A Formal Analysis of the Norwegian E-voting Protocol

Véronique Cortier \& Cyrille Wiedling LORIA - CNRS, Nancy, France

March 26th, 2012

Project supported by the
European Research Council

E-voting : a worldwide expansion

Canada : Since 2004 at the Provincial level. (EVM and (later) Internet voting.)

Estonia : 2005, first legally binding vote using Internet.

India : legally binding e-voting with EVM since 2002.

Brazil : legally binding e-vote with EVM since 2000.

E-voting : a worldwide expansion

Canada : Since 2004 at the Provincial level. (EVM and (later) Internet voting.)

But also : Norway France, Poland, ...

Estonia : 2005, first legally binding vote using Internet.

India : legally binding e-voting with EVM since 2002.

Brazil : legally binding e-vote with EVM since 2000.

E-voting : a worldwide expansion

Canada : Since 2004 at the Provincial level. (EVM and (later) Internet voting.)

But also : Norway France, Poland, ...

Estonia : 2005, first legally binding vote using Internet.

Planning in : Mexico, China, Spain,

India : legally binding e-voting with EVM since 2002.

Brazil : legally binding e-vote with EVM since 2000.

Why using E-voting ?

Efficiency and Reliability

 in collecting and tallying votes (less Human errors/cheating in counting)

Convenient way of voting Possibility of voting from home or anywhere else. (More people may vote)

E-voting is not a wonderland...

Systems may be vulnerable to attacks :

- Diebold Machines in the U.S.
(Candice Hoke, 2008)
- Paperless EVM in India.
(A. Halderman, R. Gonggrijp, 2010)

Some countries just decide to stop E-voting :

- Germany
- Ireland
- United Kingdom

A powerful attacker

Presence of an attacker who:

- can read every message sent on the network,
- can intercept messages,
- can create and send new messages.
- can vote himself.

A powerful attacker

Presence of an attacker who:

- can read every message sent on the network,
- can intercept messages,
- can create and send new messages.
- can vote himself.

Powerful attacker

There is a crucial need to verify protocols before using them !

Contributions

- Modeling of an implemented and tested protocol,
- modeling of complex primitives,
- modeling of trust assumptions.
- Analysis of the property of vote-privacy,
- Using of ProVerif tool over a simple modeling to explore further cases of corruption.

The Norwegian E-voting protocol

- Developed by ErgoGroup,
- Used in municipal and county elections,
- Already implemented and tested in real conditions,

200000

\square

Paper Votes
Internet Votes
Voters
Abstentees

More than $\mathbf{2 5 0 0 0}$ voters used Internet.

2011 elections results in the 10 participating cities

Players of the protocol

Players of the protocol

Players of the protocol

Players of the protocol

Players of the protocol

Players of the protocol

Players of the protocol

Players of the protocol

Infrastructure players

Submission process

Submission process

Table :
$\left(o, f_{V}(o)\right)$

a_{2}
Table $: B$
$\left(V, s_{V}\right)$
B
$a_{3}=a_{1}+a_{2}$
Table : $\left(V, d_{V}\right)$

$$
b^{\prime}=(b, \check{x}, \check{w}, \check{p})
$$

$$
\tilde{x}, \tilde{w} \leftarrow \operatorname{renc}(x, w)
$$

$$
\check{x}, \check{w} \leftarrow \operatorname{bld}\left(\tilde{x}, \tilde{w}, s_{V}\right)
$$

$$
\check{r} \leftarrow \mathrm{~d}_{V}(\check{x}, \check{w})
$$

$$
\check{p} \leftarrow z k p^{\prime}
$$

$h \leftarrow \operatorname{hash}(b)$
$s i_{R} \leftarrow \operatorname{sign}\left(h, i d_{R}\right)$
Ok
$s i_{R}$

Abstraction by terms

Nonces: n, m, \ldots
Keys: $k_{1}, \ldots, k_{n}, \ldots$
Primitives: pair (x, y), enc $(x, k), \operatorname{blind}(x, s), \ldots$

Message enc $(\operatorname{pair}(x, y), k)$ is represented by :

Equational theory

$\operatorname{fst}(\operatorname{pair}(x, y))=x \quad \operatorname{snd}(\operatorname{pair}(x, y))=y$

 $\operatorname{dec}(\operatorname{penc}(x, r, \operatorname{pk}(k)), k)=x \quad$ unblind $(\operatorname{blind}(x, s), s)=x$
Equational theory

