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A The Indonesian Administrative System

Indonesia’s administrative system is composed of four main levels: 34 provinces, about 500
regencies or cities, over 6,000 districts and 75,000 villages. It has been a rather centralized
system since the Dutch era and after independence until the early 2000, with the central power
in Jakarta appointing governors at the province level, based on their loyalty rather than their
knowledge of the local context. The village administration level and its elected village chief
(lurah or kepala desa) in contrast has probably the most direct influence on a citizen’s daily
life. However, residential segregation is very strong in Indonesia. As noted by Bazzi, Koehler-
Derrick, and Marx (2020), the ethnic fractionalization index (the probability that any two
residents belong to different ethnicities) is of around 0.81 nationally, while it drops to a median
of 0.04 at the village level. For this reason, we believe that the village is not the most relevant
level at which to measure religious divisions, as it is not where the conflict about resource
appropriation by different groups happens.

Regencies (kabupaten) and cities (kota), led by regents (bupati) and mayors (walikota) respec-
tively, have become chief administrative units since the early 2000, responsible for providing
most government services, such as provision of public schools and public health facilities. In-
deed, following the implementation of drastic regional autonomy measures in 2001, regencies
have received the largest part of the decentralized competencies while the regents and the rep-
resentative council members have become elected officials for 5-year terms. This makes it the
ideal level of disaggregation to examine conflict over resource appropriation.

The decentralization movement has been accompanied by a massive wave of creation of new
regencies, stemming from older regencies splitting up, known as the pemekaran or blossoming,
taking the total number of regencies from about 300 to just over 500 in the interval of a
few years. We acknowledge that this movement may have been influenced by existing power
struggles across religious groups. It may also have inflected the dynamics of those struggles in
return by creating more homogenous regencies. We however rely on regency boundaries from
before the decentralization happened and consider that the division movement is too recent to
have substantially influenced cultural norms of different groups.
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B Additional descriptive statistics

Table 1 shows summary statistics on the size of religious groups at the regency level and
decomposes its variance into a between observations and a within observation (across time)
standard deviation. The overall shares are somewhat different from those at the population
level because they are taken unweighted at the regency level.1 The distribution of religion shares
has not drastically changed over time. Most of the variation occurs across observations, while
that within variation is limited to between 2 and 6 percentage points. In contrast, Figure 1
shows strong trends in educational attainments, with a doubling of the number of years of
schooling over the period, and in child mortality, which has been divided by four.2

Mean Between obs. Within obs.
Religion size Std. Dev. Min Max Std. Dev. Std. Dev.

Buddhist 0.01 0.032 0.00 0.45 0.024 0.021
Hindu 0.03 0.157 0.00 1.00 0.156 0.018
Muslim 0.82 0.293 0.00 1.00 0.291 0.058
Catholic 0.05 0.150 0.00 1.00 0.157 0.026
Protestant 0.08 0.180 0.00 0.99 0.175 0.042
Confucian 0.01 0.054 0.00 0.94 0.037 0.039

# of obs. 1336
# of regencies 269

Table 1: Summary statistics on size of religious group

Figure 1: Distribution of regency-level controls

1Regencies with large shares of Protestants tend to be smaller in size, and conversely for Muslims, which
explains the discrepancies between regency-level and population means.

2The child mortality rate is computed following Baudin, de la Croix, and Gobbi (2018) as one minus the
share of surviving children among those ever born.
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C Proofs of Propositions

C.1 Proof of Proposition 1

The first order conditions associated to the maximization program of any individual of group
a are

βτN−α
(

(1− α)H−α(ea)ρ + ΠaαH
1−α

xna

)
− γ ea − λna = 0.

and

βτnaN−αρ(1− α)H−α(ea)ρ−1 − γ na = 0.

Suppose xa = x. Using the second equation, we obtain

(ea)ρ−1 =
γ

βτρ(1− α)
NαHα ∀x ∈ [0, 1].

For type b we obtain

(eb)ρ−1 =
γ

βτρ(1− α)
NαHα ∀x ∈ [0, 1].

so that we deduce that if a Nash equilibrium exists, then, at this equilibrium we have ea(x) =
eb(x) ∀x ∈ [0, 1].

