Channel Length Upsize for Robust and Compact Subthreshold SRAM

David Bol, Renaud Ambroise, Denis Flandre and Jean-Didier Legat
Microelectronics laboratory, Université catholique de Louvain
Place du Levant 3, 1348 Louvain-la-Neuve, Belgium
david.bol@uclouvain.be

Abstract—Subthreshold operation is an efficient way to achieve ultra-low-power consumption. However, subthreshold SRAM requires special design techniques to ensure sufficient robustness in the context of high process variability of nanoscale technologies. In this contribution, we propose to increase MOSFET channel length in the conventional 6T SRAM cell to operate safely at subthreshold V_{dd}. Two length upsizing schemes are proposed and we show that they lead to an efficient robustness increase with minimum area overhead (10%), thanks to DIBL and variability mitigation. We also show that the improved subthreshold swing yields a static power reduction by a factor 20 without significant speed deterioration.

I. INTRODUCTION

Over the last decade, ultra-low-power design has become a vibrant research field for applications such as sensor networks, RFID tags and biomedical devices. Subthreshold operation is an efficient technique to achieve ultra-low power consumption for circuit with very loose timing constraint [1]. The principle is simple: lowering the power supply V_{dd} to extremely low voltages, below the threshold voltage V_t, leading to quadratic reduction of the dynamic power consumption.

Whereas subthreshold logic design is straightforward in principle thanks to the intrinsic robustness of CMOS logic style, serious stability issues are raised in subthreshold SRAM design by the inherent ratioed behavior of SRAM cells. Indeed, at low V_{dd}, read/hold stability and write ability are severely degraded because of reduced I_{on}/I_{off} ratio and magnified current variability due to the exponential dependence of subthreshold current on V_t [2]. The design target is thus to achieve safe operation at low V_{dd} values, compatible with subthreshold logic.

Because of this exponential current variability in subthreshold regime, read-stability and write-ability issues cannot be solved by tuning the device width, i.e. modifying the SRAM cell (β) and pull-up ratios, as it would lead to unacceptable device widths [2]. In previous articles on subthreshold SRAM, write-ability issues have been dealt by:

- unconventional biasing schemes: V_{dd} collapse or W/L boost during a write operation [3], [4],
- device addition to the conventional 6T SRAM cell to break/weaken the feedback loop when writing the data [5], [6].

Read stability was ensured by decoupling the read BL from the cell memory nodes, through read buffer insertion [3]- [5].

![Fig. 1. Evolution of subthreshold parameters with increasing channel length for 45-nm technology (nominal $L_{eff}=17.5$nm)](image-url)

In subthreshold regime, drain current can be expressed as:

\[I_{sub} = I_0 \times 10^{\frac{V_{gs}-V_{th}}{S}} \times \left(1-e^{-\frac{V_{dd}}{U_t}}\right) \]

(1)

where I_0 is a reference current proportional to W/L_{eff}, which depends exponentially on V_t. S is the subthreshold swing, η the DIBL coefficient and U_t the thermal voltage close to 26 mV at ambient temperature. At a given temperature, I_{sub} depends only on three parameters: I_0, S and η. In this contribution, we consider a 45nm technology (nominal $V_{dd}=1V$, $T_{ox}=1.1nm$, $L_{eff}=17.5nm$ and $V_{t,sat}=0.37V$) based on predictive technology model\(^1\) from Arizona State University [10].

\(^1\)Models available on-line at http://www.eas.asu.edu/ptm.
Fig. 2. Evolution of subthreshold current (left) and I_{on}/I_{off} ratio (right) with increasing channel length ($V_d=0.3\,V$, worst case is 3σ). I_{on}/I_{off} ratio is computed between two adjacent devices (independent V_t but same L variables because of strong spatial correlation).

Spice simulation of this model gives the following values for the subthreshold parameters: $I_0=0.59nA/\mu m$, $S=97mV/dec$ and $\eta=160mV/\sqrt{V}V$.

