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a b s t r a c t

Recent advances on the polyhedral combinatorics of the Balanced Minimum
Evolution Problem (BMEP) enabled the characterization of a number of facets of
its convex hull (also referred to as the BMEP polytope) as well as the discovery of
connections between this polytope and the permutoassociahedron. In this article,
we extend these studies, by presenting new results concerning some fundamental
characteristics of the BMEP polytope, new facet-defining inequalities in the case
of six or more taxa, a number of valid inequalities, and a polynomial time oracle
to recognize its vertices. Our aim is to broaden understanding of the polyhedral
combinatorics of the BMEP with a view to developing new and more effective
exact solution algorithms.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Consider a set Γ = {1, 2, . . . , n} of n ≥ 4 vertices, hereafter referred to as taxa. A phylogeny T of Γ is
an Unrooted Binary Tree (UBT) having Γ as leaf-set. By definition, a phylogeny of Γ has (n − 2) internal
vertices having degree 3 and an overall number of (2n − 3) edges, n of which are external, i.e., incident to a
taxon, and (n − 3) are internal, i.e., incident to two internal vertices. The labeling of the internal vertices of
a phylogeny is usually less important than the labeling of the leaves, hence it is generally omitted. However,
whenever the context requires us to specify a particular vertex under study, we will use the convention to
label it as an integer in {n + 1, n + 2, . . . , 2n − 2}. Fig. 1(a) shows a possible phylogeny of a set Γ of seven
taxa, shaped as a caterpillar. Fig. 1(b) shows a phylogeny with a more complex topology together with a
terminology of its components that we will formally define in the next section. In Fig. 1(a) the internal
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Fig. 1. (a) An example of a phylogeny (in particular, a caterpillar) of the set Γ = {1, 2, 3, 4, 5, 6, 7}; (b) An example of a phylogeny
with a more complex topology; leaves are colored gray, internal vertices are colored black or white; the subfigure also shows a
terminology of the components of a phylogeny that will prove useful throughout the article.

vertices are labeled as indicated above. On the other hand, in Fig. 1(b), the labeling of the vertices of this
phylogeny is omitted to better highlight the terminology.

Let T be the set of the possible distinct phylogenies of Γ . The cardinality of T is known to be a function
of the cardinality of Γ and can be easily shown to be equal to (2n−5)!! = 1×3×5 · · ·× (2n−5) [1]. Given a
phylogeny T of Γ and a taxon i ∈ Γ , let Γi be the set Γ \ {i} and let τij be the topological distance between
taxa i, j ∈ Γ , i ̸= j, i.e., the number of edges belonging to the (unique) path from taxon i to taxon j in T .
For example, by referring to the phylogeny shown in Fig. 1(a), τ13 = 3, τ15 = 5, and τ35 = 4.

Let D be a given n × n symmetric distance matrix, whose generic entry dij ∈ R0+ represents a measure
of dissimilarity between the corresponding pair of taxa i, j ∈ Γ . Then, the Balanced Minimum Evolution
Problem (BMEP) is to find a phylogeny T of Γ that minimizes the following length function [2,3]:

L(T ) =
∑
i∈Γ

∑
j∈Γi

dij

2τij
. (1)

The BMEP is a version of the network design problem [4] defined over UBTs. It was introduced in the liter-
ature on phylogenetics in 2000 by Pauplin [5] and systematically investigated from a biological perspective
in Desper and Gascuel [6] and Gascuel and Steel [7]. The problem is N P-hard and inapproximable within
cn, for some constant c > 1, unless P = N P [8]. This fact has justified the development of a number of
implicit enumeration algorithms to exactly solve the problem [3,9,10] as well as a number of heuristics to
approximate its optimal solution [10–12].

The current state-of-the-art exact solution algorithm for the BMEP, described in Catanzaro et al. [3], is
based on an Integer Linear Programming (ILP) model that exploits some combinatorial connections between
the BMEP and the Huffman Coding Problem [13–15]. Such connections proved fundamental to identify a
number of properties that characterize phylogenies, such as the Kraft equalities or the Third Equality (see
Section 2 and [3]), and had a central role in the study of tight lower bounds on the optimal solution to
the problem. The algorithm is however unable to solve instances of the BMEP containing more than two
dozen taxa within one hour computing time. Thus, in the attempt to develop algorithms able to exactly
solve increasingly large instances of the problem, particular attention has been recently devoted to the
study of its polyhedral combinatorics. The earliest attempts were the works Eickmeyer et al. [16] and Haws
et al. [17]. Eickmeyer et al. [16] introduced the convex hull of the BMEP (hereafter also referred to as the
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BMEP polytope) and characterized its vertices. Haws et al. [17] characterized instead some faces of the
polytope in the space of the topological distances. Neither studies led to results directly applicable in implicit
enumeration approaches. Moreover, due to the nonlinearity of some specific equations that characterize
phylogenies (see Section 2), it is difficult to carry out the analysis of the polytope in the chosen space.
Hence, Forcey et al. [18] investigated alternative spaces to perform such analysis and proposed the use of
Polymake [19] to assist in this task. Their empirical approach proved successful in unveiling connections
between the BMEP polytope and the permutoassociahedron [20–23] as well as in characterizing the BMEP
polytope in low and fixed dimensions. In particular, they succeeded in characterizing all of its facets for five
taxa and some of the facets for six taxa. Unfortunately, the very large number of facets to analyze in the
latter case (over 90 000, see Section 6.2) prevented the complete description of the polytope.

In this article, we extend the results of Eickmeyer et al. [16] and Forcey et al. [18,21], by presenting both
alternative and novel proofs concerning the polyhedral combinatorics of the BMEP as well as algorithms that
may inspire the development of new exact solution approaches to the problem based on implicit enumeration.
Some alternative proofs (e.g., the characterization of the dimension of the BMEP polytope) are interesting
per se because they enable the analysis of aspects not trivially deducible from previous studies [16,18,21].
We also characterize new facets of the BMEP polytope for six or more taxa as well as valid inequalities. We
address the problem of consistently generating the vertices of the BMEP polytope as well as the problem
of recognizing its vertices. We present a set of necessary and sufficient conditions to address the vertex
generation problem and we show how to translate such conditions into a set of nonlinear constraints in
order to develop new exact solution approaches to the problem similar to those already proposed in [3]
and [10]. We will show that these conditions also suggest a possible polynomial-time oracle to solve the
recognition problem as well. The article is organized as follows. In Section 2 we introduce some notation,
definitions, and fundamental properties of the topological distances that will prove useful throughout the
article. In Section 3, we review Forcey et al. [18] space. In Section 4, we show a possible basis for the space
of Forcey et al. [18]. In Sections 5 and 6 we discuss some fundamental characteristics of the BMEP polytope
and we extend the analysis of Eickmeyer et al. [16] and Forcey et al. [18]. Finally, in Section 7, we address
the problem of recognizing and consistently generating the vertices of the BMEP polytope.

2. Nomenclature of phylogenetics and properties of the topological distances

In this section, we introduce some specific notation and nomenclature of phylogenetics that will prove
useful throughout the article. We will give particular emphasis to the concept and the properties of a
“path-length sequence” of a phylogeny because it has a central role in the combinatorics of the BMEP.

By referring to the phylogeny shown in Fig. 1(b), we call

• a leaf adjacent vertex any internal vertex of a phylogeny that is adjacent to a leaf;
• a separator vertex any internal vertex of a phylogeny that is not leaf adjacent;
• a cherry any connected subtree of a phylogeny induced by two leaves and their common leaf adjacent

vertex;
• a cherry leaf one of the two leaves of a cherry;
• a caterpillar any phylogeny whose subgraph induced by its internal vertices is a path-graph;
• a d-subcaterpillar any connected subtree of a phylogeny T induced by d ≥ 1 leaf adjacent vertices

and their leaves, which is connected to the rest of T through a single bridge whose extreme vertex
is both a separator vertex and is not in the d-subcaterpillar. As an example, Fig. 1(b) includes both a
1-subcaterpillar and a 3-subcaterpillar.

• a d-chain any connected subtree of a phylogeny T induced by d ≥ 2 leaf adjacent vertices whose subgraph
induced by its internal vertices (i) is a path-graph and (ii) is connected to the rest of T through two
bridges. As an example, Fig. 1(b) includes a 3-chain.
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Fig. 2. An example of the three distinct phylogenies that can be reconstructed from the path-length sequence τ1 = [3, 3, 4, 4, 4, 4].

Moreover, we refer to a phylogeny having three cherries as a 1-branch caterpillar (see e.g., the third phylogeny
in Fig. 2).

Given two integers α and β, with α < β, let [α, β] denote the discrete interval constituted by the integers
included between α and β. For a nonempty subset S ⊆ Rn, we denote by Lin(S) and Aff(S), the linear and
affine hulls of the element of S, respectively. Given a rectangular matrix A having generic entry aij ∈ R, we
define

A(r1,c1),(r2,c2) = {ai,j : i ∈ [r1, r2], j ∈ [c1, c2]}.

In other words, A(r1,c1),(r2,c2) is the sub-matrix obtained from A by considering the consecutive rows between
r1 and r2 (included) and the consecutive columns between c1 and c2 (included).

Similarly to Parker and Ram [14], we define a sequence as a collection of nonnegative real values such as
s = [s1, s2, . . . , sm], sj ∈ R0+ . Repetition of values in the sequence is permitted: the values sj need not to
be distinct.

Consider a phylogeny T of a set Γ of n taxa and a taxon i ∈ Γ . We define the path-length sequence
τi = [τij ∈ [2, n − 1] : j ∈ Γi] as the sequence of the topological distances relative to the n − 1 (unique) paths
in T from taxon i to each taxon j ∈ Γi. For example, consider the phylogeny showed in Fig. 1(a). Then,
τ1 = [2, 3, 4, 5, 6, 6] and τ4 = [4, 4, 3, 3, 4, 4]. It is worth noting that the path-length sequence τi associated
to a phylogeny T of Γ describes the UBT T from the “perspective” of taxon i ∈ Γ . Hence, with an abuse
of nomenclature, we will say that τi describes the phylogeny T rooted in taxon i. Fixing a taxon i ∈ Γ , we
denote Θi as the set of the path-length sequences τi encoding the phylogenies of Γ rooted in i.

The following extension of the concept of a path-length sequence proves particularly useful to model the
BMEP: we define the path-length matrix τ associated to a phylogeny T of Γ as a n × n integer matrix
having as generic entry τij , for all i, j ∈ Γ . For example, the following path-length matrix is associated to
the phylogeny shown in Fig. 1(a) under the assumption that the relative taxa are ordered according to their
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labels:

τ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 2 3 4 5 6 6
2 0 3 4 5 6 6
3 3 0 3 4 5 5
4 4 3 0 3 4 4
5 5 4 3 0 3 3
6 6 5 4 3 0 2
6 6 5 4 3 2 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Observe that, apart from the diagonal entries, each row (or each column) of τ is a path-length sequence of
the considered phylogeny, rooted in a taxon i ∈ Γ . In particular, the first row refers to τ1, the second row to
τ2, and so on. In analogy to Θi, we denote Θ as the set of the path-length matrices τ associated to all the
possible phylogenies of Γ . A question that naturally arises and that proves useful to study the polyhedral
combinatorics of the BMEP is whether it is possible to characterize Θ and the sets Θi, for all i ∈ Γ . The
following two sections address this issue.