Using that equality in the first equation, we obtain

βτN−α(ea)ρ(1−α)
(
nax+ nb(1− x)

)−α − γ ea = λna.

For type b we obtain this equation becomes

βτN−α(eb)ρ(1−α)
(
nax+ nb(1− x)

)−α − γ eb = λnb.

Since ea(x) = eb(x) ∀x ∈ [0, 1], then we can deduce that na(x) = nb(x) ∀x ∈ [0, 1]. Using that
in the FOC, we easily deduce that ∀i ∈ {a, b}, ni and ei are constant with respect to x. Using
these equations in the FOC, we easily deduce that a Nash equilibrium exists and is unique.

C.2 Proof of Lemma 1

Existence of the function B.

First, because the function Vt is continuous and defined on a compact set, by Weirstrass’s
theorem we deduce that there exists a function Bxt : [0, n̄]× [0, ē]→ [0, n̄]× [0, ē] and a function
B1−xt : [0, n̄]× [0, ē]→ [0, n̄]× [0, ē] given by

Bxt(n
b
t , e

b
t) = arg max

nat ,e
a
t

Vt(n
a
t , n

b
t , e

ia
t , e

b
t , xt),

B1−xt(n
a
t , e

a
t ) = arg max

nbt ,e
b
t

Vt(n
b
t , n

a
t , e

b
t , e

a
t , 1− xt).
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Hence there exists a function B : [0, n̄]2 × [0, ē]2 → [0, n̄]2 × [0, ē]2 given by B(sa, sb) =
{Bxt(s

b),B1−xt(s
a)}.

Convexity of the set {(sa, sb),B(sa, sb)}.

Let us skip time indexation.

Define the following functions:

f : R+ → R+ given by f(e) = eρ, ρ ∈ [0, 1]

g : R+ → R+ given by g(e) = eρµ, ρ ∈ [0, 1], µ ∈ [1,+∞).

F : R+2 → R+ given by

F (X, Y ) = X(1− α)(xiX +B)−α +
Y

xiY +B′
α(xiX +B)1−α

with B = f(e−i)n−i, B
′
= g(e−i)n−i.

F̃ : R+2 → R+ given by F̃ (ni, ei) = F (f(ei)ni, g(ei)ni).

F̂ : R+4 → R+ given by F̂ (ni, ei, λ, γ) = F̃ (ni, ei)− λ
2
(ni)2 − γniei.

Let us express the first and second derivatives of F with respect to X and Y .

FX ≡
∂F

∂X
= (1− α)(xiX +B)−α

(
1− α xiX

xiX +B
+ α

xiY

xiY +B′

)
,

FY ≡
∂F

∂Y
= α(xiX +B)1−α B

′

(xiY +B′)2
,

FXX ≡
∂2F

∂X2
= xiα(1− α)(xiX +B)−α−1

(
−2 + (1 + α)

xiX

xiX +B
− α xiY

xiY +B′

)
,

FY Y ≡
∂2F

∂Y 2
= −2α(xiX +B)1−α xiB

′

(xiY +B′)3
,

FXY ≡
∂2F

∂X∂Y
= xi(1− α)α(xiX +B)−α

B
′

(xiY +B′)2
.

We have FY > 0, FY Y < 0, FXY > 0. Using xiX/(xiX + B) < 1 and xiY/(xiY + B
′
) < 1, we

easily find FX > 0 FXX < 0.

We have F̂ (ni, ei, λ, γ) = V (ni, n−i, ei, e−i, xi). Then, V is quasi-concave in (ni, ei), if and only
if F̂ is quasi-concave in (ni, ei). To determine whether F̂ is quasi-concave, let us express the
bordered Hessian matrix of F̂ which we denote by H(ni, ei).