In the considered 45-nm technology, nominal effective channel length L_{eff} is 17.5nm. Increasing L_{eff} by several nanometers is easily achieved at layout level by increasing the drawn gate length by the equivalent quantity. The evolution of these parameters with increasing channel length is shown in Fig. 1 from Spice simulation. All parameters exhibit a negative exponential dependence on L_{eff}. Subthreshold swing tends toward long-channel value of V_t. Subthreshold swing is shown in Fig. 4 for the considered 45-nm technology. Notice that we compute V_t from the input voltage of the cross-coupled inverters are close to V_{dd}, making the V_{gs} of their devices equal. As a degradation

In 45-nm technology, subthreshold swing, DIBL effect and current variability are very high due to short-channel effects. Channel length upsize improves subthreshold operation thanks to mitigation of these effects.

III. ROBUST AND COMPACT SUBTHRESHOLD SRAM DESIGN

In this section, we analyze the failure mechanisms of 6T SRAM cell operating in subthreshold regime. We then propose to upsize device length to efficiently increase read stability with minimum area overhead. The goal is to operate safely at a target 0.4V subthreshold V_{dd}.

A. Failure mechanisms

Robustness of the conventional 6T SRAM cell shown in Fig. 3 depends on 3 criterion:

1) Hold stability: measured by the hold SNM, computed when writing in an adjacent cell data different from the memorized ones, i.e. BL_L is assigned to “0” and BL_R to “1”.

2) Read stability: measured by the read SNM, computed in precharge phase, i.e. with both BL clamped to V_{dd}.

3) Write ability: measured by the write margin (SNM during a write operation), computed by assigning BL_L to “0” and BL_R to “1”.

Hold SNM and read SNM have to be positive while write margin has to be negative in order to ensure proper operation.

Evolution of the robustness criterion with V_{dd} is shown in Fig. 4 for the considered 45-nm technology. Notice that we choose the 4σ tail (99.997% confidence interval) instead of the traditional 6σ because ultra-low-power applications such as microsensor nodes, RFID tags or biomedical devices only require small SRAM arrays of several kilobytes and can rely on redundancy [4].

Some observations can be made from Fig. 4:

- robustness is severely degraded when lowering V_{dd};
- robustness is deteriorated by process variability;
- degraded subthreshold swing has little impact on robustness;
- DIBL considerably affects hold and read SNM while there is little effect on write margin.

The first two observations are straightforward. The impact of subthreshold swing is small as confirmed in [15]. Margins are computed when the cell actually flips and at that moment, the input voltage of the cross-coupled inverters are close to $V_{dd}/2$, making the V_{gs} of their devices equal. As a degradation
of the subthreshold swing reduces \(I_{on}/I_{off} \) ratio but does not influence the current between devices having same \(V_{gs} \), the subthreshold swing value has small impact on voltage margins. A more complete robustness characterization would be achieved by investigating both voltage and current margins, as suggested in [16] with the N-curve computation. However, this is beyond the scope of this brief contribution.

To the authors’ knowledge, the impact of DIBL on SRAM cell stability has never been considered up to now. Let us get an intuitive insight of this point. Hold/read stability depends on a ratioed behavior: ON cell devices (\(M2 \) and \(M3 \) in Fig. 3) have to keep the data at internal nodes while access devices (\(M5 \) and \(M6 \)) drive some current from these nodes to the bitlines. This current from access devices is an ON current when in read operation, and an OFF current when in hold operation. In both cases, access devices keep the data at internal nodes while access devices have a small \(V_{dd} \) mismatch is thus no longer detrimental and write ability is not clearly affected by DIBL effect.

From Fig. 4, read stability limits \(V_{dd} \) lowering for the considered technology, because read SNM is the first criterion to fail at 0.72V. As read SNM is strongly influenced by process variability and DIBL, limiting these effects is important in order to operate at subthreshold \(V_{dd} \). That can be achieved through channel length upsize as explained in Section II. In next sections, we introduce two length upsizing schemes to improve read stability. We neglect hold stability as it remains better than read stability. Write margin issues are dealt by \(WL \) voltage boosting, as discussed in Section IV.

