with readability, the definitions of the applied-pi
calculus are briefly recalled here.
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A R B D

(h1 ,… , hn)

(x1 ,…, xk )

(b1,…, bn)

((x1,… , x k), (dec (xσ (1) , a1) ,… ,dec(x σ (k) ,a1)) , proof )

Fig. 2. Counting phase.

3.1 Terms

As usual, messages are represented by terms built upon an infinite set of names N
(for communication channels or atomic data), a set of variables X and a signa-
ture Σ consisting of a finite set of function symbols (to represent cryptographic
primitives). A function symbol f is assumed to be given with its arity ar(f).
Then the set of terms T (Σ,X ,N ) is formally defined by the grammar :

t, t1, t2, . . . ::=
x x ∈ X
n n ∈ N
f(t1, . . . , tn) f ∈ Σ,n = ar(f)

We write {M1/x1 , . . . ,
Mn /xn} for the substitution that replaces the variables xi

with the terms Mi. Nσ refers to the result of applying substitution σ to the free
variables of term N . A term is called ground when it does not contain variables.

In order to represent the properties of the primitives, the signature Σ is
equipped with an equational theory E that is a set of equations which hold on
terms built from the signature. We denote =E the smallest equivalence relation
induced by E, closed under application of function symbols, substitution of terms
for variables and bijective renaming of names. We write M =E N when the
equation M = N is in the theory E.

Example 1. A standard signature for representing encryption is Σ = {dec, penc}
where penc represents encryption while dec is decryption. Decryption is modeled
by the theory Eenc, defined by the equation dec(penc(x, r, pk(k)), k) = x.

3.2 Processes

Processes and extended processes are defined in Figure 3. The process 0 repre-
sents the null process that does nothing. P | Q denotes the parallel composition
of P with Q while !P denotes the unbounded replication of P (i.e. the unbounded
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P,Q,R ::= (plain) processes
0 null process
P | Q parallel composition
!P replication
ν n.P name restriction
if φ then P else Q conditional
u(x).P message input
u〈M〉.P message output

A,B,C ::= extended processes
P plain process
A | B parallel composition
ν n.A name restriction
ν x.A variable restriction
{M/x} active substitution

Fig. 3. Syntax for processes

parallel composition of P with itself). ν n.P creates a fresh name n and the be-
haves like P . if φ then P else Q behaves like P if φ holds and like Q otherwise.
u(x).P inputs some message in the variable x on channel u and then behaves
like P while u〈M〉.P outputsM on channel u and then behaves like P . We write
ν ũ for the (possibly empty) series of pairwise-distinct binders ν u1. · · · .ν un.
The active substitution {M/x} can replace the variable x for the term M in
every process it comes into contact with and this behaviour can be controlled
by restriction, in particular, the process ν x

(
{M/x} | P

)
corresponds exactly to

let x = M in P . As in [10], we slightly extend the applied-pi calculus by letting
conditional branches now depend on formulae φ, ψ ::= M = N |M 6= N | φ ∧ ψ.
If M and N are ground, we define [[M = N ]] to be true if M =E N and false
otherwise. The semantics of [[ ]] is then extended to formulae as expected.

The scope of names and variables are delimited by binders u(x) and ν (u).
Sets of bound names, bound variables, free names and free variables are re-
spectively written bn(A), bv(A), fn(A) and fv(A). Occasionally, we write fn(M)
(respectively fv(M)) for the set of names (respectively variables) which appear
in term M . An extended process is closed if all its variables are either bound or
defined by an active substitution.

An context C[_] is an extended process with a hole instead of an extended
process. We obtain C[A] as the result of filling C[_]’s hole with the extended
process A. An evaluation context is a context whose hole is not in the scope of a
replication, a conditional, an input or an output. A context C[_] closes A when
C[A] is closed.

A frame is an extended process built up from the null process 0 and active
substitutions composed by parallel composition and restriction. The domain of
a frame ϕ, denoted dom(ϕ) is the set of variables for which ϕ contains an active
substitution {M/x} such that x is not under restriction. Every extended process
A can be mapped to a frame ϕ(A) by replacing every plain process in A with 0.
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Par-0 A ≡ A | 0
Par-A A | (B | C) ≡ (A | B) | C
Par-C A | B ≡ B | A
Repl !P ≡ P | !P
New-0 ν n.0 ≡ 0
New-C ν u.ν w.A ≡ ν w.ν u.A
New-Par A | ν u.B ≡ ν u.(A | B) if u 6∈ fv(A) ∪ fn(A)
Alias ν x.{M/x} ≡ 0

Subst {M/x} | A ≡ {M/x} | A{M/x}
Rewrite {M/x} ≡ {N/x} if M =E N

Fig. 4. Structural equivalence.