H(ni, ei) =

 0 F̂n F̂e
F̂n F̂nn F̂ne
F̂e F̂ne F̂ee



5



where

F̂n = F̃n − λni − γei,
F̂e = F̃e − γni,
F̂nn = F̃nn − λ,
F̂ne = F̃ne − γ,
F̂ee = F̃ee,

and

F̃n = FXf(ei) + FY g(ei),

F̃e = FXf
′
(ei)ni + FY g

′
(ei)ni,

F̃nn = FXX(f(ei))2 + FY Y (g(ei))2 + 2FXY f(ei)g(ei),

F̃ee = FXf
′′
(ei)ni + FY g

′′
(ei)ni + FXX(f

′
(ei)ni)2 + FY Y (g

′
(ei)ni)2 + 2FXY f

′
(ei)g

′
(ei)(ni)2,

F̃en = FXf
′
(ei) + FY g

′
(ei) + FXXf

′
(ei)f(ei)ni + FY Y g

′
(ei)g(ei)ni+

FXY f
′
(ei)g(ei)ni + FXY g

′
(ei)f(ei)ni.

The function F̂ is quasi-concave if the determinant of H is positive. The determinant of H is
given by

Det(H) =−
(
F̂n

)2

F̂ee + 2F̂nF̂eF̂en −
(
F̂e

)2

F̂nn

=−
(
F̃n − λni − γei

)2

F̃ee + 2
(
F̃n − λni − γei

)(
F̃e − γni

)(
F̃en − γ

)
−
(
F̃e − γni

)2 (
F̃nn − γ

)
Define D : R+2 → R+ given by D(λ, γ) = Det(H).

We will first interest in D(0, 0). Note that we have F̃n > 0 and F̃e > 0 so that sufficient
conditions to have D(0, 0) > 0 are

F̃nn < 0, and F̃ee < 0, and F̃en > 0.

Now, we will show there exist µ̂ ∈ (1,+∞], µ̄ ∈ (1,+∞], such that ∀µ ≤ min{µ̂, µ̄} and
α < 1/2, then those conditions are satisfied.

1. We start with F̃nn for which we give two expressions.

F̃nn =
f(ei)

ni
xiα(1− α)(xiX +B)−α

(
2

B
′
Y

(xiY +B′)2

+
xiX

xiX +B

(
−2 + (1 + α)

xiX

xiX +B
− α xiY

xiY +B′

))
+ FY Y (g(ei))2,
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or

F̃nn =2g(ei)xiα
(xiX +B)−αB

′

(xiY +B′)2

(
(1− α)− (xiX +B)/xiX

(xiY +B′)/xiY

)
.

+ FXX(f(ei))2,

where X ≡ f(ei)ni and Y ≡ g(ei)ni.

Since FXX < 0 and FY Y < 0. A sufficient condition to have F̃nn < 0 is

2
xiB

′
Y

(xiY +B′)2
+

xiX

xiX +B

(
−2 + (1 + α)

xiX

xiX +B
− α xiY

xiY +B′

)
< 0,

or

(1− α)− (xiX +B)/xiX

(xiY +B′)/xiY
< 0.

Let us introduce new notations. We set z ≡ (nixi)/(n−ix−i) and c ≡ (ei/e−i)ρ. The above
conditions rewrites as

2
1

(1 + c−µz−1)(1 + cµz)
+

1

(1 + c−1z−1)

(
−2 + (1 + α)

1

(1 + c−1z−1)
− α 1

(1 + c−µz−1)

)
< 0,

or

(1− α)− (1 + c−1z−1)

(1 + c−µz−1)
< 0.

We will consider several cases : (i) c > 1, (ii)-a c < 1 and cz < 1, (ii)-b c < 1 and cz > 1.

(i) The second inequality holds whenever (1 + c−1z−1)/(1 + c−µz−1) > 1 which is equivalent to
c > 1. Hence when c < 1 we have F̃nn < 0.

Consider the case c < 1 and look at the first inequality.

Define the functions Z : [1,+∞) → R+, L : R+ → R+ and G : R+ → R+, G̃ : [1,+∞) → R+

respectively given by

Z(µ) = cµz

L(z̃) =
1

(1 + z̃−1)

(
−2 + (1 + α)

1

(1 + z̃−1)

)
,

G(Z) = 2
1

(1 + Z)(1 + Z−1)
+ L(z̃),

G̃(µ) = G(Z(µ)).

(ii)- a A sufficient condition for the first inequality to hold is G̃(µ) < 0. Suppose that c < 1.
We show that provided that cz < 1, ∀µ ∈ [1,+∞), G̃(µ) < 0.
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To do so first we can compute G(1). We find

G̃(1) =
1

(1 + c−1z−1)

(
2

(1 + cz)
− 2 +

1

(1 + c−1z−1)

)
= − 1

(1 + c−1z−1)(1 + c−1z−1)(1 + cz)
< 0.