B. Uniform channel length upsize of all devices

Upsizing uniformly the channel length of all devices inside an SRAM cell was introduced in [15] for limiting variability. Moreover, we showed in Section II that it also reduces DIBL effect, which would thereby further increase robustness of 6T SRAM cell at subthreshold \(V_{dd} \) as shown in Section III-A. Fig. 5 (left) shows the improvement brought by uniform length upsize in terms of minimum \(V_{dd} \) to ensure read stability (positive SNM). In order to meet the target 0.4V subthreshold \(V_{dd} \), all channel lengths have to be upsized by only 13nm. As a comparison, minimum \(V_{dd} \) when upsizing the width of all the devices is shown in Fig. 5 (right). In this case, variability mitigation leads to a reduction of minimum \(V_{dd} \) but the width has to be upsized to unacceptable values in order to operate at 0.4V.

C. Cell-ratio channel length upsize of access devices

The other possibility to improve read stability is to increase the cell (\(\beta \)) ratio, i.e. the ratio between \(W/L \) of NMOS cell devices (\(M1-M2 \)) and access devices (\(M5-M6 \)). This is traditionally achieved by increasing the width of the cell NMOS devices. However, as shown in Fig. 5 (right), this is not feasible in subthreshold regime as it would lead to unacceptable width in order to compensate exponential current variability. We rather propose to tune cell ratio by increasing the length of the access devices\(^2\). Fig. 5 (left) shows that it yields an efficient reduction of minimum \(V_{dd} \), thanks to DIBL mitigation and \(V_{t} \) roll off, which leads to a highly decreased variability.

\(^2\)Notice that in [8], a length upsize of the access devices has been proposed in the opposite way to improve write margin thanks to reverse short-channel effect: an \(I_{on} \) increase when upsizing the length. Indeed, depending on the considered devices (peak doping/halo implants), a channel length upsize could have a different impact on \(I_{on} \) whether forward or reverse short-channel effect dominates. However, the impact on \(S \) and DIBL effect remains the same.
subthreshold current of access devices, as we reported in Fig. 2. A channel length upsise of 50nm is required to ensure read stability at target 0.4V V_{dd}.

IV. PERFORMANCE COMPARISON

Let us now examine main performances of SRAM cell obtained with both channel length upsizing schemes (uniform upsize of all devices and cell-ratio upsize of only access devices). Performances are compared in Table I with resimulated version in the same 45nm technology of previously-reported 8T and 10T subthreshold SRAM cells relying on read buffer insertion to improve read stability. For comparison purpose, performances of minimum-sized conventional 6T cell are presented under 1V V_{dd} as this cell fails to operate at 0.4V.

First, the area overhead of the proposed upsizing schemes is very low (less than 10%), leading to compact SRAM design. Then the minimum WL boost voltage to achieve 4× write ability at 0.4V when upsizing uniformly the channel length of all devices is comparable with 8T and 10T cells. The main drawback is that read and write WL are not decoupled in the 6T versions and they have to be driven at different voltages depending on the operation (read or write). Minimum WL boost voltage in cell-ratio upsizing scheme is somewhat higher due to weakened access devices.

Worst-case read current determines the speed of read operation. It is better for the uniform than for cell-ratio upsizing schemes and comparable with 8T cell. Mean static power dissipation with uniform length upsize is drastically reduced without significative speed penalty, thanks to improved subthreshold swing. Finally, the maximum number of cells per BL that enables to differentiate a low data read from leakage of unaccessed cells is presented too. This is computed by specifying that worst-case read current has to remain 10× higher than the BL leakage of all unaccessed cells [14]. The maximum number of cells per BL for the proposed upsizing schemes remains good even in subthreshold regime, whereas the 8T cell requires either peripheral assist or addition of 2 extra devices (10T cell from Table I) [14].