2.1. Characterizing Θi

As observed in Catanzaro et al. [3], a characterization of the set Θi, for a fixed i ∈ Γ , can be obtained
from the analogies between phylogenies and Huffman trees [14]. Specifically, Huffman trees are rooted binary
trees used in coding theory to represent symbols belonging to a given alphabet Ψ . The leaves of a Huffman
tree correspond to the symbols in Ψ and the tree itself can be described by means of a path-length sequence
ρ = [ρj : j ∈ Ψ ] whose generic entry ρj represents the topological distance of the shortest path from the root
of the tree to the symbol j ∈ Ψ . In this context, the following well-known necessary and sufficient condition
relates rooted binary trees and path-length sequences:

Proposition 1 (Kraft Equality [14]). Consider a set Ψ of n symbols. Then, ρ = [ρj , ρ2, . . . , ρn] is the sequence
of topological distances of a rooted binary tree having Ψ as leafset if and only if∑

j∈Ψ

2−ρj = 1. (2)

Interestingly, Proposition 1 can be used to provide a characterization of the set Θi. Specifically, consider a
phylogeny T of Γ and a taxon i ∈ Γ . Denote î as the “father” of taxon i, i.e., as the only internal vertex
adjacent to i in T . For example, by referring to the phylogeny shown in Fig. 1, if i = 1 then î = 6. We
observe that if we disregard the edge (i, î) then the remaining tree can be seen as a Huffman tree rooted in
î and coding the symbols in Ψ = Γi. Thus, Proposition 1 can be restated as follows:

Proposition 2 (Kraft Equality for Phylogenies [3]). Let Γ be a set of n taxa, and let i ∈ Γ . A sequence of
positive integers τi = [τij ∈ [2, n − 1] : j ∈ Γi] is a path-length sequence of a phylogeny T of Γ if and only if
the entries of τi satisfy the following condition:∑

j∈Γi

2−τij = 1
2 . (3)

A phylogeny corresponding to a given path-length sequence τi = [τij ∈ [2, n − 1] : j ∈ Γi], for some i ∈ Γ ,
can be easily reconstructed, e.g., by sorting τi in ascending order and by drawing the path-lengths from i to
all of the remaining taxa in Γi. However, it is worth noting that no bijective relation between the set Θi and
either the set of phylogenies or the set of the UBTs can be defined, as a path-length sequence may correspond
to multiple distinct phylogenies. For example, Fig. 2 shows that there exists three possible phylogenies that
can be reconstructed from the path-length sequence τ1 = [3, 3, 4, 4, 4, 4].
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2.2. Characterizing Θ

Providing a characterization of the set Θ is less trivial than characterizing Θi. As a first attempt, we may
observe that, as phylogenies are (non-oriented) acyclic graphs (trees), any path-length matrix τ ∈ Θ must
satisfy the following properties:

τii = 0 ∀ i ∈ Γ (4)
τij = τji ∀ i, j ∈ Γ : i < j (5)

τij + τjk − τik ≥ 2 ∀ i, j, k ∈ Γ : i ̸= j ̸= k (6)
τij ∈ {2, 3, 4, . . . , n − 1} ∀ i, j ∈ Γ : i ̸= j. (7)

As the tree encoded by any path-length matrix τ ∈ Θ has to be a phylogeny, the rows of τ must satisfy
Kraft’s equalities, i.e., ∑

j∈Γi

2−τij = 1
2 ∀ i ∈ Γ . (8)

Moreover, as shown in Catanzaro et al. [3], the entries of any path-length matrix τ ∈ Θ must satisfy the
following equation: ∑

i∈Γ

∑
j∈Γi

τij2−τij = (2n − 3). (9)

We refer to the manifold described by (9) as the phylogenetic manifold.
Finally, as any path-length matrix τ ∈ Θ must encode a tree, it must satisfy Buneman’s additive property,

i.e., exactly one of the following conditions must hold on the entries of τ [24–26]:⎧⎪⎨⎪⎩
τij + τpq + 2 ≤ τiq + τjp = τip + τjq

τiq + τjp + 2 ≤ τij + τpq = τip + τjq

τip + τjq + 2 ≤ τij + τpq = τiq + τjp

∀ i, j, p, q ∈ Γ : i ̸= j ̸= p ̸= q. (10)

It is easy to see that conditions (4)–(9) are independent. As an example, the following minimal dimension
matrix ⎛⎜⎜⎜⎜⎝

0 3 3 3 3
3 0 3 3 3
3 3 0 3 3
3 3 3 0 3
3 3 3 3 0

⎞⎟⎟⎟⎟⎠
satisfies all the considered conditions but (9). In fact,

∑
i∈Γ

∑
j∈Γi

τij2−τij = 15
2 ̸= 7. Similarly, the following

minimal dimension matrix ⎛⎜⎜⎜⎜⎜⎜⎝
0 3 5 5 2 4
3 0 3 4 4 3
5 3 0 2 5 4
5 4 2 0 5 3
2 4 5 5 0 3
4 3 4 3 3 0

⎞⎟⎟⎟⎟⎟⎟⎠ (11)

satisfies all of the considered conditions but (6). In fact, τ12 + τ12 − τ13 = 1 < 2. It is currently unclear
whether conditions (4)–(10) are all independent and sufficient to characterize Θ . The presence of nonlinear
relationships in the space of the topological distances, such as Kraft equalities (8) or the phylogenetic
manifold (9), anyhow suggests the search for alternative spaces to carry out the study of the polyhedral
combinatorics of the BMEP, in which at least one between (8) or (9) can be linearized. In the next section,
we will consider the space proposed by Forcey et al. [18]. Before proceeding, we summarize in Table 1 the
most important notation that is necessary to retain throughout the article.
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Table 1
Table of notation.

Symbol Description

Γ Set of taxa
Γi Γ \ {i}, for some i ∈ Γ

T Set of the phylogenies of Γ

τij (T ) Length of the (unique) path between taxa i, j ∈ Γ on a fixed phylogeny T ∈ T
τi(T ) Sequence of path-lengths associated to a phylogeny T ∈ T rooted in taxon i

τ(T) Matrix of path-lengths associated to a given phylogeny T ∈ T
Θi Set of path-lengths sequences associated to the phylogenies of Γ rooted in taxon i

Θ Set of path-length matrices associated to the phylogenies in T
xij (T ) Quantity equal to 2n−1−τij , for some given τ(T ), T ∈ T
X(T ) Matrix whose generic entry is xij (T ), for some given τ(T ), T ∈ T
X Set of the matrices X(T ) corresponding to the phylogenies T ∈ T
Space(X ) Vector space of minimal dimension that includes X
T̂ Fundamental caterpillar phylogeny (see Fig. 4)
T r,s Caterpillar phylogeny obtained from T̂ by swapping taxa r and s

Cs The set {X(T r,s) : r ∈ [1, s − 1]} for a fixed natural s ∈ [2, n − 1]

Dk The set

k⋃
s=2

Cs for a fixed natural k ∈ [2, n − 1]{
Lin(S)
Aff(S)
Conv(S)

{
Linear
Affine
Convex

hull of a given set S

3. The X space

Given a set Γ of n ≥ 3 taxa, a phylogeny T of Γ , and a topological distance τij between two not necessarily
distinct taxa i, j ∈ Γ in T , we define

xij = 2n−1−τij . (12)

Note that by definition τij is a positive integer such that 2 ≤ τij ≤ n − 1 if i ̸= j, and 0 otherwise. Hence,
by definition, xij is a positive integer such that 1 ≤ xij ≤ 2n−3 if i ̸= j, and 2n−1 otherwise. Given the
path-length matrix τ associated to T , we denote X as the n×n symmetric matrix whose generic entry is xij

and X as the set of the X matrices corresponding to all of the possible path-length matrices τ ∈ Θ . To avoid
ambiguous situations in which it may be unclear whether a matrix X is associated to a specific phylogeny
or to another, hereafter we will write X(T ) whenever we will need to specify that X is associated to the
phylogeny T , and we will write xij(T ) to denote the corresponding generic entry. For example, consider a
set Γ of four taxa; then, the corresponding set Θ includes the following three path-length matrices encoding
the only three possible phylogenies of Γ shown in Fig. 3:

τ(T1) =

⎛⎜⎜⎝
0 2 3 3
2 0 3 3
3 3 0 2
3 3 2 0

⎞⎟⎟⎠ ; τ(T1) =

⎛⎜⎜⎝
0 3 2 3
3 0 3 2
2 3 0 3
3 2 3 0

⎞⎟⎟⎠ ; τ(T3) =

⎛⎜⎜⎝
0 3 3 2
3 0 2 3
3 2 0 3
2 3 3 0

⎞⎟⎟⎠ .

Then, the corresponding set X includes the following three matrices

X(T1) =

⎛⎜⎜⎝
8 2 1 1
2 8 1 1
1 1 8 2
1 1 2 8

⎞⎟⎟⎠ ; X(T2) =

⎛⎜⎜⎝
8 1 2 1
1 8 1 2
2 1 8 1
1 2 1 8

⎞⎟⎟⎠ ; X(T3) =

⎛⎜⎜⎝
8 1 1 2
1 8 2 1
1 2 8 1
2 1 1 8

⎞⎟⎟⎠ .

By construction, each matrix X ∈ X is symmetric, diagonal dominant and doubly stochastic up to a constant
3 · 2n−2. The bijection (12) induces the following n(n + 3)/2 linear independent conditions on the entries of
each X ∈ X , which are analogous to conditions (4), (5), and (8) in the Θ space:

xii = 2n−1 ∀ i ∈ Γ (13)
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Fig. 3. The set of all of the possible phylogenies for the set Γ = {1, 2, 3, 4}.

Fig. 4. The fundamental caterpillar phylogeny of a set Γ of n ≥ 4 taxa.

xij = xji ∀ i, j ∈ Γ : i ̸= j (14)∑
j∈Γi

xij = 2n−2 ∀ i ∈ Γ . (15)

Note, in particular, how Kraft equalities for phylogenies (8) becomes linear in (15). Note also that, due to
the symmetry conditions (14), once that n(n − 3)/2 out of n(n − 1)/2 upper triangular entries of a matrix
X ∈ X are fixed, the remaining n(n + 3)/2 entries are uniquely determined.

We denote Space(X ) as the vector space of minimal dimension that includes X and we propose, as already
done in [18], to study the BMEP polytope in such a space. We will show in the next section that there exists
a basis for Space(X ) having cardinality n(n − 3)/2 + 1 = (n − 1)(n − 2)/2. This result will prove useful to
characterize some properties of the BMEP polytope in Space(X ).

4. A basis for Space(X )

Given a set Γ of n ≥ 4 taxa, we define the fundamental caterpillar phylogeny of Γ as the caterpillar
phylogeny T̂ such that

• the first taxon is assigned to the first of the four leaves of the caterpillar that have a sibling;
• the ith taxon is assigned to the only leaf of the caterpillar T̂ at topological distance τ1,i = i, for

i ∈ [2, n − 2];
• the last two taxa are assigned to the only two leaves at topological distance n − 1 from the first taxon.

Fig. 4 shows an example of T̂ .

We denote T r,s as the caterpillar phylogeny that can be obtained from T̂ by swapping the positions of taxa r

and s. As an example, Fig. 5 shows the fundamental caterpillar phylogeny T̂ for the set Γ = [1, 5] as well as
the caterpillar phylogenies T 1,4, T 2,4, and T 3,4.

We define the following sets

Cs = {X(T r,s) : r ∈ [1, s − 1]} ∀ s ∈ [2, n − 1]
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Fig. 5. Top: the fundamental caterpillar phylogeny T̂ of a set Γ of six taxa and the associated matrix X(T̂ ). Middle: the caterpillar
phylogenies T 1,4, T 2,4, and T 3,4. Bottom: the set C4 = {X(T 1,4), X(T 2,4), X(T 3,4)}.

and we observe that, by definition,

• only matrix X(T 1,2) in C2 is equal to X(T̂ ) as leaves 1 and 2 are siblings;
• X(T r,s) ̸= X(T̂ ), for all the remaining values of r and s;
• X(T r,s) ̸= X(T r̄,s̄) if and only if r̄ ̸= r or s̄ ̸= s.

For example, Fig. 5 shows the matrix X(T̂ ) associated to T̂ as well as the matrices X(T 1,4), X(T 2,4), and
X(T 3,4) associated to T 1,4, T 2,4, and T 3,4. The matrices X(T 1,4), X(T 2,4), and X(T 3,4) are elements of the
set C4.

For a fixed positive integer k ∈ [2, n − 1], we define

Dk =
k⋃

s=2
Cs.

We shall prove now that the set Dn−1 constitutes a basis for Space(X ). As a first step, we observe that, for
a given positive integer s ∈ [2, n − 1], each set Cs includes s − 1 matrices and, by construction, has empty
intersection with any other set in Dn−1, i.e., |Cs| = s − 1 and Cs ∩ Ct = ∅, for s, t ∈ [2, n − 1], s ̸= t. As a
consequence, we have that

⏐⏐Dn−1⏐⏐ =

⏐⏐⏐⏐⏐
n−1⋃
r=2

Cs

⏐⏐⏐⏐⏐ =
n−1∑
r=2

|Cs| =
n−1∑
s=2

(s − 1) = (n − 1)(n − 2)
2 = n(n − 3)

2 + 1. (16)

We also observe that the entries of each X matrix in the set Dn−1 can be expressed in function of the entries
of the path-length matrix associated to T̂ . Specifically, letting (α)+ = max{0, α}, α ∈ R, the topological
distance between taxa i and j in T̂ can be written as

τi,j(T̂ ) =

⎧⎪⎨⎪⎩
n − 1 − (i − 2)+ − (n − 1 − j)+ if j > i

0 if j = i

n − 1 − (j − 2)+ − (n − 1 − i)+ if j < i.
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Then, for all i, j ∈ Γ , the generic entry of matrix X(T̂ ) is

x(T̂ )i,j =

⎧⎪⎨⎪⎩
2(i−2)++(n−1−j)+ if j > i

2n−1 if j = i

2(j−2)++(n−1−i)+ if j < i

(17)

and the generic entry of each matrix X(T r,s) is

x(T r,s)i,j =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

x(T̂ )r,j if i = s and j ̸= r

x(T̂ )i,r if j = s and i ̸= r

x(T̂ )s,j if i = r and j ̸= s

x(T̂ )i,s if j = r and i ̸= s

x(T̂ )i,j otherwise.