Second, let us compute the derivative of G̃ with respect to µ. We obtain

G̃
′
(µ) = G

′
(Z(µ))Z

′
(µ).

We easily show that G
′
(Z(µ)) > 0 if and only if Z(µ) < 1 and Z

′
(µ) > 0 if and only if c > 1.

By assumption c < 1 so that Z
′
(µ) < 0. Suppose, in addition that cz < 1. It implies cµz < 1

equivalent to G
′
(Z(µ)) > 0 so that we deduce G̃

′
(µ) < 0 which, with the continuity of G, allows

us to deduce that G̃(µ) < 0 ∀µ ∈ [1,+∞).

(ii)- b Finally consider the case c < 1 and cz > 1. Note that G(Z) < 1/2 + L(z̃) ∀Z ∈ R+. A
sufficient condition to have G(Z) < 0 (which in turn implies that the first inequality holds) is
L(z̃) < −1/2. The function L is convex, decreasing for all z̃ ∈ [0, 1/α] and increasing for all
z̃ > 1/α. We have L(1) = −1/4(3 + α) < −1/2 and limz̃→∞ L = −(1− α) which is lower than
one half whenever α ≤ 1/2. Hence we deduce that L(z̃) < −1/2 which implies that the second
inequality holds.

Finally we can deduce that F̃nn < 0.

2. Consider the case F̃en.

F̃en =f
′
(ei)(1− α)(xiX +B)−α

[
1− α xiX

xiX +B
+ α

xiY

xiY +B′
.

+α
xiX

xiX +B

(
−2 + (1 + α)

xiX

xiX +B
− α xiY

xiY +B′

)
+ α

xiY B
′

(xiY +B′)2

]
+ αg

′
(ei)

(xiX +B)1−αB
′

(xiY +B′)2

(
1− 2

xiY

xiY +B′
+ (1− α)

xiX

xiX +B

)
.

Use the notations z ≡ (nixi)/(n−ix−i) and c ≡ (ei/e−i)ρ and define the function M : [1,+∞)→
R given by

M(µ) =ρ(1− α)
1

1 + c−1z−1

[
1− α 1

1 + c−1z−1
+ α

1

1 + c−µz−1
.

+α
1

1 + c−1z−1

(
−2 + (1 + α)

1

1 + c−1z−1
− α 1

1 + c−µz−1

)
+ α

1

1 + c−µz−1

1

1 + cµz

]
+ αρµ

1

1 + c−µz−1

1

1 + cµz

(
1− 2

1

1 + c−µz−1
+ (1− α)

1

1 + c−1z−1

)
.

The inequality F̃en > 0 is equivalent to M(µ) > 0.
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Let us compute M(1). We obtain

M(1) =ρ(1− α)
1

1 + c−1z−1

[
1− 2α

1

1 + c−1z−1
+ α

(
1

1 + c−1z−1

)2
]

+ αρ
1

1 + c−1z−1

1

1 + cz

(
2− α− (1 + α)

1

1 + c−1z−1

)
.

Since 1
1+c−1z−1 < 1 we deduce that

M(1) >ρ(1− α)
1

1 + c−1z−1

[
1− 2α + α

(
1

1 + c−1z−1

)2
]

+ αρ
1

1 + c−1z−1

1

1 + cz
(1− 2α) .

Suppose that α ≤ 1/2. Then we the RHS is positive so that M(1) > 0. Given that the
function M is continuous on [1,+∞), we deduce that there exists µ̂ ∈]1,+∞] such that ∀µ ≤ µ̂
M(µ) ≥ 0 which is equivalent to F̃en ≥ 0.