V. CONCLUSION

Channel length upsise improves subthreshold MOSFET operation and mitigates variability. We show that upsizing the MOSFET channel length in the conventional 6T SRAM cell increases read stability in subthreshold regime with small area overhead. Moreover, uniform length increase of all the devices greatly reduces static power dissipation thanks to improved subthreshold swing.

REFERENCES

TABLE I

<table>
<thead>
<tr>
<th>Cell type</th>
<th>Channel length upsize scheme</th>
<th>V_{dd} [V]</th>
<th>Area overhead (%)</th>
<th>Min. WL boost voltage [mV]</th>
<th>4σ worst-case I_{read} [nA]</th>
<th>P_{stat} [pW]</th>
<th>Max. # cells per BL</th>
</tr>
</thead>
<tbody>
<tr>
<td>6T</td>
<td>/</td>
<td>1.0</td>
<td>/</td>
<td>0</td>
<td>3.5 10^{4}</td>
<td>2.3 10^{4}</td>
<td>570</td>
</tr>
<tr>
<td>6T</td>
<td>uniform (+13nm)</td>
<td>0.4</td>
<td>9.5%</td>
<td>66</td>
<td>23.8</td>
<td>26</td>
<td>190</td>
</tr>
<tr>
<td>6T</td>
<td>cell-ratio (+50nm)</td>
<td>0.4</td>
<td>7%</td>
<td>132</td>
<td>13.0</td>
<td>370</td>
<td>210</td>
</tr>
<tr>
<td>8T [7]</td>
<td>/</td>
<td>0.4</td>
<td>29% [7]</td>
<td>69</td>
<td>24.8</td>
<td>850</td>
<td>57</td>
</tr>
<tr>
<td>10T [8]</td>
<td>/</td>
<td>0.4</td>
<td>60% (estimated)</td>
<td>59</td>
<td>18.0</td>
<td>800</td>
<td>∞</td>
</tr>
</tbody>
</table>

* Evaluated with 45nm high-density SRAM design rules from [17].
† Can be solved by peripheral assist (rising buffer foot voltage to V_{dd}) [4].
‡ Solved in [8] by reverse short-channel effect (see footnote 2).

NM TECHNOLOGY

<table>
<thead>
<tr>
<th>Cell type</th>
<th>Channel length upsize scheme</th>
<th>V_{dd} [V]</th>
<th>Area overhead (%)</th>
<th>Min. WL boost voltage [mV]</th>
<th>4σ worst-case I_{read} [nA]</th>
<th>P_{stat} [pW]</th>
<th>Max. # cells per BL</th>
</tr>
</thead>
<tbody>
<tr>
<td>6T</td>
<td>/</td>
<td>1.0</td>
<td>/</td>
<td>0</td>
<td>3.5 10^{4}</td>
<td>2.3 10^{4}</td>
<td>570</td>
</tr>
<tr>
<td>6T</td>
<td>uniform (+13nm)</td>
<td>0.4</td>
<td>9.5%</td>
<td>66</td>
<td>23.8</td>
<td>26</td>
<td>190</td>
</tr>
<tr>
<td>6T</td>
<td>cell-ratio (+50nm)</td>
<td>0.4</td>
<td>7%</td>
<td>132</td>
<td>13.0</td>
<td>370</td>
<td>210</td>
</tr>
<tr>
<td>8T [7]</td>
<td>/</td>
<td>0.4</td>
<td>29% [7]</td>
<td>69</td>
<td>24.8</td>
<td>850</td>
<td>57</td>
</tr>
<tr>
<td>10T [8]</td>
<td>/</td>
<td>0.4</td>
<td>60% (estimated)</td>
<td>59</td>
<td>18.0</td>
<td>800</td>
<td>∞</td>
</tr>
</tbody>
</table>

* Evaluated with 45nm high-density SRAM design rules from [17].
† Can be solved by peripheral assist (rising buffer foot voltage to V_{dd}) [4].
‡ Solved in [8] by reverse short-channel effect (see footnote 2).