(18)

In other words, each matrix X(T r,s) can be written as X(T r,s) = P r,sX(T̂ )P r,s where, P r,s = (P r,s)−1 =
(P r,s)T is the n × n permutation matrix that swaps the rth row (column) with the sth row (column). It is
easy to show that the set of permutation matrices {P r,s : r ∈ [2, n−1], s ∈ [r+1, n]} is linearly independent.
However, this result does not have any direct implication on the linear independence of the set Dn−1.

The following intermediate result will prove useful to show that Dn−1 constitutes a basis for Space(X ).

Proposition 3. Consider a matrix X̄ ∈ X and let Φ =
{

Xk ∈ X , k ∈ [1, κ]
}

, for some positive integer
κ > 1, be a set of distinct matrices in X . If X̄ =

∑κ
k=1 λkXk, then

κ∑
k=1

λk = 1.

Proof. As (15) holds on the entries of X̄ we have that
∑n

j=1 x̄1,j = 3 · 2n−2 =
∑n

j=1 xk
1,j , for k ∈ [1, κ].

Moreover, as X̄ =
∑κ

k=1 λkXk, the condition x̄1,j =
∑κ

k=1 λkxk
1,j also holds, for j ∈ [1, n]. Then, we have

3 · 2n−2 =
n∑

j=1
x̄1,j =

n∑
j=1

κ∑
k=1

λkxk
1,j =

κ∑
k=1

λk

n∑
j=1

xk
1,j =

κ∑
k=1

λk

(
3 · 2n−2) ,

hence
∑κ

k=1 λk = 1. □

In the light of Proposition 3, we can now prove that the matrices in Dn−1 are linearly independent.

Proposition 4. The set Ds is linearly independent, for any s ∈ [2, n − 1].

Proof. We prove the statement by induction.

Base case. The set D2 = C2 = {X(T 1,2)} includes the single matrix X(T 1,2) which is linearly independent
as it is different from the null matrix 0.

Inductive step. By assuming that the matrices in Dk are linearly independent, we prove that the matrices in
the set Dk ∪ Ck+1 are linearly independent as well. To this end, we observe that each matrix X(T r,s) ∈ Dk

is characterized by the entries

x(T r,s)i,j =

⎧⎪⎨⎪⎩
2(i−2)++(n−1−j)+ if i ̸= r, s

2s−2+(n−1−j)+ if i = r

2(r−2)++(n−1−j)+ if i = s

i ∈ [1, k], j ∈ [k + 1, k + 2]. (19)
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Fig. 6. Sets D4 and C5 of a set Γ of seven taxa. The entries of the matrices that satisfy conditions (20) are framed within a solid
line. The entries of the matrices X(T 1,5) and X(T 2,5) that are used to define the corresponding matrices of type (22) are framed
within a dashed line.

Note that in (19) the index j is always different from the index s because indices r and s are smaller than or
equal to k whereas j is strictly greater than k. Also note that each matrix X(T r,k+1) ∈ Ck+1 is characterized
by the entries

x(T r,k+1)i,k+1 =

⎧⎪⎨⎪⎩
2(i−2)++n−1−r if i < r

2(r−2)++n−1−i if i > r

2(i−2)++n−2−k if i = r

i ∈ [1, k − 1]

and

x(T r,k+1)i,k+2 =
{

2(i−2)++(n−3−k)+ if i ̸= r,

2n−4+(k+3−n)+ if i = r
i ∈ [1, k − 1].

Now, given a generic matrix X ∈ Dk ∪Ck+1, consider the following linear condition parametrized in t ∈ [2, k]:

xt,k+1 + 21−(k+3−n)+
t−1∑
i=1

xi,k+2 = 21−(k+3−n)+
xt,k+2 +

t−1∑
i=1

xi,k+1. (20)

It is easy to see that the matrices X(T r,s) ∈ Dk satisfy conditions (20) for t ∈ [2, k]. In contrast, the matrices
X(T r,k+1) ∈ Ck+1 satisfy conditions (20) if r ∈ [3, k] and t ∈ [2, r − 1] (see, e.g., Fig. 6). Finally, if r ∈ [1, 2],
none of the matrices X(T r,k+1) ∈ Ck+1 satisfy condition (20). We can take advantage of condition (20) to



12 D. Catanzaro, R. Pesenti and L. Wolsey / Discrete Optimization 36 (2020) 100570

prove that the matrices in the set

Dk ∪
{

X(T r,k+1) : r ∈ [2, k]
}

= Dk ∪
(
Ck+1 \ {X(T 1,k+1)}

)
are linearly independent. To this end, we note that X(T k,k+1) ∈ Ck+1 does not belong to the linear hull
Lin(Dk), since X(T k,k+1) does not satisfy condition (20) for t = k. We also note that X(T k−1,k+1) ̸∈
Lin(Dk ∪ {X(T k,k+1)}), since X(T k−1,k+1) does not satisfy conditions (20) for t = k − 1. In general, for
r ∈ [2, k], X(T r,k+1) ̸∈ Lin(Dk∪{X(T r̂,k+1) : r̂ ∈ [r+1, k]}), since X(T r,k+1) does not satisfy conditions (20)
for t = r.

It remains to prove that X(T 1,k+1) ̸∈ Lin(Dk ∪ {X(T r,k+1) : r ∈ [2, k]}). To this end, assume by
contradiction that there exist two sets of scalars {λr : r ∈ [2, k]} and {µr,s : r ∈ [1, k − 1], s ∈ [r + 1, k]}
such that

X(T 1,k+1) =
k∑

r=2
λrX(T r,k+1)  

matrices in Ck+1\{X(T 1,k+1)}

+
k−1∑
r=1

k∑
s=r+1

µr,sX(T r,s)  
matrices in Dk

. (21)

For a fixed matrix X ∈ X , consider the 2 × 2 matrix

Y (X) =
(

x1,k+1 21−(k−n+3)+
x1,k+2

x2,k+1 21−(k−n+3)+
x2,k+2

)
(22)

(see, e.g., Fig. 6) and the scalar

ξ(X) = x2,k+1 + 21−(k−n+3)+
x1,k+2 − 21−(k−n+3)+

x2,k+2 − x1,k+1.

Eq. (21) implies that

ξ(X(T 1,k+1)) =
k∑

r=2
λrξ(X(T r,k+1)) +

k−1∑
r=1

k∑
s=r+1

µr,sξ(X(T r,s)).

It is worth noting that ξ(X(T 1,k+1)) = ξ(X(T 2,k+1)) and ξ(X(T r,s)) = 0 for Dk ∪{X(T r,k+1) : r ∈ [3, k]}
as the matrices in this latter set satisfy condition (20) for t = 2. Thus, we have that λ2 = 1 and we can
rewrite (21) as

X(T 1,k+1) − X(T 2,k+1) =
k∑

r=3
λrX(T r,k+1) +

k−1∑
r=1

k∑
s=r+1

µr,sX(T r,s)

which implies

Y (X(T 1,k+1) − X(T 2,k+1)) =
k∑

r=3
λrY (X(T r,k+1)) +

k−1∑
r=1

k∑
s=r+1

µr,sY (X(T r,s)).

Now, observe that the following conditions hold:

Y (X(T 1,s)) =
(

2s−2+n−2−k 2s−2+n−2−k

2n−2−k 2n−2−k

)
∀ X(T 1,s) ∈ Dk

Y (X(T 2,s)) =
(

2n−2−k 2n−2−k

2s−2+n−2−k 2s−2+n−2−k

)
∀ X(T 2,s) ∈ Dk

Y (X(T r,s)) =
(

2n−2−k 2n−2−k

2n−2−k 2n−2−k

)
∀ X(T r,s) ∈ Dk, r ≥ 3

Y (X(T r,k+1)) =
(

2n−1−r 2n−2−k

2n−1−r 2n−2−k

)
∀ X(T r,k+1) ∈ Ck+1, r ≥ 3
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and
Y (X(T 1,k+1) − X(T 2,k+1)) =

(
2n−2−k − 2n−3 2n−3 − 2n−2−k

2n−3 − 2n−2−k 2n−2−k − 2n−3

)
̸=
(

0 0
0 0

)
∀ k ≥ 2.

Then, the following system

2n−2−k − 2n−3 =
k∑

r=3
λr2n−1−r +

k∑
s=2

µ1,s2s−2+n−2−k +
k∑

s=3
µ2,s2n−2−k +

k−1∑
r=3

k∑
s=r+1

µr,s2n−2−k (23)

2n−3 − 2n−2−k =
k∑

r=3
λr2n−2−k +

k∑
s=2

µ1,s2s−2+n−2−k +
k∑

s=3
µ2,s2n−2−k +

k−1∑
r=3

k∑
s=r+1

µr,s2n−2−k (24)

2n−3 − 2n−2−k =
k∑

r=3
λr2n−1−r +

k∑
s=2

µ1,s2n−2−k +
k∑

s=3
µ2,s2s−2+n−2−k +

k−1∑
r=3

k∑
s=r+1

µr,s2n−2−k (25)

2n−2−k − 2n−3 =
k∑

r=3
λr2n−2−k +

k∑
s=2

µ1,s2n−2−k +
k∑

s=3
µ2,s2s−2+n−2−k +

k−1∑
r=3

k∑
s=r+1

µr,s2n−2−k (26)

is infeasible. Specifically, by subtracting (24) from (23) we get:

2(2n−2−k − 2n−3) =
k∑

r=3
λr2n−1−r −

k∑
r=3

λr2n−2−k. (27)

By subtracting (26) from (25) we get:

2(2n−2−k − 2n−3) = −
k∑

r=3
λr2n−1−r +

k∑
r=3

λr2n−2−k. (28)

Now, by adding (27) and (28) we get 2n−2−k −2n−3 = 0 which leads to a contradiction. Thus, the statement
follows. □

Let Lin(Dn−1) denote the linear hull of set Dn−1. Moreover, let Conv(X ) denote the convex hull of the
matrices X ∈ X and let Dim(Conv(X )) be its dimension. Then, the following proposition holds.

Proposition 5.

(i) Dim(Conv(X )) = n(n − 3)/2;
(ii) Space(X ) = Lin(Dn−1).

Proof.

(i) First note that Dn−1 is a set of linearly independent vectors included in Conv(X ) and having cardinality
n(n − 3)/2 + 1, hence Dim(Conv(X )) ≥ n(n − 3)/2. Now, let Aff(X ) ⊆ Rn×n denote the set
of the n × n real matrices satisfying conditions (13)–(15). By definition, Aff(X ) is an affine space
that includes Conv(X ). Moreover, by the linear independence of conditions (13)–(15) it holds that
Dim(Aff(X )) = n(n − 3)/2. Because n(n − 3)/2 ≤ Dim(Conv(X )) ≤ Dim(Aff(X )), the statement
follows.

(ii) As shown in (i), Dn−1 is a basis for Aff(X ). Now, observe that the affine space induced by the vectors
in Conv(X ) does not include the null matrix, hence Dim(Space(X )) must be strictly greater than
Dim(Conv(X )). Because Space(X ) is the vector space of minimal dimension that includes Conv(X )
and because Dim(Lin(Dn−1)) = Dim(Conv(X )) + 1, the statement trivially follows. □
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Eickmeyer et al. [16] first identified the dimension of the BMEP polytope in the space of the topological
distances. The above proposition states that this result is valid also for Space(X ). We conclude this section
by observing that Space(X ) includes an exponential number of bases made of caterpillars. For example, by
using an approach similar to the one used in this section, it is easy to show that the set Dn−1

π , obtained from
the fundamental caterpillar phylogeny T̂ when applying a permutation π to the assignment of the taxa in
Γ to the leaves of T̂ , is linearly independent.

5. On the convex hull of the set X

A question that naturally arises is whether it is possible to characterize some properties of the vertices of
Conv(X ). To address this question, we first observe that the bijection (12) implies that τij = (n−1−log2 xij)
for any phylogeny T ∈ T and any pair i, j ∈ Γ . Then, we can rewrite (9) as∑

i,j∈Γ
i ̸=j

xij(n − 1 − log2 xij) = (2n − 3)2n−1. (29)

As (15) implies ∑
i,j∈Γ

i ̸=j

xij = n2n−2, (30)

for all X ∈ X we have that∑
i,j∈Γ

i̸=j

xij log2 xij =
∑

i,j∈Γ
i ̸=j

xij(n − 1 − τij) = (n2 − 5n + 6)2n−2. (31)

In the light of this result, the following proposition holds:

Proposition 6. For any fixed phylogeny T ∈ T , the unique optimal solution to the problem

z∗ = min
∑

i,j∈Γ
i ̸=j

xijτij(T )

X ∈ Conv(X )

is X(T ).