3.3 Operational semantics

The operational semantics of processes in the applied pi calculus is defined by
three relations : structural equivalence (≡), internal reduction (→) and labelled
reduction ( α→). Structural equivalence is defined in Figure 4. It is closed by α-
conversion of both bound names and bound variables, and closed under applica-
tion of evaluation contexts. The internal reductions and labelled reductions are
defined in Figure 5. They are closed under structural equivalence and applica-
tion of evaluation contexts. Internal reductions represent evaluation of condition
and internal communication between processes. Labelled reductions represent
communications with the environment.

3.4 Equivalences

Privacy properties are often stated as equivalence relations [12]. Intuitively, if a
protocol preserves ballot secrecy, an attacker should not be able to distinguish
between a scenario where a voter votes 0 from a scenario where the voter votes 1.
Static equivalence formally expresses indistinguishability of sequences of terms.

Definition 1 (Static equivalence). Two closed frames ϕ and ψ are stati-
cally equivalent, denoted ϕ ≈s ψ, if dom(ϕ) = dom(ψ) and there exists a set
of names ñ and substitutions σ, τ such that ϕ ≡ ν ñ.σ and ψ ≡ ν ñ.τ and for
all terms M,N such that ñ ∩ (fn(M) ∪ fn(N)) = ∅, we have Mσ =E Nσ holds
if and only if Mτ =E Nτ holds. Two closed extended processes A,B are stat-
ically equivalent, written A ≈s B, if their frames are statically equivalent; that
is, ϕ(A) ≈s ϕ(B).

Example 2. Consider the signature and equational theory Eenc defined in Exam-
ple 1. Let ϕ1 = ν k.σ1 and ϕ2 = ν k.σ2 where σ1 = {penc(s1,r1,pk(k))/x1

, pk(k)/x2
},

σ2 = {penc(s2,r2,pk(k))/x1 ,
pk(k)/x2} and s1, s2, k are names. We have that ϕ1 6≈s

ϕ2. Indeed, we penc(s1, r1, x2)σ1 =E x1σ1 but penc(s1, r1, x2)σ2 6=E x1σ2. How-
ever, we have that ν k, r1.σ1 ≈s ν k, r2.σ2.
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(Comm) c〈x〉.P | c(x).Q −→ P | Q

(Then) if φ then P else Q→ P if [[φ]] = true

(Else) if φ then P else Q→ Q otherwise

(In) c(x).P
c(M)−−−→ P{M/x}

(Out-Atom) c〈u〉.P c〈u〉−−−→ P

(Open-Atom)
A

c〈u〉−−−→ A′ u 6= c

ν u.A
ν u.c〈u〉−−−−−→ A′

(Scope)
A

α−→ A′ u does not occur in α
ν u.A

α−→ ν u.A′

(Par)
A

α−→ A′ bv(α) ∩ fv(B) = bn(α) ∩ fn(B) = ∅
A | B α−→ A′ | B

(Struct)
A ≡ B B

α−→ B′ B′ ≡ A′

A
α−→ A′

where α is a label of the form c(M), c〈u〉, or ν u.c〈u〉 such that u is either a channel
name or a variable of base type.

Fig. 5. Semantics for processes

Observational equivalence is the active counterpart of static equivalence,
where the attacker can actively interact with the processes. The definition of
observational equivalence requires to reason about all contexts (i.e. all adver-
saries), which renders the proofs difficult. Since observational equivalence has
been shown to coincide [3,22] with labelled bisimilarity, we adopt the later in
this paper.

Definition 2 (Labelled bisimilarity). Labelled bisimilarity (≈l) is the largest
symmetric relation R on closed extended processes such that ARB implies:

1. A ≈s B;
2. if A −→ A′, then B −→∗ B′ and A′RB′ for some B′;
3. if A α−→ A′ such that fv(α) ⊆ dom(A) and bn(α)∩fn(B) = ∅, then B −→∗ α−→−→∗

B′ and A′RB′ for some B′.

Examples of labelled bisimilar processes will be provided in Section 5.

4 Modelling the protocol in applied-pi calculus

We now provide a formal specification of the protocol, using the framework of
the applied-pi calculus, defined in the previous section. The first step consists in
modeling the cryptographic primitives used by the protocol.
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4.1 Equational theory

We adopt the following signature to capture the cryptographic primitives used
by the protocol.