3. Consider the case F̃ee.

F̃ee = FXf
′′
(ei)ni + FXX(f

′
(ei)ni)2+

ρµα
B
′
Y

(xY +B′)2

(
2ρ(1− α)

xX

(xX +B)
− 2ρµ

xY

(xY +B′)
+ ρµ− 1

)

The terms of the first line are all negative. Hence, F̃ee is negative if the term of the second line
is negative. Again, we set z ≡ (nixi)/(n−ix−i) and c ≡ (ei/e−i)ρ and we define the function
N : [1,+∞)→ R given by

N(µ) =ρµα
1

xi
1

(1 + c−µz−1)(1 + cµz)

(
2ρ(1− α)

1

(1 + c−1z−1)
− 2ρµ

1

(1 + c−µz−1)
+ ρµ− 1

)

We have N(1) < 0. Given that the function N is continuous on [1,+∞), we deduce that there
exists µ̄ ∈]1,+∞] such that ∀µ ≤ µ̄ N(µ) < 0 which implies F̃ee < 0.

Last step.

It is easy to check that D is continuous in (0, 0) that is, if (λn, γn)→ (0, 0) then D(λn, γn)→
D(0, 0). Using that fact and D(0, 0) > 0 we can deduce that there exist two thresholds λ̄, γ̄
such that when λ < λ̄ and γ < γ̄ then D(λ, γ) > 0. It is equivalent to say that for λ < λ̄ and
γ < γ̄, ∀xi ∈ [0, 1], the function Vt is quasi-concave in si.
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C.3 Proof of item (ii) of Proposition 2

Define fas and fbs the functions going from [0, 1] into [0, n̄]× [0, ē] which for each value of x gives
the vector of strategy of one group at the Nash equilibrium. That is ,

fas (x) ≡ (na(xt), e
a(xt)),

fbs (x) ≡ (nb(xt), e
b(xt)).

By definition,

fas (x) = Bx(f
b
s (x)),

fbs (x) = B1−x(f
a
s (x)).

Therefore, the functions fas and fbs are implicitly given by

fas (x)−Bx(B1−x(f
a
s (x))) = 0,

fbs (x)−B1−x(Bx(f
b
s (x))) = 0.

Hence, we have

fas (1− x)−B1−x(Bx(f
a
s (1− x))) = 0,

so that we deduce fas (1− x) = fbs (x).

C.4 Proof of Proposition 3

Suppose that µ = 1. The first order conditions can be rewritten as

xt(e
a
t )
ρ

natxt(e
a
t )
ρ + nbt(1− xt)(ebt)ρ

Πb
t+1N

−α
t

(natxt(e
a
t )
ρ + nbt(1− xt)(ebt)ρ)(1−α)

xt

+Πa
t+1N

−α
t (1− α)

(natxt(e
a
t )
ρ + nbt(1− xt)(ebt)ρ)−α

xt
(eat )

ρxt = γeat + λnat

ρ (eat )
ρ−1 natxt

natxt(e
a
t )
ρ + nbt(1− xt)(ebt)ρ

Πb
t+1N

−α
t

(natxt(e
a
t )
ρ + nbt(1− xt)(ebt)ρ)(1−α)

xt

+ ρΠa
t+1(1− α)N1−α

t

(natxt(e
a
t )
ρ + nbt(1− xt)(ebt)ρ)−α

xt
nat e

a
t
ρ−1xt = γnat

Equalizing, the second FOC for group 1 and 2, we obtain(
eat
ebt

)−(1−ρ)

=
1− αΠb

t+1

1− αΠa
t+1

Also using the two FOC together (for group 1) we deduce that

xt(e
a
t )
ρ

natxt(e
a
t )
ρ + nbt(1− xt)(ebt)ρ

Πb
t+1N

−α
t

natxt(e
a
t )
ρ + nbt(1− xt)(ebt)ρ)(1−α)

xt

+Πa
t+1N

−α
t (1− α)

(natxt(e
a
t )
ρ + nbt(1− xt)(ebt)ρ)−α

xt
(eat )

ρxt =
λ

1− p
nat
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Equalizing, this equation for for group 1 and 2, we obtain(
eat
ebt

)ρ
=

1− αΠb
t+1

1− αΠa
t+1

nat
nbt
.

We deduce

eat
ebt

=
nat
nbt
.