Proof. We first observe that (30)–(31) imply that, for all X ∈ X , the following equalities hold∑
i,j∈Γ

i ̸=j

xijτij = (2n − 3)2n−1 (32)

∑
i,j∈Γ

i ̸=j

(xij log2 xij − xij) = (n2 − 6n + 6)2n−2. (33)

Now, consider a function g : Rn×n
+ → R defined as

g(X) =
∑

i,j∈Γ
i ̸=j

(xij log2 xij − xij).

It is easy to see that g is differentiable, strictly convex, and that the sublevel set

L = {X ∈ Rn×n : g(X) ≤ (n2 − 6n + 6)2n−2}
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is strictly convex and includes Conv(X ). We note that, for each fixed phylogeny T ∈ T , the tangent plane
to L in X(T ) is∑

i,j∈Γ
i̸=j

g(X(T ))
∂xij

(xij − xij(T )) = 0 ⇔
∑

i,j∈Γ
i ̸=j

xij log2(xij(T )) = (n2 − 5n + 6)2n−2.

Then, the strict convexity of g(x) over L ⊃ Conv(X ) implies that, for all X ∈ Conv(X ),∑
i,j∈Γ

i ̸=j

xij(T ) log2(xij(T )) = (n2 − 5n + 6)2n−2 >
∑

i,j∈Γ
i ̸=j

xij log2(xij(T )).

This last condition, together with equalities (30), (31) and (32), in turn implies that, for all X ∈ Conv(X ),∑
i,j∈Γ

i̸=j

xij(T )τij(T ) = (2n − 3)2n−1 <
∑

i,j∈Γ
i̸=j

xijτij(T )

thus, the statement follows. □

The following two corollaries derive from Proposition 6. It is worth noting that Corollary 1 was first claimed
by [16]. We provide here a proof of their result by deriving it from the phylogenetic manifold.

Corollary 1. The set X coincides with the set of the vertices of Conv(X ).

Proof. We recall from Section 2, that any phylogeny T of Γ must satisfy the equation of the phylogenetic
manifold (9): ∑

i,j∈Γ
i ̸=j

τij2−τij = 2n − 3.

As the bijection (12) implies that τij = (n − 1 − log2 xij), we can rewrite (9) as∑
i,j∈Γ

i̸=j

xij(n − 1 − log2 xij) = (2n − 3)2n−1.

Hence, defining the function f : Rn×n
+ → R as

f(X) =
∑

i,j∈Γ
i̸=j

xij(n − 1 − log2 xij), (34)

all of the matrices X ∈ X are points in which the manifold (34) satisfies f(X) = (2n − 3)2n−1. We also
observe that the function f is strictly concave as the entries of its Hessian are such that

Hij,lk = ∂2f

∂xij∂xlk
=

⎧⎨⎩
∂2xij(n−1−log2 xij)

∂x2
ij

= − 1
xij log2 e < 0 if i = l and j = k,

0 otherwise.
(35)

Now, assume by contradiction that, for some positive constant κ > 1, there exist both a matrix X̄ ∈ X and
a subset {Xk : k ∈ {1, . . . , κ}} ⊆ X \ {X̄} such that

X̄ =
κ∑

k=1
λkXk with

κ∑
k=1

λk = 1 and 0 < λk < 1, ∀ k ∈ {1, . . . , κ}.
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For such a matrix, the strict concavity of function f implies that

f(X̄) = f(
κ∑

k=1
λkXk) >

κ∑
k=1

λkf(Xk) = (2n − 3)2n−1.

However, as X̄ ∈ X , this fact contradicts the equation of the phylogenetic manifold (9) that requires
f(X̄) = (2n − 3)2n−1. Thus, the statement follows. □

Corollary 2. Given a set of positive reals cij for all i, j ∈ Γ , i ̸= j, a lower bound on the optimal solution
to the problem

z∗ = min
∑

i,j∈Γ
i ̸=j

cijxij

X ∈ Conv(X )

is λ(n2 − 5n + 6)2n−2, where λ is the value such that∑
i,j∈Γ

i ̸=j

cij2
cij
λ = λ(n2 − 5n + 6)2n−2.

Proof. As the level set L = {X ∈ Rn×n : g(x) ≤ (n2 − 6n + 6)2n−2} is strictly convex and includes
Conv(X ), then the optimal solution of

zLB = min
X∈L

∑
i,j∈Γ

i̸=j

cijxij

is a lower bound for z∗ and lies on the frontier of L. The Karush-Kuhn–Tucker conditions applied to this
latter problem impose cij = λ log2(xij) and∑

i,j∈Γ
i ̸=j

xij log2(xij) = (n2 − 5n + 6)2n−2,

thus the statement follows. □

In the next sections, we will briefly review the facet-defining inequalities of Conv(X ) currently described
in the literature on the BMEP and we will present new families of valid inequalities. We will see that for
specific values of n some of these families are also facet-defining.

6. Valid inequalities and facets of Conv(X )

6.1. Known facets of Conv(X )

Forcey et al. [18] provided a complete description of the BMEP polytope for n ≤ 5 (i.e., when assuming an
input set Γ including up to five taxa) and characterized a number of facet-defining inequalities of Conv(X )
for n ≥ 6 (i.e., when assuming an input set Γ including six taxa). For the sake of completeness, in this
subsection we briefly report and comment upon their results. In the next subsection, we will present a new
set of valid and facet-defining inequalities that will contribute to the description of Conv(X ) for n = 6 or
more.
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1. Let Γ be a set of n ≥ 4 taxa. For each pair of taxa i, j ∈ Γ such that i < j, the caterpillar inequality

xij ≥ 1 (36)

provides a set of
(

n
2
)

facet-defining inequalities for Conv(X ). In particular, four caterpillar inequalities
hold as equality in the case the optimal solution to the BMEP is a caterpillar.

2. Let Γ be a set of n ≥ 4 taxa. For any distinct triplet of taxa i, j, k ∈ Γ , the intersecting cherries
inequality

xij + xjk − xik ≤ 2n−3 (37)

provides a set of
(

n
2
)
(n−2) facet-defining inequalities for Conv(X ). We note that in some circumstances

there exists an analogy between this family of inequalities and the family of triangular inequalities (6)
in the τ -space (i.e., τij + τjk − τik ≥ 2) introduced in Catanzaro et al. [3]. Specifically, as

τij = n − 1 − log2(xij),

we can rewrite (6) as
n − 1 − log2(xij) − log2(xjk) + log2(xik) ≥ 2 (38)

or analogously as
log2(xij) + log2(xjk) − log2(xik) ≤ n − 3. (39)

Raising both sides of (39) to power 2, we get
xijxjk

xik
= 2log2(xij)+log2(xjk)−log2(xik) ≤ 2n−3. (40)

Now, it is worth noting that when the triangular inequality (6) holds tightly, i.e., τik = τij + τjk − 2
and either both τik ≤ τij and τik ≤ τij or both τik ≥ τij and τik ≥ τij , then the following inequality
holds:

xij + xjk − xik ≤ xijxjk

xik
. (41)

Specifically, under the considered assumptions, we can rewrite (41) as (xik − xij)(xik − xjk) ≥ 0, or
analogously as

(2n−1−τik − 2n−1−τij )(2n−1−τik − 2n−1−τjk ) = 2n−1(2−τik − 2−τij )(2−τik − 2−τjk ) ≥ 0. (42)

In particular, when τik = τij + τjk − 2, (42) becomes:

2n−1(2−τik − 2−τij )(2−τik − 2−τjk ) =2n−1(2−τij−τjk+2 − 2−τij )(2−τij−τjk+2 − 2−τjk )
=2n−1 [2−τij (22−τjk − 1)

] [
2−τjk (22−τij − 1)

]
≥ 0 (43)

which trivially holds for any value of τij and τjk. These arguments show that if a triangular inequal-
ity (6) is tight for a given taxa assignment then the corresponding intersecting cherry inequality (37)
is obviously feasible but not necessarily tight. In contrast, if an intersecting cherry inequality is tight
then the corresponding triangular inequality is necessarily tight as condition (37) holds as an equality
only when either τjk = 2 or τij = 2 [18].
The intersecting cherries inequalities also show that

xij ≤ 2n−3 (44)

is not facet-defining for Conv(X ). In fact, (44) can be seen as a sum of the intersecting cherries
inequalities xij + xjk − xik ≤ 2n−3 and xij + xik − xjk ≤ 2n−3, hence it is redundant for the description
of Conv(X ).
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We also note that, as any non-diagonal entry of a matrix X ∈ X satisfies xij ≤ 2n−3 and at least four
non-diagonal entries of X satisfy xij = 2n−3, then at least 4(n − 2) intersecting cherries inequalities
hold as equalities at any optimal solution to the problem.
Finally, we note that the intersecting-cherry inequalities are tight when either a cherry {i, j} or a cherry
{j, k} is present on a phylogeny.

3. Let Γ be a set of n = 5 taxa. Then, the cyclic ordering inequality

xij + xjk + xkp + xpq + xqi ≤ 13 (45)

for all distinct i, j, k, p, q ∈ Γ provides a set of 12 facet-defining inequalities for Conv(X ), for n = 5.
In particular, the cyclic ordering inequalities together with the caterpillar inequalities and the cherry
inequalities provide a complete description of Conv(X ).

4. Let Γ be a set of n ≥ 6 taxa. Consider a bipartition of Γ into two subsets, say S1 and S2, such that
|S1| = 3 and |S2| = m ≥ 3. Then, for any distinct triplet of taxa i, j, k ∈ S1, the (m, 3)-split inequality

xij + xjk + xik ≤ 2n−2 (46)

provides a set of
(

n
3
)

facet-defining inequalities for Conv(X ). More in general, consider a bipartition
of the set Γ into two subsets, say S1 and S2, such that |S1| = k ≥ 3 and |S2| = m ≥ 3. Then, the
(m, k)-split inequality ∑

i,j∈S1
i<j

xij ≤ (k − 1)2n−3 (47)

provides a set of 2n−1 −
(

n
2
)
−n−1 facet-defining inequalities for Conv(X ). We note that the (m, k)-split

inequality generated by a given bipartition (S1, S2) of the set Γ imposes that the subtree of a phylogeny
T having S1 as leaf-set must be rooted and binary. We observe that these inequalities are equivalent to
cut inequalities ∑

i∈S1,j∈S2

xij ≥ 2n−2

that can be separated by standard max-flow/min cut algorithms.

6.2. New valid inequalities for Conv(X )

In this section, we provide a new set of valid inequalities for Conv(X ). If not stated otherwise, we will
intend that all of them are at least face-inducing for each n and facet-inducing, at least for some values of
n. Specifically, we will start by considering the case n = 6 (i.e., a set Γ of six taxa) as in Forcey et al. [18]
and, where possible, we will generalize the result for larger number of taxa.

One way to determine the facet-defining attribute of a given inequality consists in showing a set of
Dim(Conv(X )) − 1 affinely independent X matrices that satisfy the inequality at equality [27]. As seen
in the previous sections, this task can be quite long and tedious, mainly due to a lack of general properties
to assess the linear independence of a system of matrices in the Space(X ). Hence, we will proceed here as
follows. We will first check whether a given inequality is valid. Subsequently, as suggested in Forcey et al.
[18], we will make use of technical computing systems and general purpose software for polyhedral analyses,
such as Mathematica [28] and Polymake [19], respectively, to verify whether there exist Dim(Conv(X )) − 1
X matrices that are both affinely independent and satisfy the inequality at equality. A fact that will be
recurrently used throughout this section is that the topology of a phylogeny of six taxa can only be either
a caterpillar or a balanced phylogeny (see Fig. 7). Hence, the X matrix of a balanced phylogeny of six taxa
includes no entry equal to 1, whereas the X matrix of a caterpillar of six taxa includes four entries equal to
1. We will also recurrently use the following simple facts (whose proofs are omitted):
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Fig. 7. An example of possible phylogenies of a set Γ of six taxa. The topology of such phylogenies can be either balanced (e.g., as
in T1, T2 and T3) or a caterpillar (e.g., as in T4).

Observation 1. Let T denote a phylogeny of Γ . Then,

(i) T has at least two cherries.
(ii) T is a caterpillar if and only if

max
i,j∈Γ

{τij} = n − 1.

As a consequence, X(T ) contains an entry equal to one if and only if T is a caterpillar.
(iii) T is a 1-branch caterpillar if and only if

max
i,j∈Γ

{τij} = n − 2.

As a consequence, if in a matrix X(T ) there exists an entry such that xij(T ) = 2 for some i, j ∈ Γ , then
T is either a caterpillar or a 1-branch caterpillar.