Σsign = {Ok, fst, hash, p, pk, s, snd, vk, blind, d, dec,+, ∗, ◦, �, pair,
renc, sign, unblind, checkpfk1, checkpfk2, checksign, penc, pfk1, pfk2}

with function Ok is a constant ; fst, hash, p, pk, s, snd, vk are unary functions ;
blind, d, dec, +, ∗, ◦, �, pair, renc, sign, unblind are binary functions ; checkpfk1,
checkpfk2, checksign, penc are ternary functions and pfk1, pfk2 are quaternary
functions.

The term pk(K) denotes the public key corresponding to the secret key K in
asymmetric encryption. Terms s(I), p(I), and vk(I) are respectively the blinding
factor, the parameter and the verification key associated to a secret id I. The
specific coding function used by the receipt generator for a voter with secret
id I, applied to a message M is represented by d(p(I),M). It corresponds to
the function dI(M) explained in Section 2.2. The term blind(M,N) the message
M blinded by N . Unblinded such a blinded term P , using the same blinding
factor N is denoted by unblind(P,N). The term penc(M,N,P ) refers to the
encryption of plaintext M using random nonce N and public key P . The term
M ◦N denotes the homomorphic combination of ciphertexts M and M ′ and the
corresponding operation on plaintexts is written P � Q and R ∗ S on nonces.
The decryption of ciphertext C using secret key K is denoted dec(C,K). The
term renc(M,K) is the re-encryption of the ciphertext M using a secret key K
and leads to another ciphertext of the same plaintext with the same nonce but
a different public key. The operation between secret keys is denoted by K + L.
The term sign(M,N) refers to the signature of the message M using secret id
N . The term pfk1(M,N,P,Q) represents a proof of knowledge that proves that
Q is a ciphertext on the plaintext P using nonce N . The term pfk2(M,N,P,Q)
denotes another proof of knowledge proving that Q is either a re-encryption or
a masking of a term P using a secret key or nonce N . We introduce tuples using
pairings and, for convenience, pair(M1, pair(. . . , pair(Mn−1,Mn))) is abbreviated
as (M1, . . . ,Mn) and fst(sndi−1(M)) is denoted Πi with i ∈ N.

The properties of the primitives are then modelled by equipping the signature
with an equational theory E that asserts functions +, ∗, ◦ and � are commutative
and associative, and includes the equations defined in Figure 6. The three first
equations are quite standard. Equation (4) allows to decrypt a blinded cipher-
text in order to get the corresponding blinded plaintext. Equation (5) models
the homomorphic combination of ciphertexts. Equation (6) represents the re-
encryption of a ciphertext. The operation of unblinding is described through
Equation (7). Equations (8), (9) and (10) allows respectively the verification of
signatures and proofs of knowledge for pfk1 and pfk2 proofs.

4.2 Norwegian protocol process specification

The description of the processes representing the actors of the protocol makes
use of auxiliary checks that are defined in Figure 7. We did not model re-voting
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fst(pair(x, y)) = x (1)
snd(pair(x, y)) = y (2)

dec(penc(xplain, xrand, pk(xsk)), xsk) = xplain (3)
dec(blind(penc(xplain, xrand, pk(xsk)), xblind), xsk) = blind(xplain, xblind) (4)

penc(xpl, xrand, xpub) ◦ penc(ypl, yrand, xpub) =
penc(xpl � ypl,xrand ∗ yrand, xpub) (5)

renc(penc(xplain, xrand, pk(xsk)), ysk) =

penc(xplain,xrand, pk(xsk + ysk)) (6)
unblind(blind(xplain, xblind), xblind) = xplain (7)

checksign(xplain, vk(xid), sign(xplain, xid)) = Ok (8)
checkpfk1(vk(xid), ball, pfk1(xid, xrand, xplain, ball)) = Ok

where ball = penc(xplain, xrand, xpub) (9)
checkpfk2(vk(xid), ball, pfk2(vk(xid), xbk, xplain, ball)) = Ok

where ball = renc(xplain, xbk) or ball = blind(xplain, xbk) (10)

Fig. 6. Equations for encryption, blinding, signature and proof of knowledge.

since it is explicitely and strongly discouraged in [15], as it may allow an attacker
to swap two votes (the initial casted one and its revoted one).