$\operatorname{fst}(\operatorname{pair}(x, y))=x \quad \operatorname{snd}(\operatorname{pair}(x, y))=y$

 $\operatorname{dec}(\operatorname{penc}(x, r, \operatorname{pk}(k)), k)=x \quad$ unblind $(\operatorname{blind}(x, s), s)=x$ $\operatorname{dec}(\operatorname{blind}(\operatorname{penc}(x, r, \operatorname{pk}(k)), s), k)=\operatorname{blind}(x, s)$
Equational theory

$\operatorname{fst}(\operatorname{pair}(x, y))=x \quad \operatorname{snd}(\operatorname{pair}(x, y))=y$

 $\operatorname{dec}(\operatorname{penc}(x, r, \operatorname{pk}(k)), k)=x \quad$ unblind $(\operatorname{blind}(x, s), s)=x$ $\operatorname{dec}(\operatorname{blind}(\operatorname{penc}(x, r, \operatorname{pk}(k)), s), k)=\operatorname{blind}(x, s)$$\operatorname{penc}\left(x_{1}, r_{1}, k_{p}\right) \circ \operatorname{penc}\left(x_{2}, r_{2}, k_{p}\right)=\operatorname{penc}\left(x_{1} \diamond x_{2}, r_{1} * r_{2}, k_{p}\right)$ $\operatorname{renc}\left(\operatorname{penc}\left(x, r, \operatorname{pk}\left(k_{1}\right)\right), k_{2}\right)=\operatorname{penc}\left(x, r, \operatorname{pk}\left(k_{1}+k_{2}\right)\right)$

Equational theory

$$
\operatorname{fst}(\operatorname{pair}(x, y))=x \quad \operatorname{snd}(\operatorname{pair}(x, y))=y
$$

$\operatorname{dec}(\operatorname{penc}(x, r, \operatorname{pk}(k)), k)=x \quad$ unblind $(\operatorname{blind}(x, s), s)=x$
$\operatorname{dec}(\operatorname{blind}(\operatorname{penc}(x, r, \operatorname{pk}(k)), s), k)=\operatorname{blind}(x, s)$
$\operatorname{penc}\left(x_{1}, r_{1}, k_{p}\right) \circ \operatorname{penc}\left(x_{2}, r_{2}, k_{p}\right)=\operatorname{penc}\left(x_{1} \diamond x_{2}, r_{1} * r_{2}, k_{p}\right)$ $\operatorname{renc}\left(\operatorname{penc}\left(x, r, \operatorname{pk}\left(k_{1}\right)\right), k_{2}\right)=\operatorname{penc}\left(x, r, \operatorname{pk}\left(k_{1}+k_{2}\right)\right)$
$\operatorname{checksign}(x, y, \operatorname{sign}(x, y))=\mathrm{Ok}$
$\operatorname{checkpfk}_{1}\left(\mathrm{vk}(i)\right.$, ball $^{2} \mathrm{pfk}_{1}(i, r, x$, ball $\left.)\right)=$ Ok \mid ball $=\operatorname{penc}\left(x, r, k_{p}\right)$
$\operatorname{checkpfk}_{2}\left(\operatorname{vk}(i)\right.$, ball $^{\prime} \operatorname{pfk}_{2}(i, r, x$, ball $\left.)\right)=\mathrm{Ok} \left\lvert\, \begin{aligned} & \operatorname{ball}=\operatorname{renc}(x, r) \\ & \operatorname{ball}=\operatorname{blind}(x, r)\end{aligned}\right.$

Applied Pi-Calculus

$$
\begin{array}{ll}
P, Q, R::= & \text { (plain) processes } \\
0 & \text { null process } \\
P \mid Q & \text { parallel composition } \\
!P & \text { replication } \\
\nu n . P & \text { name restriction } \\
\text { if } \phi \text { then } P \text { else } Q & \text { conditional } \\
u(x) . P & \text { message input } \\
\bar{u}\langle M\rangle . P & \text { message output } \quad \\
& \\
A, B, C::= & \text { Introduced by } \\
P & \text { extended processes } \\
A \mid B & \text { plain process } \\
\nu n . A & \text { parallel compornet } \\
\nu x . A & \text { name restriction } \\
\{M / x\} & \text { variable restriction } \\
\text { active substitution }
\end{array}
$$