(iv) If T is neither a caterpillar nor a 1-branch caterpillar, then

max
i,j∈Γ

{τij} ≤ n − 3.

In this situation, the corresponding entries of X(T ) are such that xij(T ) ≥ 4 for all i, j ∈ Γ .
(v) A path between two taxa of T is maximal only if the taxa belong to distinct cherries.

(vi) If T has k + 2 cherries, for some natural k ≥ 1, then the maximum length of a path in T is n − 1 − k. As
a consequence, if T has k +2 cherries then the corresponding entries of X(T ) are such that xij(T ) ≥ 2k.

In the light of the above facts, the following proposition holds.

Proposition 7. Let Γ be a set of n ≥ 6 taxa. Then, for any triplet of distinct taxa i1, i2, i3 ∈ Γ , the
following inequalities

2n−5xi1i2 + 2n−5xi1i3 + xi2i3 ≥ 5 · 2(n−5) (48)
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2n−4xi1i2 + 2n−4xi1i3 + xi2i3 ≥ 2(n−2) (49)

xi1i2 + xi1i3 + xi2i3 ≥ (3 + ρ)2k−1, where k = ⌊n

3 ⌋ and ρ = n − 3k, (50)

are valid for Conv(X ).

Proof.

Validity of (48). Consider the phylogeny T encoded by a generic matrix X ∈ X . If xi1i2 + xi1i3 ≥ 5
then (48) is trivially valid for Conv(X ). Otherwise, the following three cases may occur:

Case 1: xi1i2 = xi1i3 = 1. In this situation, T is a caterpillar and its two cherries are constituted by
the pairs of taxa i2, i3 and i1, iα, for some α ̸= {1, 2, 3}. Thus, it holds that xi2i3 = 2n−3 and the
inequality is valid.

Case 2: xi1i2 = 1 and xi1i3 = 2. Also in this situation T is a caterpillar and its two cherries are
constituted by the pairs of taxa i1, iα and i2, iβ , for some α, β ̸= {1, 2}. As xi1i3 = 2, the topological
distance from i2 to i3 is τ23 = 3 and xi2i3 = 2n−4, so the inequality is again valid.

Case 3: xi1i2 = xi1i3 = 2. In this situation, T can be either a caterpillar or a 1-branch caterpillar.
If T is a caterpillar, the hypothesis xi1i2 = xi1i3 = 2 imposes that i2 and i3 define a cherry,
hence xi2i3 = 2n−3 and as result the inequality is valid. If T is a 1-branch caterpillar, we have
that i1, i2 and i3 belong to the three different cherries. In particular, the internal edges of the leaf
adjacent vertices of the cherries that include i2 and i3 have to share the same separator vertices.
The topological distance from i2 to i3 is then τ23 = 4, xi2i3 = 2n−5, and so the inequality is valid
again.

Validity of (49). Consider the phylogeny T encoded by a generic matrix X ∈ X . If xi1i2 + xi1i3 ≥ 4,
then (49) is trivially valid for Conv(X ). Otherwise, the following two cases may occur:

Case 1: xi1i2 = xi1i3 = 1. In this situation, T is a caterpillar with cherries i2, i3 and i1, iα, for some
α ̸= {1, 2, 3}. Then, xi2i3 ≥ 2n−3 and the inequality is valid.

Case 2: xi1i2 = 1 and xi1i3 = 2 (the case xi1i2 = 2 and xi1i3 = 1 is analogous). In this situation, T is
a caterpillar with cherries i1, iα, and i2, iβ , for some α, β ̸= {1, 2, 3}, and i3 is at most the closest
vertex to i2 on the path linking the cherries. Thus, xi2i3 ≥ 2n−4 and the inequality is valid.

Validity of (50). We prove the validity of (50) by showing that the minimum value of its left-hand side
always satisfies the right-hand side. To this end, let j denote the only internal vertex which is common
to the three paths that join taxa i1, i2, i3 on a phylogeny T . Then, it holds that

τi1i2 = τi1j + τi2j

τi1i3 = τi1j + τi3j

τi2i3 = τi2j + τi3j

hence the left-hand side of (50) can be rewritten as

x12 + x13 + x23 = 2n−1−(τi1j+τi2j) + 2n−1−(τi1j+τi3j) + 2n−1−(τi2j+τi3j).

Now, without loss of generality, suppose that taxa i1, i2, i3 are assigned to the leaves of T such that
τi1j ≤ τi2j ≤ τi3j and τi1i2 ≤ τi1i3 ≤ τi2i3 . Then, we first claim that if the left-hand side of (50) is
minimum then τi1j + τi2j + τi3j = n. To prove this claim, suppose by contradiction that the minimum
of the left-hand side of (50) is achieved when τi1j + τi2j + τi3j = n − s > 0, for some positive integer
s. Then, we can construct a new phylogeny T̃ having a smaller value of the left-hand side of (50), thus
contradicting the minimality hypothesis. Specifically, construct 1-branch caterpillar phylogeny T̃ by
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Fig. 8. An example of phylogenies of a set Γ of eleven taxa in which the value xi1i2 + xi1i3 + xi2i3 , left-hand side of (50), assumes a
minimal value.

joining a single separator vertex j to three d-subcaterpillars such that each of the taxa i1, i2, i3 belongs
to the cherry of a different subcaterpillar (see e.g., Fig. 8) and

τ̃i1j = τi1j + s

τ̃i2j = τi2j

τ̃i3j = τi3j .

In this situation, it holds that τ̃i1j > τi1j , which in turn implies that

2n−1−(τ̃i1j+τ̃i2j) + 2n−1−(τ̃i1j+τ̃i3j) + 2n−1−(τ̃i2j+τ̃i3j) <2n−1−(τi1j+τi2j) + 2n−1−(τi1j+τi3j)

+ 2n−1−(τi2j+τi3j)

thus leading to the mentioned contradiction of the minimality hypothesis. We also note that requiring
the minimality of the left-hand side of (50) further implies that the condition τi3j − τi1j ≤ 1 (hence
τi2i3 − τi1i2 ≤ 1) must hold as well. In particular, it is easy to see that if we shorten τi3j by one unit
and we lengthen τi1j by the same quantity we have that

2n−1−(τi1j+τi2j+1) + 2n−1−(τi1j+τi3j) + 2n−1−(τi2j+τi3j−1) ≤2n−1−(τi1j+τi2j) + 2n−1−(τi1j+τi3j)

+ 2n−1−(τi2j+τi3j)

when τi1j + 1 ≤ τi3j . Then, in the light of the above considerations, the following three cases hold:

Case 1: n = 3k. In this situation, the minimum value of xi1i2 + xi1i3 + xi2i3 is 3 · 2k−1 obtained when
τi1i2 = τi1i3 = τi2i3 = 2k.

Case 2: n = 3k+1. In this situation, the minimum value of xi1i2 +xi1i3 +xi2i3 is 4 ·2k−1 = (3+1)2k−1

obtained when τi1i2 = 2k and τi1i3 = τi2i3 = 2k + 1.
Case 3: n = 3k+2. In this situation, the minimum value of xi1i2 +xi1i3 +xi2i3 is = 5·2k−1 = (3+2)2k−1

obtained when τi1i2 = τi1i3 = 2k + 1 and τi2,i3 = 2k + 2.

All of the three cases satisfy the right-hand side of (50), thus this inequality is valid for Conv(X ). □

It is worth noting that (48) is facet-defining for n = 6, 7, 8. In particular, for n = 6 this property can
be easily verified by enumerating the set of vertices of Conv(X ) that satisfy (48) as an equality. This set,
shown in Table 2, defines a matrix whose rank is n(n − 3)/2 = 9. With a similar enumerative approach,
the facet-defining property of (48) can be verified also for n = 7 and n = 8. We observe that also (49) is
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Table 2
The complete set of vertices of Conv(X ) that satisfy 2n−5xi1i2 + 2n−5xi1i3 + xi2i3 ≥ 5 · 2(n−5) at equality when assuming n = 6. The
vertices are encoded by concatenating one after another the rows of the strictly upper triangular parts of a matrix X. By replacing
e.g., the index i1 with 1, i2 with 2, and i3 with 3 it is easy to realize that the corresponding entries in the table satisfy the considered
inequality. The tables that follow provide a similar information for other classes of inequalities.

Vertices Entries

x12 x13 x14 x15 x16 x23 x24 x25 x26 x34 x35 x36 x45 x46 x56

01 2 2 8 2 2 2 2 8 2 2 2 8 2 2 2
02 2 2 8 2 2 2 2 2 8 2 8 2 2 2 2
03 2 2 2 8 2 2 8 2 2 2 2 8 2 2 2
04 2 2 2 8 2 2 2 2 8 8 2 2 2 2 2
05 2 2 2 2 8 2 8 2 2 2 8 2 2 2 2
06 2 2 2 2 8 2 2 8 2 8 2 2 2 2 2
07 2 1 8 4 1 4 2 4 4 1 2 8 4 1 2
08 1 2 8 4 1 4 1 2 8 2 4 4 4 1 2
09 2 1 8 1 4 4 2 4 4 1 8 2 1 4 2
10 1 2 8 1 4 4 1 8 2 2 4 4 1 4 2
11 2 1 4 8 1 4 4 2 4 2 1 8 4 2 1
12 1 2 4 8 1 4 2 1 8 4 2 4 4 2 1
13 2 1 1 8 4 4 4 2 4 8 1 2 1 2 4
14 1 2 1 8 4 4 8 1 2 4 2 4 1 2 4
15 2 1 4 1 8 4 4 4 2 2 8 1 2 4 1
16 1 2 4 1 8 4 2 8 1 4 4 2 2 4 1
17 2 1 1 4 8 4 4 4 2 8 2 1 2 1 4
18 1 2 1 4 8 4 8 2 1 4 4 2 2 1 4

Table 3
Vertices of Conv(X ) that satisfy 2n−4xi1i2 + 2n−4xi1i3 + xi2i3 ≥ 2(n−2) at equality when assuming n = 6.

Vertices Entries

x12 x13 x14 x15 x16 x23 x24 x25 x26 x34 x35 x36 x45 x46 x56

01 2 1 8 4 1 4 2 4 4 1 2 8 4 1 2
02 1 2 8 4 1 4 1 2 8 2 4 4 4 1 2
03 1 1 8 4 2 8 1 2 4 1 2 4 4 2 4
04 2 1 8 1 4 4 2 4 4 1 8 2 1 4 2
05 1 2 8 1 4 4 1 8 2 2 4 4 1 4 2
06 1 1 8 2 4 8 1 4 2 1 4 2 2 4 4
07 2 1 4 8 1 4 4 2 4 2 1 8 4 2 1
08 1 2 4 8 1 4 2 1 8 4 2 4 4 2 1
09 1 1 4 8 2 8 2 1 4 2 1 4 4 4 2
10 2 1 1 8 4 4 4 2 4 8 1 2 1 2 4
11 1 2 1 8 4 4 8 1 2 4 2 4 1 2 4
12 1 1 2 8 4 8 4 1 2 4 1 2 2 4 4
13 2 1 4 1 8 4 4 4 2 2 8 1 2 4 1
14 1 2 4 1 8 4 2 8 1 4 4 2 2 4 1
15 1 1 4 2 8 8 2 4 1 2 4 1 4 4 2
16 2 1 1 4 8 4 4 4 2 8 2 1 2 1 4
17 1 2 1 4 8 4 8 2 1 4 4 2 2 1 4
18 1 1 2 4 8 8 4 2 1 4 2 1 4 2 4

facet-defining for n = 6, 7, 8. In particular, Table 3 shows the set of vertices of Conv(X ) that satisfy (49) as
an equality when n = 6. Finally, (50) is facet-defining for five and eight taxa, that is for (k, ρ) = (1, 2) and
(k, ρ) = (2, 2), but not for six and seven taxa. For eight taxa, the vertices of the facets are associated only
to 1-branch caterpillar phylogenies. We note that the left-hand side of (50) is equal to the left-hand side of
an (m, k) − split facet.

Proposition 8. Consider a set Γ of n ≥ 6 taxa and denote k = ⌊ n
3 ⌋ and ρ = n − 3k. Then, the following

inequalities are valid for Conv(X ):

2n−4xi1i2 − xi3i4 ≥ 0 ∀ i1, i2, i3, i4 ∈ Γ : i1 ̸= i2 ̸= i3 ̸= i4; (51)

xi1i2 + xi1i3 + xi2i3 + xi4i5 ≥ (4 + ρ)2k−1 ∀ i1, i2, i3, i4, i5 ∈ Γ : i1 ̸= i2 ̸= i3 ̸= i4 ̸= i5. (52)
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Proof.