The voting process V represents both the voter and his computer. It is
parametrized by a free variable xvote representing voter’s vote and free names
cauth, cRV which denote the channel shared with the voter and, respectively, the
ballot box and the receipt generator. g1 is a variable representing the public key
of the election, id is the secret id of the voter and idpR is a variable representing
the verification key of the receipt generator. Note that messages sent over cauth
and cRV are also sent on the public channel cout to the adversary, to simulate
authenticated but not confidential channels.

φb(idpi, x) = [(Π1(x), Π2(x), Π3(x)) = x
∧checksign((Π1(x), Π2(x)), vk(idi), Π3(x)) = Ok
∧ checkpfk1(idpi, Π1(x), Π2(x)) = Ok]

φs(idpR, x, y) = [checksign(x, idpR, y) = Ok]

φv(idpR, idi, x, y, v, z) = [checksign(x, idpR, y) = Ok ∧ d(p(idi), blind(v, s(idi))) = z]

(∀k = 1..3, xki = Πk(Π1(x)), ∀k = 4..7, xki = Πk−2(x))
φr(idpi, x) = [(x1i , x

2
i , x

3
i ) = Π1(x) ∧ (Π1(x), x

4
i , x

5
i , x

6
i , x

7
i ) = x

∧ checksign((x1i , x
2
i ), idpi, x

3
i ) = Ok ∧ checkpfk1(idpi, x

1
i , x

2
i ) = Ok

∧ checkpfk2(idpi, x
4
i , x

5
i ) = Ok ∧ checkpfk2(idpi, x

6
i , x

7
i ) = Ok]

Fig. 7. Auxiliary checks performed by the participants to the protocol.
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V (cauth , cout, cRV , g1, id, idpR, xvote) = ν t .
let e = penc(xvote, t, g1) in
let p = pfk1(id, t, xvote, e) in
let si = sign((e, p), id) in
cout〈(e, p, si)〉 .
cauth〈(e, p, si)〉 . % encrypted ballot sent to B
cRV (x) . cauth(y) .
cout〈x〉 . cout〈y〉 .
let hv = hash((vk(id), e, p, si)) in % recomputes what should

be sent by R
if φv(idpR, id, h, x, xvote, y) then cauth〈Ok〉 % checks validity

Process Bn corresponds to the ballot box, ready to listen to n voters. The
ballots are coming from authenticated channels c1, . . . , cn and the ballot box can
send messages to the receipt generator, the decryption service and the auditor
through secure channels cBR, cBD and cBA. The parameters of the ballot box
are keys : g1, g3 (public) and a2 (secret); public ids of voters idp1, . . . , idpn (i.e.
verification keys) and corresponding blinding factors s1, . . . , sn. (Step c(sy1) is
a technical synchronisation, it does not appear in the real specification.)

Bn(cBR, cBD, g1, a2, g3, idpR, c1, idp1, s1, . . . , cn, idpn, sn) =
. . . . ci(xi) .
if φb(idpi, xi) then % checks validity of ballot
let ei = renc(Π1(xi), a2) in
let pfkei = pfk2(idpi, a2, Π1(xi), ei) in
let bi = blind(ei, si) in
let pfk bi = pfk2(idpi, si, ei, bi) in % computes re-encrypted masked

ballot and corresponding proofs.
cBR〈(xi, ei, pfkei , bi, pfkbi )〉.cBR(yi). % message sent to R
let hbi = hash((vk(idi), Π1(xi), Π2(xi), Π3(xi))) in
if φs(idpR, hbi, yi) then % checks validity of confirmation
ci〈yi〉 . ci(syi) . . . % transmit confirmation to the voter
cn〈yn〉 . cn(syn) .
cBD〈Π1(x1)〉 . . . . . cBD〈Π1(xn)〉 . % output encrypted votes to the

Decryption Service
cBA〈x1〉 . . . . . cBA〈xn〉 % output the content to the Auditor

Receipt generator’s process is denoted by Rn. It deals with the ballot box
and the auditor through secure channels cBR and cRA and directly with voters
through out-of-band channels cRV1 , . . . , cRVn . It is parametrized with keys: g1,
g2 (public) and a3 (secret); the public ids of voters and corresponding receipt
coding functions parametrized by pr1, . . . , prn.