Modeling of players

Example : Modeling of the voter

```
\(V\left(c_{\text {auth }}, c_{\text {out }}, c_{R V}, g_{1}, i d, i d p_{R}, x_{\text {vote }}\right)=\nu t\).
    let \(e=\operatorname{penc}\left(x_{v o t e}, t, g_{1}\right)\) in
    let \(p=\operatorname{pfk}_{1}\left(i d, t, x_{v o t e}, e\right)\) in
    let \(s i=\operatorname{sign}((e, p), i d)\) in
    \(\overline{c_{\text {out }}}\langle(e, p, s i)\rangle\).
    \(\overline{c_{a u t h}}\langle(e, p, s i)\rangle\).
    \(c_{R V}(x) \cdot c_{\text {auth }}(y)\).
    \(\overline{c_{\text {out }}}\langle x\rangle . \overline{c_{\text {out }}}\langle y\rangle\).
    let \(h v=\operatorname{hash}((\operatorname{vk}(i d), e, p, s i))\) in
    if \(\phi_{\mathrm{v}}\left(i d p_{R}, i d, h, x, x_{\text {vote }}, y\right)\) then \(\overline{c_{a u t h}}\langle\mathrm{Ok}\rangle\)
```


Vote-Privacy

Definition : Vote-Privacy (Delaune, Kremer \& Ryan)
A voting protocol ensures vote-privacy if :

$$
S\left[V_{A}\left\{\mathbf{v}_{1} / v\right\} \mid V_{B}\left\{\mathbf{}_{\mathbf{2}} / v\right\}\right] \approx_{l} S\left[V_{A}\left\{\mathbf{v}_{\mathbf{2}} / v\right\} \mid V_{B}\left\{\mathbf{v}_{1} / v\right\}\right]
$$

Vote-Privacy

Definition : Vote-Privacy (Delaune, Kremer \& Ryan)
A voting protocol ensures vote-privacy if :

$$
S\left[V_{A}\left\{\mathbf{v}_{1} / v\right\} \mid V_{B}\left\{\mathbf{}_{\mathbf{2}} / v\right\}\right] \approx_{l} S\left[V_{A}\left\{\mathbf{v}_{\mathbf{2}} / v\right\} \mid V_{B}\left\{\mathbf{v}_{1} / v\right\}\right]
$$

How can we prove this ?

- Using ProVerif ? (or another automatic tool)

The equational theory is too complex to be handled by ProVerif. (or any existing tool.)

- We have to do this by hand.

Results

Assuming that all infrastructure players are honest...

Theorem

Vote-privacy with only 2 honest voters :

$$
S\left[V_{A}\left\{\mathrm{v}_{1} / x_{v}\right\} \mid V_{B}\left\{{ }^{\mathbf{v}_{2}} / x_{v}\right\}\right] \approx_{l} S\left[V_{A}\left\{\mathbf{v}_{\mathbf{2}} / x_{v}\right\} \mid V_{B}\left\{\mathrm{v}_{1} / x_{v}\right\}\right]
$$

Theorem

Vote-privacy with only 2 honest voters and without auditor :

$$
S^{\prime}\left[V_{A}\left\{\mathrm{v}_{1} / x_{v}\right\} \mid V_{B}\left\{\mathrm{v}_{2} / x_{v}\right\}\right] \approx_{l} S^{\prime}\left[V_{A}\left\{\mathrm{v}_{2} / x_{v}\right\} \mid V_{B}\left\{{ }^{\mathrm{v}_{1}} / x_{v}\right\}\right]
$$

Sketch of proof

Two steps proof :

- Step I - Finding a bisimulation

I - Representing all possible successors of the two processes.
2 - Giving a relation R and proving that it is a bisimulation.

Sketch of proof

Two steps proof :

- Step I - Finding a bisimulation

I - Representing all possible successors of the two processes.
2 - Giving a relation R and proving that it is a bisimulation.

- Step 2 - Static equivalence property

Proving that two (big) final frames are in static equivalence.

Sketch of proof

- Step 2.a - Only a limited (but infinite) number of static equivalences needs to be considered.

Sketch of proof

- Step 2.a - Only a limited (but infinite) number of static equivalences needs to be considered.

Lemma (simplified)

$\forall M_{i}(\mathrm{i}=3, \mathrm{n})$ deducible from messages :
$\left\{\right.$ ballot $_{1} / x_{1},{ }^{\text {ballot }_{2}} / x_{2},{ }^{\mathrm{d}_{i}\left(\operatorname{dec}\left(\operatorname{blind}\left(\operatorname{renc}\left(M_{i}, a_{2}\right), s_{i}\right), a_{3}\right)\right) / y_{i},}$
$\operatorname{sign}\left(\operatorname{hash}\left(v k_{i}, M_{i}\right), i d_{R}\right) / z_{i}, \operatorname{dec}\left(\Pi_{1}\left(M_{i}\right)\right) /$ res $\left._{i}, i=3, n\right\}$

Sketch of proof

- Step 2.a - Only a limited (but infinite) number of static equivalences needs to be considered.