Validity of (51). As 1 ≤ xi1i2 ≤ 2n−3 and 1 ≤ xi3i4 ≤ 2n−3, the inequality always holds true, unless
xi1i2 = 1 and xi3i4 = 2n−3 at the same time. This last situation, however, cannot occur. In fact,
assume by contradiction that there exists a phylogeny T of Γ whose corresponding matrix X(T ) is
such that xi1i2 = 1. Then, T is a caterpillar in which one of its two pairs of cherries includes taxon
i1 and the other includes taxon i2. Now assume that xi3i4 = 2n−3 also occurs. Then, T has a cherry
that includes taxa i3 and i4. As taxa i1, i2, i3, and i4 are distinct by hypothesis, a contradiction arises.
Thus, the statement follows.

Validity of (52). We prove the validity of (52) by following an approach similar to the one used to show
the validity of (50), i.e., by determining the minimum value that its left-hand side may achieve. To this
end, we denote j as the only internal vertex common to the three paths that join taxa i1, i2 and i3 on
a phylogeny T . Then, the following relationships hold:

τi1i2 = τi1j + τi2j

τi1i3 = τi1j + τi3j

τi2i3 = τi2j + τi3j .

Without loss of generality, suppose that taxa i1, i2, i3 are assigned to the leaves of T such that:
τi1j ≤ τi2j ≤ τi3j ; τi1i2 ≤ τi1i3 ≤ τi2i3 ; and taxa i2 and i3 are leaves of two different cherries. Then, we
claim that there is no loss of generality in assuming also that i4, respectively i5, belongs to the same
cherry of i2, respectively i3. To prove this claim, consider τi4i5 and observe that the following two cases
may theoretically occur:

(i) τi4i5 shares all of its internal edges with one of τi1i2 , τi1i3 , or τi2i3 ;
(ii) τi4i5 has s > 0 internal edges not in common with τi1i2 , τi1i3 , and τi2i3 .

Consider the case (i). Because we are interested in the minimality of the left-hand side of (52) and
because τi1i2 ≤ τi1i3 ≤ τi2i3 holds, we may assume that τi4i5 = τi2i3 . Hence, we can deduce that i4,
respectively i5, belongs to the same cherry of i2, respectively i3.
Concerning the case (ii), it is easy to see that it cannot realize, as it would contradict the minimality of
the left-hand side of (52). Specifically, assume that τi4i5 has s > 0 internal edges not in common with
τi1i2 , τi1i3 , and τi2i3 . Then, we can construct, as in the proof of (50), a 1-branch caterpillar phylogeny
T̃ by joining a single separator vertex j to three d-subcaterpillars such that

(i) each of the taxa i1, i2, i3 belong to the cherry of a different subcaterpillar (see again Fig. 8);
(ii) taxon i4, respectively i5, belongs to the same cherry of i2, respectively i3;
(iii) and the following relationships hold:

τ̃i1j = τi1j

τ̃i2j = τ̃i4j = τi2j

τ̃i3j = τ̃i5j = τi3j + s.

These latter topological distances imply that τ̃i4i5 > τi4i5 , hence that the left-hand side of (52) achieves
a strictly lower value in T̃ than in T , by leading to a contradiction.
We note that requiring the minimality of the left-hand side of (52) further implies that the condition
τi3j − τi1j ≤ 2 (hence τi2i3 − τi1i2 ≤ 2) holds as well. In particular, it can be easily verified that if we
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Table 4
Vertices of Conv(X ) that satisfy 2n−4xi1i2 − xi3i4 ≥ 0 at equality when assuming n = 6.

Vertices Entries

x12 x13 x14 x15 x16 x23 x24 x25 x26 x34 x35 x36 x45 x46 x56

01 2 2 2 8 2 2 2 2 8 8 2 2 2 2 2
02 2 2 2 2 8 2 2 8 2 8 2 2 2 2 2
03 1 8 4 2 1 1 2 4 8 4 2 1 4 2 4
04 1 8 4 1 2 1 2 8 4 4 1 2 2 4 4
05 1 4 8 2 1 2 1 4 8 4 4 2 2 1 4
06 1 4 8 1 2 2 1 8 4 4 2 4 1 2 4
07 1 4 2 8 1 2 4 1 8 4 4 2 2 4 1
08 1 2 4 8 1 4 2 1 8 4 2 4 4 2 1
09 2 1 1 8 4 4 4 2 4 8 1 2 1 2 4
10 1 2 1 8 4 4 8 1 2 4 2 4 1 2 4
11 1 1 2 8 4 8 4 1 2 4 1 2 2 4 4
12 1 4 2 1 8 2 4 8 1 4 2 4 4 2 1
13 1 2 4 1 8 4 2 8 1 4 4 2 2 4 1
14 2 1 1 4 8 4 4 4 2 8 2 1 2 1 4
15 1 2 1 4 8 4 8 2 1 4 4 2 2 1 4
16 1 1 2 4 8 8 4 2 1 4 2 1 4 2 4
17 2 4 4 2 4 1 1 8 4 8 1 2 1 2 4
18 2 4 4 4 2 1 1 4 8 8 2 1 2 1 4

shorten τi3j by one unit and we lengthen τi1j by the same quantity, we have that

2n−1−(τi1j+τi2j+1) + 2n−1−(τi1j+τi3j) + 2 · 2n−1−(τi2j+τi3j−1) ≤
2n−1−(τi1j+τi2j) + 2n−1−(τi1j+τi3j) + 2 · 2n−1−(τi2j+τi3j)

when τi1j + 2 ≤ τi3j . Then, in the light of the above considerations, the following three cases hold:

Case 1: n = 3k. In this situation, the minimum value of xi1i2 +xi1i3 +xi2i3 +xi4i5 is 4 ·2k−1 obtained
when either τi1i2 = τi1i3 = τi2i3 = τi4i5 = 2k or τi1i2 = 2k − 1, τi1i3 = 2k, τi2i3 = τi4i5 = 2k + 1.

Case 2: n = 3k + 1. In this situation, the minimum value of xi1i2 + xi1i3 + xi2i3 + xi4i5 is 5 · 2k−1 =
(4 + 1)2k−1 obtained when either τi1i2 = 2k, τi1i3 = τi2i3 = τi4i5 = 2k + 1 or τi1i2 = τi1i3 = 2k,
τi2i3 = τi4i5 = 2k + 2.

Case 3: n = 3k + 2. In this situation, the minimum value of xi1i2 + xi1i3 + xi2i3 + xi4i5 is 6 · 2k−1 =
(4 + 2)2k−1 obtained when τi1i2 = τi1i3 = 2k + 1, τi2,i3 = τi4,i5 = 2k + 2. Differently, note that
when τi1i2 = 2k, τi1i3 = τi2i3 = τi4i5 = 2k + 2 we have xi1i2 + xi1i3 + xi2i3 + xi2i4 = 7 · 2k−1.

All of the three cases satisfy the right-hand side of (52), thus this inequality is valid for Conv(X ). □

It is worth noting that (51) holds as an equality, e.g., when xi1i2 = 2 and xi3i4 = 2n−3. Moreover, it is
facet-defining for n = 6, 7, 8. For example, Table 4 shows the set of vertices of Conv(X ) that satisfy (51)
as an equality when n = 6. Inequality (52) is facet-defining for n = 6, that is for (k, ρ) = (2, 0). However,
enumerative analyses of the facets of the BMEP polytope carried out by Polymake showed that (52) is not
facet-defining for n = 7 and n = 8. When n = 6, the vertices of the facets defined by (52) are associated
to the only two topologies (caterpillar and balanced) that can be obtained with six taxa. Such vertices are
shown in Table 5.

Proposition 9. Let Γ be a set of n ≥ 6 taxa. Then, for all distinct taxa i1, i2, i3, i4, i5, i6 ∈ Γ . the following
inequalities are valid for Conv(X ):

2xi1i2 + 2xi3i4 + xi5i6 ≥ 8 (53)
xi1i2 + xi3i4 − 2n−4xi5i6 ≤ 2n−4. (54)
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Table 5
Vertices of Conv(X ) that satisfy xi1i2 + xi1i3 + xi2i3 + xi4i5 ≥ (4 + ρ)2k−1 at equality when assuming n = 6 and k = 2.

Vertices Entries

x12 x13 x14 x15 x16 x23 x24 x25 x26 x34 x35 x36 x45 x46 x56

01 2 2 8 2 2 2 2 8 2 2 2 8 2 2 2
02 2 2 8 2 2 2 2 2 8 2 8 2 2 2 2
03 2 2 2 8 2 2 8 2 2 2 2 8 2 2 2
04 2 2 2 8 2 2 2 2 8 8 2 2 2 2 2
05 2 2 2 2 8 2 8 2 2 2 8 2 2 2 2
06 2 2 2 2 8 2 2 8 2 8 2 2 2 2 2
07 4 1 8 1 2 2 4 2 4 1 8 4 1 2 4
08 1 4 8 1 2 2 1 8 4 4 2 4 1 2 4
09 2 1 8 1 4 4 2 4 4 1 8 2 1 4 2
10 1 2 8 1 4 4 1 8 2 2 4 4 1 4 2
11 4 1 1 8 2 2 2 4 4 8 1 4 1 4 2
12 1 4 1 8 2 2 8 1 4 2 4 4 1 4 2
13 2 1 1 8 4 4 4 2 4 8 1 2 1 2 4
14 1 2 1 8 4 4 8 1 2 4 2 4 1 2 4
15 4 2 4 2 4 1 8 1 2 1 8 4 1 2 4
16 2 4 2 4 4 1 8 1 4 1 8 2 1 4 2
17 4 2 2 4 4 1 1 8 2 8 1 4 1 4 2
18 2 4 4 2 4 1 1 8 4 8 1 2 1 2 4

Proof.

Validity of (53). Consider the phylogeny T encoded by a generic matrix X ∈ X . If T is not a caterpillar
then mini,j∈Γ{xij} = 2, hence the inequality is trivially valid. If T is a caterpillar then two cases may
occur:

Case 1: xi1i2 = xi3i4 = 1. In this situation, the pair of taxa i1 and i2 are leaves of the two opposite
cherries of T , whose other leaves are necessarily i3 or i4. This fact trivially implies that i5 and i6

cannot be cherry leaves. Hence, τi5i6 ≤ n − 3 that implies xi5i6 ≥ 22, and the inequality is valid.
Case 2: xi1i2 = xi5i6 = 1 (the case xi3i4 = xi5i6 = 1 is analogous and is omitted). As for Case 1, in this

situation i1 and i2 are leaves of the two opposite cherries of T , whose other leaves are necessarily
i5 or i6. As i3 and i4 cannot be cherry leaves and τi3i4 ≤ n−3, then xi3i4 ≥ 22 = 4, i.e., 2xi3i4 ≥ 8,
thus the inequality is valid.

Validity of (54). Consider the phylogeny T encoded by a generic matrix X ∈ X . As xi5i6 ≥ 1, (54) is
trivially valid for Conv(X ) if both xi1i2 and xi3i4 are smaller than or equal to 2n−4. Otherwise, the
following two cases may occur:

Case 1: xi1i2 = xi3i4 = 2n−3. In this situation, T has cherries i1, i2 and i3, i4; moreover, it also holds
that τ56 ≤ n − 3. This last nontrivial fact can be proved by contradiction. Specifically, suppose
that τ56 > n − 3, then T is either a caterpillar or a 1-branch caterpillar. If T is a caterpillar, then
at least one of i5 and i6 belongs to a cherry; if T is a 1-branch caterpillar, then i5 and i6 belong
to two different cherries. Both situations contradict the fact that T has cherries i1, i2 and i3, i4.
Hence, τ56 ≤ n − 3, i.e., xi5i6 ≥ 4, and the inequality is valid.

Case 2: xi1i2 = 2n−3 and xi3i4 = 2n−4. In this situation, i1 and i2 form a cherry in T . If T is a
caterpillar, then xi5i6 ≥ 2 as every path of topological length n − 1 on T must have taxa i1 or i2

as an endpoint. If T is not a caterpillar, then the topological distance between any pair of vertices
is less than n − 1 and then xi5i6 ≥ 2. In both cases xi5i6 ≥ 2 holds, so the inequality is valid. □

Inequality (53) is facet-defining for n = 6. In particular, Table 6 shows a set of vertices of Conv(X ) that
satisfy (53) as an equality when n = 6. Empirical analyses of the facets of the BMEP polytope carried out
by Polymake suggest that (53) may not be facet defining for n > 6. In particular, when |Γ | = 8 the most
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Table 6
Vertices of Conv(X ) that satisfy 2xi1i2 + 2xi3i4 + xi5i6 ≥ 8 at equality when assuming n = 6.