Rn(cBR, g1, g2, a3, idR, cRV1 , idp1, pr1, . . . , cRVn , idpn, prn) =
. . . . cBR(xi) .
let xki = Πk(Π1(xi)), k = 1..3 in
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let xki = Πk−2(xi), k = 4...7 in
if φr(idpi, xi) then % checks ballot box’s computations
let hbr i = hash((idpi, x

1
i , x

2
i , x

3
i )) in

let hbpr i = hash((idpi, x
1
i , x

2
i )) in

let ri = d(pri, dec(x
6
i , a3)) in % computes the receipt code for V

let sigi = sign(hbri, idR) in % computes confirmation for B
cRVi〈ri〉 . cBR〈sigi〉 . . . .
cRVn

〈rn〉 . cBR〈sign〉 . . . .
cRA〈(idp1, hbpr1, hbr1)〉 . . . . . cRA〈(idpn, hbprn, hbrn)〉

% output content to the Auditor

The decryption service is represented by processDn. Communicating securely
with the ballot box and the auditor through channels cBD and cDA, it also
outputs results through public channel cout. In order to decrypt ballots, it needs
to know the secret key a1. We model two processes, one including a swap between
the two first votes, to model the shuffling which is necessary to ensure ballot
secrecy.

Dn(cBD, cDA, cout, a1) =
cBD(x1) . . . . . cBD(xn) .
cDA〈hash((x1, . . . , xn))〉 . cDA(x) . % creating hash of ciphertexts and

waiting for auditor’s approval
let deck = dec(xk, a1), k = 1..n in % decryption of ciphertexts
cout〈dec1〉 . . . . . cout〈decn〉 % publication of results

Dn(cBD, cDA, cout, a1) =
cBD(x1) . . . . . cBD(xn) .
cDA〈hash((x1, . . . , xn))〉 . cDA(x) .
let dec1 = dec(x2, a1) in % the swap between the two first
let dec2 = dec(x1, a1) in votes is modelled here
let deck = dec(xk, a1), k = 3..n in
cout〈dec1〉 . . . . . cout〈decn〉

Finally, the auditor process, ADn, communicates with the other infrastruc-
ture players using secure channels cBA, cRA and cDA. It knows public ids of
voters.

ADn(cBA, cRA, cDA, idp1, . . . , idpn) =
cDA(hd) . % input of contents of B, R and D
cBA(x1) . . . . . cBA(xn) . cRA(h1) . . . . . cRA(h1) .
let hbai = hash((Π1(xi), Π2(xi), Π3(xi))) in
let hbpai = hash((Π1(xi), Π2(xi))) in
let ha = hash((Π1(x1), . . . ,Πn(xn))) in
if φa(x1, h1, idp1, . . . , xn, hn, idpn, h, hd) then cDA〈Ok〉 else 0

% checks and approval sent to D.

where φa(x1, h1, idp1, . . . , xn, hn, idpn, h, hd) = [(Π1(xi), Π2(xi), Π3(xi)) = xi
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∧(Π1(hi), Π2(hi), Π3(hi)) = hi ∧ Π2(hi) = hbpi ∧Π3(hi) = hbi ∧ hd = h
∧ checksign((Π1(xi), Π2(xi)), idpi, Π3(xi)) = Ok]

The interaction of all the players is simply modeled by considering all the
processes in parallel, with the correct instantiation and restriction of the param-
eters. In what follows, the restricted name a1, a2, a3 model secret keys used in
the protocol and public keys pk(a1), pk(a2) and pk(a3) are added in the process
frame. The restricted name c1, c2 and cRV1

, cRV2
model authentic channels be-

tween honest voters and, respectively, the ballot box and the receipt generator.
The restricted name id1, id2, idR represent secret ids of honest voters and receipt
generator, the corresponding public id’s are added in the process’s frame.

Then the setting of the authorities is modeled by An [_] where n is the
number of voters and the hole is the voter place. An [_] is the analogue of
An [_] with the Decryption service swapping the two first votes (its use will be
clearer in the next section, when defining vote privacy).

ñ = (a1, a2, id1, id2, idR, c1, c2, cRV1
, cRV2

, cBR, cBD, cBA, cRA, cDA)
Γ = {pk(a1)/g1 ,pk(a2) /g2 ,pk(a3) /g3 ,vk(id1) /idp1 , . . . ,vk(idn) /idpn ,vk(idR) /idpR}

An [_] = ν ñ .(let a3 = a1 + a2 in [_|Bn{s(id1)/s1 , · · · ,s(idn) /sn}
|Rn{p(id1)/pr1 , · · · ,p(idn) /prn}|Dn|ADn|Γ ])