Hence,
n1∗
t

n2∗
t

is implicitely given by

(
n1∗
t

n2∗
t

)−(1−ρ)

−
1− αΠ2∗

t+1

1− αΠ1∗
t+1

≡ k(
n1∗
t

n2∗
t

) = 0,

where

Π1∗
t+1 =

1

1 +
nat
nbt

−1−ρ
(1− xt)

,

Π2∗
t+1 =

1

1 +
nat
nbt

1+ρ
xt

One has

d
n1∗
t

n2∗
t

dxt
= −

∂k
∂xt
∂k

∂
n1∗t
n2∗t

.

One easily finds that

∂k

∂xt
< 0,

∂k

∂
n1∗
t

n2∗
t

< 0,

so that we deduce
d
n1∗t
n2∗t
dxt

=
d
e1∗t
e2∗t
dxt

< 0.

Finally, using Proposition 2, we deduce that deat /dxt < 0, debt/dxt > 0, dnat /dx<0, dnbt/dxt > 0.

C.5 Proof of Proposition 4

Let us drop time indexation and define

H ≡
(
na(ea)ρx+ nb(eb)ρ(1− x)

)
.
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Remind that Πa = Πa(Na, N b, ha, hb) with

Πa(Na, N b, ha, hb) =



(ha)µ nax

(ha)µ nax+ (hb)µ nb(1− x)
, if hi 6= 0 and ni 6= 0 ∀i ∈ {a, b},

nax

nax+ nb(1− x)
, if hi = 0 and ni 6= 0 ∀i ∈ {a, b},

(ha)µ

(ha)µ + (hb)µ
, if hi 6= 0 and nit = 0 ∀i ∈ {a, b},

1
2
, if hi = 0 and nit = 0 ∀i ∈ {a, b},

Each household in group a solves the following program

max
na,ea

βτnaN−α
(

(1− α)H−α(ea)ρ + ΠaαH
1−α

xna

)
− γ naea − λ

2
(na)2 .

The first order conditions associated to this program are

βτN−α
(

(1− α)H−α(ea)ρ + ΠaαH
1−α

xna

)
−βτnaN−αα(1− α)H−α−1(ea)2ρx+ βτnaN−αα(1− α)ΠaH

−α

xna
(ea)ρx

−βτnaN−ααH1−α (ha)2µ x

((ha)µ nax+ (hb)µ nb(1− x))
2 − γ e

a − λna = 0.

and

βτnaN−αρ(1− α)H−α(ea)ρ−1

−βτnaN−αα(1− α)H−α−1(ea)ρxnaρ(ea)ρ−1 + βτnaN−αα(1− α)ΠaH
−α

xna
naxρ(ea)ρ−1

+βτnaN−ααH1−α ρµ(ea)ρµ−1
(
hb
)µ
nb(1− x)

((ha)µ nax+ (hb)µ nb(1− x))
2 − γ n

a = 0.

Set x = 1 and denote (na1, ea1) the vector which solves the above system of equation. We find

βτN−α
((
na1
)−α

(ea1)(1−α)ρ
)

(1− α)− γ ea1 − λna1 = 0,

and

ρβτN−α
((
na1
)−α+1

(ea1)(1−α)ρ−1
)

(1− α)− γ na1 = 0.

We obtain

(ea1)1−ρ(1−α) =
ρβτN−α(1− α)

γ

(
na1
)−α

,

(na1)1+α =
βτN−α

λ
(ea1)ρ(1−α)(1− α)(1− ρ).
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Set x = 0 and denote (na0, ea0) the vector which solves the above system of equation. In that
case, we obtain

na0 =
βτN−α

λ
(ea0)ρ(na1)−α(ea1)−αρ

(
(1− α)(1− ρ)− α(ea0)ρ(µ−1)

(ea1)ρ(µ−1)
(ρµ− 1)

)
and

(ea0)1−ρ =
ρβτN−α

γ
(na1)−α(ea1)−αρ

(
(1− α) + αµ

(ea0)ρ(µ−1)

(ea1)ρ(µ−1)

)
.

Set x = 1/2 and denote (na1/2, ea1/2) the solution to the above system of equation. We find

(ea1/2)1−ρ(1−α) =
ρβτN−α

γ

(
na1/2

)−α (
1− α +

αµ

2

)
,

(na1/2)1+α =
βτN−α

λ
(ea1/2)ρ(1−α)

(
(1− α

2
)− ρ(1− α)− ραµ

2

)
Now we will show that provided that µ ∈ (µ∗, µ̃), we have

ea0 > ea1/2 > ea1 and na1/2 > na1 > na0.