Vertices Entries

x12 x13 x14 x15 x16 x23 x24 x25 x26 x34 x35 x36 x45 x46 x56

01 2 8 1 4 1 2 4 4 4 1 4 1 2 8 2
02 1 8 2 4 1 1 4 2 8 2 4 1 4 4 2
03 1 8 1 4 2 1 8 2 4 1 4 2 2 4 4
04 2 8 1 1 4 2 4 4 4 1 1 4 8 2 2
05 1 8 2 1 4 1 4 8 2 2 1 4 4 4 2
06 1 8 1 2 4 1 8 4 2 1 2 4 4 2 4
07 2 1 8 4 1 4 2 4 4 1 2 8 4 1 2
08 1 2 8 4 1 4 1 2 8 2 4 4 4 1 2
09 1 1 8 4 2 8 1 2 4 1 2 4 4 2 4
10 2 1 8 1 4 4 2 4 4 1 8 2 1 4 2
11 1 2 8 1 4 4 1 8 2 2 4 4 1 4 2
12 1 1 8 2 4 8 1 4 2 1 4 2 2 4 4
13 1 4 1 8 2 2 8 1 4 2 4 4 1 4 2
14 1 1 4 8 2 8 2 1 4 2 1 4 4 4 2
15 1 4 1 2 8 2 8 4 1 2 4 4 4 1 2
16 1 1 4 2 8 8 2 4 1 2 4 1 4 4 2
17 2 2 4 4 4 8 1 4 1 1 4 1 2 8 2
18 2 2 4 4 4 8 1 1 4 1 1 4 8 2 2
19 2 4 2 4 4 1 8 4 1 1 2 8 4 1 2
20 2 4 2 4 4 1 8 1 4 1 8 2 1 4 2

Table 7
Vertices of Conv(X ) that satisfy xi1i2 + xi3i4 − 2n−4xi5i6 ≤ 2n−4 at equality when assuming n = 6.

Vertices Entries

x12 x13 x14 x15 x16 x23 x24 x25 x26 x34 x35 x36 x45 x46 x56

01 8 2 1 4 1 2 1 4 1 4 4 4 2 8 2
02 8 1 2 4 1 1 2 4 1 4 2 8 4 4 2
03 8 2 1 1 4 2 1 1 4 4 4 4 8 2 2
04 8 1 2 1 4 1 2 1 4 4 8 2 4 4 2
05 4 2 1 8 1 4 2 4 2 4 2 4 1 8 1
06 4 1 2 8 1 2 4 4 2 4 1 8 2 4 1
07 4 1 1 8 2 2 2 4 4 8 1 4 1 4 2
08 4 2 1 1 8 4 2 2 4 4 4 2 8 1 1
09 4 1 2 1 8 2 4 2 4 4 8 1 4 2 1
10 4 1 1 2 8 2 2 4 4 8 4 1 4 1 2
11 4 4 2 4 2 2 1 8 1 4 2 4 1 8 1
12 4 2 4 4 2 1 2 8 1 4 1 8 2 4 1
13 4 2 2 4 4 1 1 8 2 8 1 4 1 4 2
14 4 4 2 2 4 2 1 1 8 4 4 2 8 1 1
15 4 2 4 2 4 1 2 1 8 4 8 1 4 2 1
16 4 2 2 4 4 1 1 2 8 8 4 1 4 1 2

similar inequalities that are facet-defining for Conv(X ) are:

4xi1i2 + 2xi3i4 + 2xi5i6 + xi7i8 ≥ 24
2xi1i2 + 2xi1i3 + 2xi1i4 + xi2i3 + xi2i4 + xi3i4 ≥ 48.

Inequality (54) is facet-defining for n = 6, 7, 8. In particular, Table 7 shows the set of vertices of Conv(X )
that satisfy (54) as an equality when n = 6.

Enumerative analyses of the facets of the BMEP polytope carried out by Polymake showed that the
following propositions hold:

Proposition 10. Let Γ be a set of n = 6 taxa. Then, for any distinct i1, i2, i3, i4, i5, i6 ∈ Γ , the inequalities

2xi1i2 + xi2i3 + xi3i4 + xi4i5 + xi5i6 + xi1i6 + xi2i4 ≥ 16 (55)
−2xi1i2 + 7xi1i3 + 7xi1i4 + 7xi2i5 + 7xi2i6 ≥ 40 (56)

are facet-defining for Conv(X ).
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Table 8
Vertices of Conv(X ) that satisfy 2xi1i2 + xi2i3 + xi3i4 + xi4i5 + xi5i6 + xi1i6 + xi2i4 ≥ 16 at equality when assuming n = 6.

Vertices Entries

x12 x13 x14 x15 x16 x23 x24 x25 x26 x34 x35 x36 x45 x46 x56

01 2 8 2 2 2 2 2 8 2 2 2 2 2 8 2
02 2 2 8 2 2 2 2 8 2 2 2 8 2 2 2
03 2 2 8 2 2 2 2 2 8 2 8 2 2 2 2
04 2 8 1 4 1 2 4 4 4 1 4 1 2 8 2
05 1 8 2 4 1 1 4 2 8 2 4 1 4 4 2
06 1 4 8 2 1 2 1 4 8 4 4 2 2 1 4
07 1 4 8 1 2 2 1 8 4 4 2 4 1 2 4
08 1 2 8 4 1 4 1 2 8 2 4 4 4 1 2
09 1 2 8 1 4 4 1 8 2 2 4 4 1 4 2
10 1 4 2 8 1 2 4 1 8 4 4 2 2 4 1
11 2 4 4 4 2 1 4 1 8 2 8 1 2 4 1

Table 9
Vertices of Conv(X ) that satisfy −2xi1i2 + 7xi1i3 + 7xi1i4 + 7xi2i5 + 7xi2i6 ≥ 40 at equality when assuming n = 6.

Vertices Entries

x12 x13 x14 x15 x16 x23 x24 x25 x26 x34 x35 x36 x45 x46 x56

01 8 2 2 2 2 2 2 2 2 8 2 2 2 2 8
02 8 2 2 2 2 2 2 2 2 2 8 2 2 8 2
03 8 2 2 2 2 2 2 2 2 2 2 8 8 2 2
04 8 4 2 1 1 4 2 1 1 4 2 2 4 4 8
05 8 4 1 2 1 4 1 2 1 2 4 2 4 8 4
06 8 4 1 1 2 4 1 1 2 2 2 4 8 4 4
07 8 2 4 1 1 2 4 1 1 4 4 4 2 2 8
08 8 1 4 2 1 1 4 2 1 2 4 8 4 2 4
09 8 1 4 1 2 1 4 1 2 2 8 4 2 4 4
10 8 2 1 4 1 2 1 4 1 4 4 4 2 8 2
11 8 1 2 4 1 1 2 4 1 4 2 8 4 4 2
12 8 1 1 4 2 1 1 4 2 8 2 4 2 4 4
13 8 2 1 1 4 2 1 1 4 4 4 4 8 2 2
14 8 1 2 1 4 1 2 1 4 4 8 2 4 4 2
15 8 1 1 2 4 1 1 2 4 8 4 2 4 2 4
16 1 2 1 8 4 4 8 1 2 4 2 4 1 2 4
17 1 1 2 8 4 8 4 1 2 4 1 2 2 4 4
18 1 2 1 4 8 4 8 2 1 4 4 2 2 1 4
19 1 1 2 4 8 8 4 2 1 4 2 1 4 2 4

Proposition 11. Let Γ be a set of at most 8 taxa and denote k = ⌊ n
2 ⌋ and ρ = n − 2k. Then, for any

distinct taxa i1, i2, i3, . . . , in ∈ Γ , the inequality

ρxi1in + xi1i2 + xi3i4 + · · · + xin−ρ−1in−ρ = ρxi1in +
k∑

r=1
xi2r−1i2r ≥ 2n−k−3(k + 2 − ρ) + ρ (57)

is facet-defining for Conv(X ).

Tables 8–10 show three sets of vertices that define facets of Conv(X ) and satisfy (55), (56) and (57) at
equality, respectively, when assuming n = 6. We also observe that (57) are equivalent to Forcey et al. [21]’s
intersecting cherry inequalities for n = 5. Moreover, enumerative analyses showed that (55) and (56) are not
facet-defining for n > 6, whereas (57) are facet-defining also for n = 7 and n = 8.

To conclude this section, we summarize in Table 11 the families of known and new inequalities that are
facet-defining or just valid for Conv(X ) when assuming n = 6.

7. Characterizing and recognizing elements of X

In this section, we investigate two fundamental issues concerning the set X , namely the problem of
consistently generating its elements and the problem of deciding whether a given matrix is an element of
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Table 10
Vertices of Conv(X ) that satisfy xi1i2 + xi3i4 + xi5i6 ≥ 5 at equality when assuming n = 6.

Vertices Entries

x12 x13 x14 x15 x16 x23 x24 x25 x26 x34 x35 x36 x45 x46 x56

01 2 8 1 4 1 2 4 4 4 1 4 1 2 8 2
02 1 8 2 4 1 1 4 2 8 2 4 1 4 4 2
03 2 8 1 1 4 2 4 4 4 1 1 4 8 2 2
04 1 8 2 1 4 1 4 8 2 2 1 4 4 4 2
05 2 1 8 4 1 4 2 4 4 1 2 8 4 1 2
06 1 2 8 4 1 4 1 2 8 2 4 4 4 1 2
07 2 1 8 1 4 4 2 4 4 1 8 2 1 4 2
08 1 2 8 1 4 4 1 8 2 2 4 4 1 4 2
09 2 4 1 8 1 4 4 2 4 2 4 2 1 8 1
10 1 4 1 8 2 2 8 1 4 2 4 4 1 4 2
11 2 1 4 8 1 4 4 2 4 2 1 8 4 2 1
12 1 1 4 8 2 8 2 1 4 2 1 4 4 4 2
13 2 4 1 1 8 4 4 4 2 2 2 4 8 1 1
14 1 4 1 2 8 2 8 4 1 2 4 4 4 1 2
15 2 1 4 1 8 4 4 4 2 2 8 1 2 4 1
16 1 1 4 2 8 8 2 4 1 2 4 1 4 4 2
17 2 2 4 4 4 8 1 4 1 1 4 1 2 8 2
18 2 2 4 4 4 8 1 1 4 1 1 4 8 2 2
19 2 4 2 4 4 1 8 4 1 1 2 8 4 1 2
20 2 4 2 4 4 1 8 1 4 1 8 2 1 4 2
21 2 4 4 2 4 4 1 8 1 2 4 2 1 8 1
22 2 4 4 2 4 1 4 8 1 2 1 8 4 2 1
23 2 4 4 4 2 4 1 1 8 2 2 4 8 1 1
24 2 4 4 4 2 1 4 1 8 2 8 1 2 4 1

Table 11
Summary of known and new valid inequalities for Conv(X ) when assuming n = 6.

Facet-defining inequalities Reference

xij ≥ 1 For all distinct i, j ∈ Γ

For all distinct i, j, k ∈ Γ

For any S1, S2 ⊂ Γ :
S1 ∩ S2 = ∅, and |S1| = 3

Forcey et al. [21](see also Section 6.1)xij + xjk − xik ≤ 2n−3∑
i,j∈S1

i<j

xij ≤ (k − 1)2n−3

2n−5xi1i2 + 2n−5xi1i3 + xi2i3 ≥ 5 · 2(n−5)
For all distinct i1, i2, i3 ∈ Γ

Proposition 7 - (48)
2n−4xi1i2 + 2n−4xi1i3 + xi2i3 ≥ 2(n−2) Proposition 7 - (49)

2n−4xi1i2 − xi3i4 ≥ 0 For all distinct i1, i2, i3, i4 ∈ Γ Proposition 8 - (51)

xi1i2 + xi1i3 + xi2i3 + xi4i5 ≥ (4 + ρ)2k−1 For all distinct i1, i2, i3, i4, i5 ∈ Γ Proposition 8 - (52)
k = ⌊ n

3 ⌋, ρ = n − 3k

2xi1i2 + 2xi3i4 + xi5i6 ≥ 8 For all distinct i1, i2, i3, i4, i5, i6 ∈ Γ
Proposition 9 - (53)

xi1i2 + xi3i4 − 2n−4xi5i6 ≤ 2n−4 Proposition 9 - (54)

2xi1i2 + xi2i3 + xi3i4 + xi4i5 + xi5i6 + xi1i6 + xi2i4 ≥ 16 For all distinct i1, i2, i3, i4, i5, i6 ∈ Γ
Proposition 10 - (55)

−2xi1i2 + 7xi1i3 + 7xi1i4 + 7xi2i5 + 7xi2i6 ≥ 40 Proposition 10 - (56)

ρxi1in
+
∑k

r=1
xi2r−1i2r

≥ 2n−k−3(k + 2 − ρ) + ρ
For all distinct i1, i2, . . . , in ∈ Γ Proposition 11 - (57)
k = ⌊ n

2 ⌋, ρ = n − 2k

Valid but not facet-defining inequalities

xi1i2 + xi1i3 + xi2i3 ≥ (3 + ρ)2k−1 k = ⌊ n
3 ⌋, ρ = n − 3k Proposition 7 - (50)

X (hence, a vertex of Conv(X )). We present a set of necessary and sufficient conditions to accomplish the
first task and we show how to translate such conditions into a set of nonlinear constraints. Moreover, we
present a polynomial-time oracle to decide whether a given n × n symmetric matrix having generic entry
2α, for some α ∈ {0, . . . , n − 1} is an element of X (hence encoding a phylogeny of Γ ). Before proceeding,
we introduce a number of definitions that will prove useful throughout the section.