An [_] = ν ñ .(let a3 = a1 + a2 in [_|Bn{s(id1)/s1 , · · · ,s(idn) /sn}
|Rn{p(id1)/pr1 , · · · ,p(idn) /prn}|Dn|ADn|Γ ])

The frame Γ represents the initial knowledge of the attacker: it has access to the
public keys of the authorities and the verification keys of the voters. Moreover,
since only the two first voters are assumed to be honest, only their two secret ids
are restricted (in ñ). The attacker has therefore access to the secret ids of all the
other voters. Parameters of subprocesses are left implicit except for s1, . . . , sn for
the ballot box and pr1, . . . , prn for the receipt generator which are respectively
replaced by s(id1), . . . , s(idn), the blinding factors, and p(id1), . . . , p(idn), used
to distinguish the coding dunction associated to a voter.

5 Formal analysis of ballot secrecy

Our analysis shows that the Norwegian e-voting protocol preserves ballot secrecy,
even when all but two voters are corrupted, provided that the other components
are honest. We also identified several cases of corruption that are subject to
attacks. Though not surprising, these cases were not previously mentioned in
the literature.

5.1 Ballot secrecy with corrupted voters

Ballot secrecy has been formalized in terms of equivalence by Delaune, Kremer,
and Ryan in [12]. A protocol with voting process V (v, id) and authority process A
preserves ballot secrecy if an attacker cannot distinguish when votes are swapped,
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i.e. it cannot distinguish when a voter a1 votes v1 and a2 votes v2 from the case
where a1 votes v2 and a2 votes v1. This is formally specified by:

νñ.(A | V {v2/x,a1 /y | V {v1/x,a2 /y}) ≈l νñ.(A | V {v1/x,a1 /y | V {v2/x,a2 /y})

We are able to show that the Norwegian protocol preserves ballot secrecy,
even all but two voters are corrupted.

Theorem 1. Let n be the number of voters. The Norwegian e-voting protocol
process specification satisfies ballot secrecy with the auditing process, even with
n− 2 voters are corrupted, provided that the other components are honest.

An[V {c1/cauth ,cRV1 /cRV
}σ | V {c2/cauth ,cRV2 /cRV

}τ ]

≈l An [V {c1/cauth ,cRV1 /cRV
}τ |V {c2/cauth ,cRV2 /cRV

}σ]

where σ = {v1/xvote} and τ = {v2/xvote}.
We can also show ballot secrecy, without an auditor. This means that the

auditor does not contribute to ballot secrecy in case the administrative compo-
nents are honest (which was expected). Formally, we define A′n [_] and An [_]

′

to be the analog of An [_] and An [_], removing the auditor.

Theorem 2. Let n be the number of voters. The Norwegian e-voting protocol
process specification satisfies ballot secrecy without the auditing process, even
with n− 2 voters are corrupted, provided that the other components are honest.

A′n[V {c1/cauth ,cRV1 /cRV
}σ | V {c2/cauth ,cRV2 /cRV

}τ ]

≈l A′n [V {c1/cauth ,cRV1 /cRV
}τ |V {c2/cauth ,cRV2 /cRV

}σ]

where σ = {v1/xvote} and τ = {v2/xvote}.
The proof of Theorems 1 and 2 works in two main steps. First we guess a rela-

tionR such that for any two processes P,Q in relation (PRQ) any move of P can
be matched by a move of Q such that the resulting processes remain in relation.
This amounts to characterize all possible successors ofAn[V {c1/cauth ,cRV1 /cRV

}σ |
V {c2/cauth ,cRV2 /cRV

}τ ] andAn[V {c1/cauth ,cRV1 /cRV
}τ |V {c2/cauth ,cRV2 /cRV

}σ]. We
show in particular that whenever the attacker sends a term N that is accepted
by the ballot box for a voter with secret id id, then N is necessarily an id - valid
ballot for the following definition.

Definition 3. Let id ∈ {id1, . . . , idn}. A term N is said to be a id - valid ballot
if φb(id,N) = true, equivalently : N = (N1, N2, N3)

checksign((N1, N2), vk(id), N3) =E Ok
checkpfk1(vk(id), N1, N2) =E Ok

.

The second and most involved step of the proof consists in showing that the
sequences of messages observed by the attacker remain in static equivalence.
This requires to prove an infinite number of static equivalences. Let us introduce
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some notations.

