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Appendix A. Proofs of Propositions

Proof of Proposition 1. After substituting the integral in (2) into (1), the objective becomes
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which is maximised under the restrictions T � 0 and C � �C .
First order conditions to this problem are (omitting the Kuhn–Tucker conditions):
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where k and g are the Kuhn–Tucker multipliers associated with the constraints T � 0 and
C � �C respectively. The interior solution (4)–(6) is (A.1)–(A.3), under g ¼ k ¼ 0. The corner
solution (7)–(9) results from the same system under g ¼ T ¼ 0 and finally, the corner solution
(10)–(12) results from the first order conditions under T ¼ 0 and C ¼ �C . Under Assumption 2,
g ¼ 0 and C ¼ �C are not optimal.

Interior Regime. The solution to the first order conditions (4)–(6) exists and is unique if and
only if the loci in (5) and (6) cut once and only once for positive n and T and C � 0 at the
solution. The locus in (5) is a straight line with negative slope and cuts the n̂ axes at (A � h/
a)// � n0, see Figure A1. The locus in (6) has a negative slope, is convex, and is such that n̂ goes
to zero when T goes to infinity and cuts the n̂ axes at (b � d/2)/l/ha � n1. Comparing these two
points and imposing n0 � n1 leads to the condition A � �A, where

�A ¼
b� d

2
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h
a
:
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Substituting (4) and (5) in the definition of C gives

C ¼ l
a
ðhþ T Þ1þa � d

2
;

which is positive under Assumption 2 for all T � 0.
Corner regime A � A < �A. If A < �A, the straight line is above the convex curve at T ¼ 0 (see

Figure A1). A sufficient condition for these two curves not to intersect in the positive plane is that
the straight line is steeper than the convex curve at zero. This is guaranteed by Assumption 2. In
that case, there is no interior solution as negative values for T are not feasible. Consequently, the
solution must be corner with T ¼ 0. From (7)–(9), at this corner solution

C ¼ lhaA � b;

which is positive for A � A, with

A � bþ �C

lha :

From Assumption 2, A < �A. It is easy to see that the solution is unique.
Corner regime �C=lha < A < A. Finally, when �C=lha < A < A, the optimal solution is (10)–

(12), with both inequality constraints being binding. Uniqueness is trivial.

Proof of Corollary 1. For the interior solution, we apply the implicit function theorem to (4)–
(6), which leads to
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Fig. A1. The Interior Solution
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The numerator is positive. Under Assumption 2 the denominator is also positive. The results
for f 0n and f 0T can be proved using the same arguments. For the corner solutions the result is
straightforward.

Proof of Proposition 2. Let us denote the function fA(Æ) by fA1(Æ) when A � �A, fA2(Æ) when
A � A < �A, and fA3(Æ) when �C=lha < A < A.

The dynamics of life expectancy following Aiþ1 ¼ fA(Ai) are monotonic because fA is contin-
uous and non-decreasing.

Let us first prove the existence of a stationary solution by considering the values of the function
fA(Æ) near 0 and as A goes to infinity.

� Near 0, we have that limA!0 fA(A) ¼ limA!0 fA3(A) ¼ 0 and limA!0 f 0AðAÞ =
limA!0 f 0A3ðAÞ ¼ þ1. Hence, we have fA(A) > A for small A.

� For large A we will show that

lim
A!1

fAðAÞ
A
¼ lim

A!1

fA1ðAÞ
A
¼ 0:

From (5) and (6)

n̂ ¼ csteðA � /n̂ þ hÞ�a:

Substituting in (4) and dividing by A2 gives
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As limA!1 fn(A) ¼ 0, we have that limA!1 fA1ðAÞ=A ¼ 0: Hence, we have fA(A) < A for large A.
By continuity of fA(A) there is at least one value of A such that fA(A) ¼ A.
Let us now prove the uniqueness of the stationary solution. For 0 < A < A, the function fA3(Æ) is

increasing and concave, with fA3(0) ¼ 0 and f 0A3ð0Þ ¼ 1. Function fA2(Æ) is increasing and con-
cave, with fA2(0) ¼ 0 and f 0A2ð0Þ ¼ 1. As the two functions have the same slope where there is a
regime shift, f 0A3ðAÞ ¼ f 0A2ðAÞ, the function fA is concave on the interval ½0; �AÞ implying that if it
crosses the diagonal on the interval ½0; �AÞ, it crosses it only once.

Uniqueness would be guaranteed if the following property is satisfied: the existence of a
stationary solution on ½0; �AÞ excludes the existence of another one on ½ �A; þ1Þ. Let us
demonstrate this property by a reductio ad absurdum. Suppose we have a stationary solution
on ½0; �A�. Then, we have necessarily fAð �AÞ < A ( fA is below the 45 degrees line). Thus, if there
exists other stationary solutions larger than �A, the slope of fA should at least be larger than or
equal to one at one of these solutions.

From the implicit function theorem applied to (4)–(6),
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ð1þ aÞðA � /n̂Þ
A � ð1þ aÞn̂ :

At a fixed point of fA1, as Corollary 1 shows that f 0AðAÞ > 0 in this interval, the denominator
must be strictly positive. It is then easy to see that f 0AðAÞ < 1 iff A > ½ð 1þ aÞ=ð1� aÞ�/n̂. As from
Corollary 1, f 0nð�Þ < 0 in this interval, f 0AðAÞ < 1 for all A � �A iff �A > ½ð1þ aÞ=ð1� aÞ�/n̂, which
holds under Assumption 2. Hence, f 0A1ðAÞ < 1 for any fixed point of fA1(Æ) in A � �A, which
excludes the existence of additional solutions if there is already one on the interval ½0; �A�.

If there is no solution on ½0; �A�, there could be only one on ½ �A; þ1Þ as, in such a case,
fA3ð �AÞ > �A and fA3 is concave. fA is above the diagonal before the unique steady state equilibrium
and below it afterwards, which ensures global stability.
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Proof of Remark 1. A steady state for A in the interior regime exists if there is a solution to the
system (4)–(6), evaluated at the steady state. Eliminating A and n from Equation (5) using
Equations (4) and (6), we find that the steady state T should satisfy:

T ð1þ aÞ þ h ¼ a
2d/lðT þ hÞa

jð2b� dÞ � ð2b� dÞðT þ hÞ�a

2l

	 

:

The left-hand side is a linear increasing function of T. The right-hand side is a concave function
of T, with a slope going to zero as T goes to infinity. A sufficient condition for existence and
uniqueness of a stationary solution is that the right-hand side is larger than the left-hand side at
T ¼ 0. This leads to Condition (13).
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