Given a set Γ of n taxa and a subset S ⊆ Γ , |S| ≥ 3, we define a partial phylogeny of Γ as any phylogeny
of S. We denote Sk as a subset of Γ such that |S| = k. By analogy, we denote Tk as a partial phylogeny of
Γ having Sk as leafset. Given a subset Sk ⊂ Γ , the corresponding partial phylogeny Tk, and a taxon i in
Tk, we say that we insert a taxon j ∈ Γ \ Sk in taxon i when we generate from Tk a new partial phylogeny
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Fig. 9. The down arrow shows an example of an insertion of a taxon j in the edge (̂i, i). Vice versa, the up arrow shows a contraction
of a cherry with leaves i and j into a leaf i.

Tk+1 of Γ by replacing taxon i in Tk with an internal vertex, say v̂, and by adding to Tk the edges (v̂, i) and
(v̂, j). Fig. 9 shows an example of an insertion of a taxon on a (partial) phylogeny with k leaves.

7.1. Generating elements of X

We recall the following observation from Catanzaro et al. [3]:

Observation 2. All of the phylogenies of Γ can be generated by using a constructive procedure based on
the following steps: (i) construct the subset S3 by selecting the first three taxa in Γ ; (ii) construct the partial
phylogeny T3; and (iii) iteratively insert, one at a time, each of the remaining taxa in Γ \ S3 in each taxon
of the successive partial phylogenies Tk, 3 ≤ k ≤ n − 1, until a phylogeny of Γ is obtained.

Observation 2 proves useful to characterize any matrix X ∈ X . In particular, it is worth noting that a
given n × n symmetric matrix having generic entry 2α, for some α ∈ {0, . . . , n − 1}, encodes a phylogeny of
Γ if and only if we can characterize it in terms of a sequence of insertions of taxa in a partial phylogeny. To
this end, consider a subset Sk of Γ , k ≥ 3, the corresponding partial phylogeny Tk, and a n × n symmetric
matrix X(k) whose generic entries are defined as follows:

xrs(k) =

⎧⎪⎨⎪⎩
2k−1 if r, s ∈ Γ , r = s;
2k−1−τrs(k) if r, s ∈ Sk, r ̸= s;
0 otherwise

∀ r, s ∈ Γ (58)

where τrs(k) is the topological distance between taxa r and s on the partial phylogeny Tk. Then, the following
proposition holds:



30 D. Catanzaro, R. Pesenti and L. Wolsey / Discrete Optimization 36 (2020) 100570

Proposition 12. Let Tk+1 be the partial phylogeny obtained from Tk by inserting a taxon j ∈ Γ \ Sk in
taxon i of Tk. Then, the following relations exist between the entries of matrices X(k) and X(k + 1):

xrs(k + 1) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

2k if r = s;
2k−2 if (r = i and s = j) or (r = j and s = i);
xis(k) if r = j and s /∈ {i, j};
xri(k) if r /∈ {i, j} and s = j;
xrs(k) if r ̸= s and (r = i or s = i);
2xrs(k) otherwise

∀ r, s ∈ Γ : r < s (59)

Proof. Conditions (59) derive from the following facts:

1. τrr(k + 1) = 0 on Tk+1, hence xrr(k + 1) = 2k;
2. τij(k + 1) = 2 on Tk+1, hence xij(k + 1) = xji(k + 1) = 2k−2;
3. τis(k + 1) = τjs(k + 1) = 2τis(k) on Tk+1, for s /∈ {i, j}, hence xis(k + 1) = xjs(k + 1) = xis(k) and

xsi(k + 1) = xsj(k + 1) = xsi(k);
4. τrs(k + 1) = τrs(k) on Tk+1, for r, s /∈ {i, j}, hence xrs(k + 1) = 2xrs(k + 1). □

Now, consider a phylogeny T of Γ , the associated matrix X, the subset S3 constituted by the first three
taxa in Γ , and an arbitrary n × n symmetric matrix X(3). In particular, assume, without loss of generality,
that

xrs(3) =

⎧⎪⎨⎪⎩
4 if r, s ∈ Γ , r = s;
1 if r, s ∈ S3, r ̸= s;
0 otherwise

∀r, s ∈ Γ . (60)

Then, in the light of Observation 2 and Proposition 12, we can define a set of necessary and sufficient
nonlinear relationships between matrices X(3) and X that allows us to describe how we can iteratively
construct the phylogeny T encoded by X starting from the knowledge of the partial phylogeny T3.
Specifically, for all i, j ∈ Γ and k ∈ N, 3 ≤ k ≤ n − 1, let yij(k) be a decision variable defined as follows:

yij(k) =
{

1 if phylogeny Tk+1 is obtained from phylogeny Tk by inserting j in the leaf of i;
0 otherwise.

(61)

Then, for all k ∈ N, 3 ≤ k ≤ n − 1, the following conditions hold:

xrr(k + 1) =2k, ∀ r ∈ Γ (62)

xrs(k + 1) =2k−2(yrs(k) + ysr(k)) + xrs(k)

⎛⎝ ∑
j∈Γ ,j ̸=r,s

yrj(k) +
∑

i∈Γ ,i̸=r,s

yis(k)

⎞⎠
+ 2xrs(k)

⎛⎝1 − yrs(k) − ysr(k) −
∑

j∈Γ ,j ̸=r,s

yrj(k) −
∑

i∈Γ ,i̸=r,s

yis(k)

⎞⎠
∀ r ∈ Γ , s ∈ Γ \ S3, r ̸= s (63)

n−1∑
k=3

∑
r∈Γ

yrs(k) =1 ∀ s ∈ Γ \ S3 (64)∑
r∈Γ

∑
s∈Γ\S3

yrs(k) =1 (65)

0 ≤ yrs(k) ≤
k−1∑
l=3

∑
p∈Γ

ypr(l) ∀ r, s ∈ Γ \ S3 (66)
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Algorithm 1: A membership oracle for the set X
Input : A candidate matrix X = {xij}
Output : True if X ∈ X , False otherwise
Data: X′: a (2n − 1) × (2n − 1) symmetric matrix used to support computation

ProcessedTaxa: a set of positive integers
InternalVertex: a positive integer

1 Set x′
ij = xij , for all i, j ∈ {1, . . . , n}, and x′

ij = 0 otherwise
2 Set ProcessedTaxa = {1, . . . , n}
3 Set InternalVertex = n + 1
4 while |ProcessedTaxa| > 3 do
5 Find a pair of indices î and ĵ such that x′

î,ĵ
= 2|ProcessedTaxa|−3; if such pair does not exists return False

6 for all k in ProcessedTaxa do
7 x′

InternalVertex,k = x′
î,k

8 x′
k,InternalVertex = x′

InternalVertex,k

9 for all i, j in ProcessedTaxa such that i < j do
10 x′

i,j = x′
i,j/2

11 x′
j,i = x′

i,j

12 ProcessedTaxa = (ProcessedTaxa \ {î, ĵ}) ∪ {InternalVertex}
13 InternalVertex = InternalVertex + 1
14 for all i in ProcessedTaxa do
15 if

∑
j∈ProcessedTaxa

j ̸=i

x′
ij ̸= 2|ProcessedTaxa|−2 then

16 return False

17 if x′
ij = 1, for all i, j in ProcessedTaxa such that i ̸= j then

18 return True

19 else
20 return False

yrs(k) ∈ {0, 1} ∀ r ∈ Γ , s ∈ Γ \ S3. (67)

Constraints (62)–(63) are equivalent to conditions (59). Constraints (64) impose that each taxa i ∈ Γ must
belong to Tn = T . Constraint (65) imposes that a taxon i ∈ Γ \ S3 can be inserted only one time in the
successive partial phylogenies. Constraints (66) impose that a taxon s ∈ Γ \ S3 can be inserted in taxon r

of a partial phylogeny Tk, only if r belongs to Tk.
If appropriately exploited, the above conditions could inspire implicit enumeration algorithms based on

iterative insertions on a partial phylogeny such as the ones described in [3,10].

7.2. Recognizing elements of X

Consider a n × n symmetric matrix having diagonal entries xii = 2n−1, for i ∈ {1, . . . , n}, and generic
non-diagonal entry xij = 2α, for some α ∈ {0, . . . , n − 3}, in the following referred to as candidate matrix.
A question that may naturally arise is whether this candidate matrix is or not an element of X (hence,
a vertex of Conv(X )). In this subsection we address this problem and we present a possible recognition
algorithm able to provide in polynomial-time a yes/no answer to this question. Before proceeding, we recall
that a full binary tree is a tree in which every vertex has either zero or two children [29]. Moreover, because
the recognition problem inquires whether a given candidate matrix is encoding a phylogeny of Γ or not, we
introduce the following equivalent recursive definition of a phylogeny that will prove useful to our ends: a
phylogeny is either a single vertex or an acyclic graph constituted by three full binary trees, a new vertex,
and three edges connecting the new vertex to the root of each full binary tree.

Consider a phylogeny T with n leaves. We define a contraction as a topological operation on T that
consists in (i) removing a cherry, say i and j, from T together with the edges connecting the two leaves with
their immediate ancestor, say v̂, and (ii) replacing v̂ with leaf i. Fig. 9 shows an example of a contraction
on a given (partial) phylogeny with k + 1 leaves. We observe that the following proposition holds:
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Proposition 13. A contraction is a topological operation that preserves the degree constraint on the internal
vertices of a given phylogeny T with n + 1 leaves, i.e., it operates on T so as to provide a new phylogeny with
n leaves.

Proof. Consider any cherry of T on which we want to perform a contraction. Denote the cherry leaves by
i and j; let v̂ be their immediate ancestor, and let î the ancestor of v̂. Then, the statement trivially follows
by observing that (i) the graph resulting from a contraction on T is still a tree (indeed, after a contraction
two edges of T are removed and no new edge is added), and (ii) such a graph still satisfies the recursive
definition of a phylogeny because after a contraction one of the three full binary trees adjacent to î, namely
the one rooted in v̂, is replaced with a new full binary tree constituted by the leaf i. □

The recursive definition of a phylogeny, together with the definition of a contraction, suggest the following
iterative algorithm to decide whether a candidate matrix X is or not an element of X :

1. if X is a 3 × 3 matrix then

1.1 if such a matrix maps a star tree with three leaves then X ∈ X ; return yes;
1.2 otherwise return false;

2. otherwise

2.1 find a cherry in X; if no cherry is found, then X /∈ X ; return false;
2.2 perform a contraction of such a cherry, and let X̄ the resulting candidate matrix;
2.3 check if X̄ satisfies Kraft equalities; if there are violations then X /∈ X ; return false;
2.4 set X = X̄ and go to step 1.

Algorithm 1 shows the pseudo code implementing the above iterative algorithm. Specifically, Algorithm 1
takes as input a candidate matrix X and returns as an output a boolean equal to true if X ∈ X , and false
otherwise. The algorithm uses as a support three data structures, namely a (2n − 1) × (2n − 1) symmetric
matrix called X ′ used to store the sequence of contractions, a set of positive integer called ProcessedTaxa
used to track the leaves that must be still processed, and a temporary integer called InternalVertex. The
first three lines of Algorithm 1 initialize the support data structures. Specifically, at line 1 the entries of
X are copied into the corresponding ones of X ′, while the remaining entries of X ′ are set to 0. At line 2
ProcessedTaxa is set to {1, . . . , n} and at line 3 InternalVertex is set to n + 1. The subsequent lines
implement the sequence of contractions described above. In particular, lines 4–16 take into account the case
in which the phylogeny encoded by X ′ has at least four leaves, while lines 17–20 take into account the
case in which the leaves are 3. More in detail, line 5 takes care of identifying a cherry; lines 6–13 perform a
contraction, by appropriately storing the entries of matrix X̄ into X ′; and lines 14–16 check if the contracted
matrix X̄ satisfies Kraft equalities. Finally, lines 17–20 check whether the final 3 × 3 matrix X̄ maps a
star tree. It is easy to realize that the computational complexity of Algorithm 1 is O(n3). As verifying
conditions (4)–(9) takes O(n3), the algorithm is optimal.
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