θsub = {pk(a1)/g1}|{pk(a2)/g2}|{pk(a3)/g3}|{vk(idR)/idpR}|{ball1/b1}|{ballo2/b2}|
{{vk(idi)/idpi}| i = 1..n}|{{d(p(idi),dec(blind(renc(Π1(xi),a2),s(idi)),a3))/yi}|
{sign(hash((vk(idi),xi)),idR)/zi}| i = 1..n}

ΣL = {v1/x1
vote

,v2 /x2
vote
}

ΣR = {v2/x1
vote

,v1 /x2
vote
}

θct = {dec(Π1(x1),a1)/result1 ,
dec(Π1(x2),a1) /result2 ,

dec(Π1(xi),a1) /resulti |i = 3..n}
θct = {dec(Π1(x2),a1)/result1 ,

dec(Π1(x1),a1) /result2 ,
dec(Π1(xi),a1) /resulti |i = 3..n}

where ball1 and ball2 are the terms sent by the two honest voters.

The frame θsub represents the messages sent over the (public) network during
the submission phase.ΣL represents the scenario where voter 1 votes v1 and voter
2 votes v2 while ΣL represents the opposite scenario. θct and θct represent the
results published by the decryption service.

All voters with secret id idi with i ≥ 3 are corrupted. Therefore, the attacker
can submit any deducible term as a ballot, that is any term that can be repre-
sented by Ni with fv(Ni) ⊆ dom(θsub)\{yj , zj}j≥i (i.e. a recipe that can only
re-use previously received messages). We are able to show that whenever the
message submitted by the attacker is accepted by the ballot box, then NiθsubΣ
is necessarily an idi-valid ballots for Σ ∈ {ΣL, ΣR}.

A key result of our proof is that the final frames are in static equivalence, for
any behavior of the corrupted users (reflected in the Ni).

Proposition 1. Let NiθsubΣ be idi-valid ballots for Σ ∈ {ΣL, ΣR} and i ∈
{3, . . . , n}, we have: νñ.(θsub |θct)σÑΣL ≈s νñ.(θsub |θct)σÑΣR,
where σÑ = {ball1/x1

, ball2/x2
, Nj/xj

| j ∈ {3, . . . , n}}.

5.2 Attacks

Our two previous results of ballot secrecy hold provided all the administrative
components (bulletin box, receipt generator, decryption service, and auditor)
behave honestly. However, in order to enforce the level of trust, the voting system
should remain secure even if some administrative components are corrupted. We
describe two cases of corruption where ballot secrecy is no longer guaranteed.

Dishonest decryption service. The decryption service is a very sensitive com-
ponent since it has access to the decryption key a1 of the public key used for
the election. Therefore, a corrupted decryption service can very easily decrypt
all encrypted ballots and thus learns the votes as soon as he has access to the
communication between the voters and the bulletin box (these communications
being conducted on the public Internet network). Even if we did not find any
explicit mention of this, we believe that the designers of the protocol implic-
itly assume that a corrupted decryption would not be able to control (some of)
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the communication over the Internet. It should also be noted that a corrupted
decryption service could learn the votes even without access to Internet if the
bulletin box does not shuffle the ballots before sending them. Whether or not
shuflling is performed is not completely clear in [15].

Dishonest bulletin box and receipt generator. Clearly, if the bulletin box and the
receipt generator collude, they can compute a1 = a3 − a2 and they can then
decrypt all incoming encrypted ballots. More interestingly, a corrupted receipt
generator does not need the full cooperation of the bulletin box for breaking
ballot secrecy. Indeed, assume that the receipt generator has access, for some
voter V , to the blinding factor sV used by the bulletin to blind the ballot. Recall
that the receipt generator retrieves f(o)sV when generating the receipt codes
(by computing w̌x̌−a3). Therefore, the receipt generator can compute f(o′)sV

for any possible voting option o′. Comparing with the obtained values with
f(o)sV it would easily deduce the chosen option o. Of course, the more blinding
factors the receipt generator can get, the more voters it can attack. Therefore,
the security of the protocol strongly relies on the security of the blinding factors
which generation and distribution are left unspecified in the documentation. The
bulletin box can also perform a similar attack, provided it can learn some coding
function dV and additionally, provided that it has access to the SMS sent by the
receipt generator, which is probably a too strong corruption scenario.