Lemma (simplified)

$\forall M_{i}(\mathrm{i}=3, \mathrm{n})$ deducible from messages :
$\left\{\right.$ ballot $_{1} / x_{1},{ }^{\text {ballot }_{2}} / x_{2},{ }^{\mathrm{d}_{i}\left(\operatorname{dec}\left(\operatorname{blind}\left(\operatorname{renc}\left(M_{i}, a_{2}\right), s_{i}\right), a_{3}\right)\right)} / y_{i}$,
$\operatorname{sign}\left(\operatorname{hash}\left(v k_{i}, M_{i}\right), i d_{R}\right) / z_{i}, \operatorname{dec}\left(\Pi_{1}\left(M_{i}\right)\right) /$ res $\left._{i}, i=3, n\right\}$
$\left\{\right.$ ballot $_{1}{ }^{2} / x_{1}$, ballot $_{2} / x_{2},{ }^{\mathrm{d}_{i}\left(\operatorname{dec}\left(\operatorname{blind}\left(\operatorname{renc}\left(M_{i}, a_{2}\right), s_{i}\right), a_{3}\right)\right) / y_{i}, ~}$ $\operatorname{sign}\left(\operatorname{hash}\left(v k_{i}, M_{i}\right), i d_{R}\right) /_{z_{i}}, \operatorname{dec}\left(\Pi_{1}\left(M_{i}\right)\right) /$ res $\left._{i}, i=3, n\right\}$

- Step 2.b - Using (and proving) independence lemmas :
- $\Phi_{1} \approx_{s} \Phi_{2} \Rightarrow \Phi_{1} \cup\{\operatorname{sign}(M, s) / t\} \approx_{s} \Phi_{2} \cup\{\operatorname{sign}(M, s) / t\}$
- $\Phi_{1} \approx_{s} \Phi_{2} \Rightarrow \Phi_{1} \cup\{\operatorname{dec}(M, k) / t\} \approx_{s} \Phi_{2} \cup\{\operatorname{dec}(M, k) / t\}$

ProVerif \& ProSwapper

Use of ProVerif in order to test further cases of corruption.

Only on a simplified equational theory (no AC-symbols).

We may miss some attacks but it is still interesting.

Results

Corr. Voters	$\mathbf{0}$	$\mathbf{2}$	$\mathbf{4}$
Corr. Admin. Players			
None			
Ballot Box (B)			
Receipt Generator (R)			
Decrypt. Service (D)*			
Auditor (A)	R		
R+D*			
R+A			
B+R, B+R+A, B+D, B+D+A			

Moral of the story

We can have some confidence in the Norwegian protocol.

Moral of the story

We can have some confidence in the Norwegian protocol.
But the study reveals some crucial assumptions :

- There should be no virus on the computer.

Moral of the story

We can have some confidence in the Norwegian protocol.
But the study reveals some crucial assumptions :

- There should be no virus on the computer.
- «< Secure channels » between infrastructure players:
- Ballot box and Receipt generator,
- Ballot box and Decryption device.

Moral of the story

We can have some confidence in the Norwegian protocol.
But the study reveals some crucial assumptions :

- There should be no virus on the computer.
- « Secure channels » between infrastructure players :
- Ballot box and Receipt generator,
- Ballot box and Decryption device.
- How initial secrets are distributed ? By who ?
- Secret keys,
- Tables for Ballot Box, Receipt generator and voters.

Conclusion

- A result on vote privacy of an implemented and deployed protocol.
- Some interesting results on corruption scenarios.
- Useful properties for next studies of protocols or the development of an automatic tool.

Conclusion

Future work

- A result on vote privacy of an implemented and deployed protocol.
- Some interesting results on corruption scenarios.
- Useful properties for next studies of protocols or the development of an automatic tool.
- An analysis, by hand, of the case where the ballot box is corrupted.
- Study of properties like receipt-freeness, coercionresistance, verifiability, ...
- Trying to develop an automatic tool capable of dealing with quite complicated equational theories to avoid such (exhausting) proofs.

Thank you for your attention