Step 1. We start by comparing choices at x = 1/2 and x = 1.

Using the FOC at x = 1 and x = 1/2, we can perform the following quantities

ea1 = (βτ)
1

(1+α−ρ(1−α))

(
ρ(1− α)

γ

) (1+α)
(1+α−ρ(1−α))

(
(1− α)(1− ρ)

λ

) −α
(1+α−ρ(1−α))

,

na1 = (βτ)
1

(1+α−ρ(1−α))

(
ρ(1− α)

γ

) ρ(1−α)
(1+α−ρ(1−α))

(
(1− α)(1− ρ)

λ

) (1−ρ(1−α))
(1+α−ρ(1−α))

,

ea1/2 = (βτ)
1

(1+α−ρ(1−α))

(
ρ(1− α + αµ/2)

γ

) (1+α)
(1+α−ρ(1−α))

×
(

(1− α/2− ρ(1− α + αµ/2)

λ

) −α
(1+α−ρ(1−α))

,

and

na1/2 = (βτ)
1

(1+α−ρ(1−α))

(
ρ(1− α + αµ/2)

γ

) ρ(1−α)
(1+α−ρ(1−α))

×
(

(1− α/2− ρ(1− α + αµ/2)

λ

) (1−ρ(1−α))
(1+α−ρ(1−α))

.
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Note that at µ = 1 we have na1/2 > na1 and ea1/2 > ea1. One easily shows that ∂ea1/2/∂µ > 0
∀µ ∈ R+. Let us perform the derivative of na1/2 with respect to µ. We find

∂na1/2

∂µ
=

ρα

2λ(1 + α− ρ(1− α))

(
ρ(1− α + αµ/2)

γ

) ρ(1−α)
(1+α−ρ(1−α))

×
(

(1− α/2− ρ(1− α + αµ/2)

λ

) 1−ρ(1−α)
(1+α−ρ(1−α))−1

×
[
(1− α)

(
(1− α/2− ρ(1− α) + αµ/2)

(1− α + αµ/2)

)
− (1− ρ(1− α))

]
which has the same sign as

(1− α)

(
(1− α/2− ρ(1− α + αµ/2)

(1− α + αµ/2)

)
− (1− ρ(1− α)).

Note that

(1− α)

(
(1− α/2− ρ(1− α) + αµ/2)

(1− α + αµ/2)

)
− (1− ρ(1− α))

< 1− α/2− ρ(1− α)− αµ/2− 1 + ρ(1− α) = −α/2− αµ/2 < 0.

Hence, ∂na1/2/∂µ < 0 ∀µ ∈ R+.

When µ is such that 1−α/2− ρ(1−α)−αµ/2 = 0, then na1/2 = 0 < na1. We can deduce that
there exists a unique µ̃ implicitly given by(

1− α + αµ̃/2

1− α

)ρ(1−α)(
(1− α/2− ρ(1− α + αµ̃/2)

(1− α)(1− ρ)

)(1−ρ(1−α))

− 1 = 0,

such that µ < µ̃ ⇔ na1/2 > na1.

Hence for any µ ∈ [1, µ̃) we have na1/2 > na1 and ea1/2 > ea1.

Step 2. Now we show that na1 > na0.

First, we easily find that ea0 > ea1. We have

na0 < na1

⇔(ea0)ρ

(ea1)ρ

(
(1− α)(1− ρ) + α

(ea0)ρ(µ−1)

(ea1)ρ(µ−1)
(1− ρµ)

)
− (1− α)(1− ρ) < 0.

Define the function Γ : R+ → R given by

Γ(x) = xρ
(
(1− α)(1− ρ)− αxρ(µ−1)(ρµ− 1)

)
− (1− α)(1− ρ).

One can compute

Γ
′
(x) = ρxρ−1

(
(1− α)(1− ρ)− αxρ(µ−1)(µρ− 1)

)
− αxρρ(µ− 1)xρ(µ−1)−1(ρµ− 1).
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Suppose that ρµ > 1. Then, the function Γ reaches a maximum at xm =
(

(1−α)(1−ρ)
α(ρµ−1)µ

) 1
ρ(µ−1)

.