6 Further corruption cases using ProVerif

In order to study further corruption cases, we have used ProVerif, the only tool
that can analyse equivalence properties in the context of security protocols. Of
course, we needed to simplify the equational theory since ProVerif does not
handle associative and commutative (AC) symbols and our theory needs four of
them. So we have considered the theory E′ defined by the equations of Figure 6,
except equation (5) that represents homomorphic combination of ciphertexts
and we have replaced AC symbols + and ∗ by free function symbols f and g.
Using this simplified theory, it is clear that we can miss some attacks, but testing
corruption assumptions is still relevant even if the attacker is a bit weaker than
in our first study.

As ProVerif is designed to prove equivalences between processes that differ
only by terms, we need to use another tool, ProSwapper [16], to model the shuffle
done by the decryption service. More precisely, we actually used their algorithm
to compute directly a shuffle in our ProVerif specification.

The results are displayed in Table 1 and 2 and have been obtained with a
standard (old) laptop1. In these tables,X indicates that ballot secrecy is satisfied,
× shows that there is an attack, and - indicates that ProVerif was not able to
conclude. No indication of times means that we do not proceed to a test in
ProVerif but, as we already knew that there was an attack. In particular, all the
attacks described in Section 5.2 are displayed in the tables.
1 2.00 Ghz processor with 2 GB of RAM Memory
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Table 1. Results and computation times for the protocol without auditor.

```````````Corr. Players
Corr. Voters 0 1 2 5 10

None X X X X X
0.4" 0.9" 2.4" 16.1" 20’59"

Ballot Box (B) -
>1h

Receipt Generator (R) X X X X X
1.1" 2.4" 5.7" 1’15" 39’30"

Decryption Service (D) × ×
0.2"

B + R × ×
0.3"

D+B, D+R, D+R+B ×

Table 2. Results and computation times for the protocol with auditor.

```````````Corr. Players
Corr. Voters 0 1 2 3 4

None X X X X X
0.6" 1,8" 4.1" 27.7" 11’1"

Ballot Box (B) -
>1h

Receipt Generator (R) X X X X X
1.1" 1.9" 5.9" 29.1" 10’33"

Auditor (A) X X X X X
0.4" 1.9" 2.6" 5.8" 12.1"

R + A X X X X X
0.6" 1.9" 5.5" 14.5" 34.4"

B+R, B+R+A, D ×
D + any other combination

Our case study with ProVerif indicates that ballot secrecy is still preserved
even when the Receipt Generator is corrupted (as well as several voters), at least
in the simplified theory. Unfortunately, ProVerif was not able to conclude in the
case the Ballot Box is corrupted.

7 Discussion

We have proposed the first formal proof that the e-voting protocol recently used
in Norway indeed satisfies ballot secrecy, even when all but two voters are cor-
rupted and even without the auditor. As expected, ballot secrecy is no longer
guaranteed if both the bulletin box and the receipt generator are corrupted.
Slightly more surprisingly, the protocol is not secure either if the decryption ser-
vice is corrupted, as discussed in Section 5.2. More cases of corruption need to be
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studied, in particular when the bulletin board alone is corrupted, we leave this
as future work. In addition, it remains to study other security properties such as
coercion-resistance or verifiability. Instead of doing additional (long and techni-
cal) proofs, a further step consists in developing a procedure for automatically
checking for equivalences. Of course, this is a difficult problem. A first decision
procedure has been proposed in [9] but is limited to subterm convergent theories.
An implementation has recently been proposed [8] but it does not support such
a complex equational theory. An alternative step would be to develop a sound
procedure that over-approximate the relation, losing completeness in the spirit
of ProVerif [5] but tailored to privacy properties.

We would like to emphasize that the security proofs have been conducted in
a symbolic thus abstract model. This provides a first level of certification, ruling
out “logical” attacks. However, a full computational proof should be developed.
Our symbolic proof can been seen as a first step, identifying the set of messages
an attacker can observe when interacting with the protocol. There is however
still a long way to go for a computational proof. In particular, it remains to
identify which the security assumptions are needed.

It is also important to note that the security of the protocol strongly relies on
the way initial secrets are pre-distributed. For example, three private decryption
keys a1, a2, a3 (such that a1 + a2 = a3) need to be securely distributed among
(respectively) the bulletin board, the receipt generator and the decryptor. Also, a
table (id, s(id)) containing the blinding factor for each voter needs to be securely
distributed to bulletin board and a table (id, did) containing a permutation for
each voter needs to be securely distributed to the receipt generator. Moreover,
anyone with access with both the codes mailed to the voters and to the SMS
emitted by the receipt generator would immediately learn the values of all the
votes. We did not find in the documentation how and by who all these secret
values were distributed. It should certainly be clarified as it could be a weak
point of the system.
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