A sufficient condition for Γ(ea0/ea1) < 0 is Γ(xm) < 0 which is equivalent to Λ(µ) < 0 where
Λ : [1,+∞)→ R is given by

Λ(µ) = (1− α)(1− ρ)

((
(1− α)(1− ρ)

α(ρµ− 1)µ

) 1
(µ−1)

(1− 1

µ
)− 1.

)

First, suppose that (1− α)(1− ρ)/ (α(ρµ− 1)µ) < 1 which is equivalent to µ > µh where µh is
such that

(1− α)(1− ρ)

α(ρµh − 1)µh
= 1.

In that case, one finds Γ(xm) < 0. Second, suppose that 1/ρ < µ < µh. Let us perform Λ
′
(µ).

We find

Λ′(µ) = (1− α)(1− ρ)

(
(1− α)(1− ρ)

α(ρµ− 1)µ

) 1
(µ−1) 1

µ

×
(
− 1

(µ− 1)
ln

(
(1− α)(1− ρ)

α(ρµ− 1)µ

)
− 2(ρµ− 1)

µ

)
< 0.

Since Λ(1/ρ) = +∞, Λ(µh) < 0 and Λ is continuous, we deduce that there exists a unique
µ∗ ∈ [1/ρ, µh] such that µ ≥ µ∗ is equivalent to Λ(µ) ≤ 0 which implies na < nb.

Step 3. Finally, we show that ea0 > ea1/2.

ea0 > ea1/2,

⇔(na1)−α(ea1)−αρ
(

(1− α) + αµ
(ea0)ρ(µ−1)

(ea1)ρ(µ−1)

)
>
(
na1/2

)−α
(ea1/2)−αρ

(
1− α +

αµ

2

)
,

In Step 1 we showed that na1/2 > na1 and ea1/2 > ea1 which implies
(
na1/2

)−α
(ea1/2)−αρ <

(na1)−α(ea1)−αρ. A sufficient condition for the above inequality to hold is

αµ
(ea0)ρ(µ−1)

(ea1)ρ(µ−1)
>
αµ

2
,

which is true since we showed in Step 2. that ea0/ea1 > 1. Hence we deduce that ea0 > ea1/2.

C.6 Proof of Proposition 5

This proof is divided in two steps.
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In step 1, we compare (i) Ω(1, d−i, xi) and Ω(0, d−i, xi), (ii) Ω(1, 1, 0) and Ω(1, 1, 1), (iii) Ω(1, 0, 1)
and Ω(1, 1, 1), (iv) Ω(1, 1, 1) and Ω(1, 0, 0).

In step 2, we show that the Stackelberg-Nash equilibrium is unique and we determine the
values of d0 and d1 at the equilibrium. We deduce the value of education and fertility at the
equilibrium.

Step 1:

We start by defining the function Ωi : {0, 1}×{0, 1}× [0, 1]→ R+ which is given by ∀i ∈ {a, b}

Ω(di, d−i, xi) = V (n̂i(di, d−i), n̂−i(d−i, di), êi(di, d−i), ê−i(d−i, di), xi) ∀xi ∈ [0, 1].

where the functions n̂i and êi are as in Definition 4.

(i) Comparison between Ω(1, d−i, xi) and Ω(0, d−i, xi). By definition, we have

Ω(1, d−i, xi) = max
(ni,ei)∈[0,n̄]×[0,ē]

V (ni, n̂−i(d−i, 1), ei, ê−i(d−i, 1), xi)

= V (n̂i(1, d−i), n̂−i(d−i, 1), êi(1, d−i), ê−i(d−i, 1), xi),

and

Ω(0, d−i, xi) = max
(nij ,eji)∈[0,n̄]×[0,ē]

W (nji, n̂i(0, d−i), n̂−i(d−i, 0), eji, êi(0, d−i), ê−i(d−i, 0), xi)

= W (n̂i(0, d−i), n̂i(0, d−i), n̂−i(d−i, 0), êi(0, d−i), êi(0, d−i), ê−i(d−i, 0), xi)

Also, by definition, we have

W (n̂i(0, d−i), n̂i(0, d−i), n̂−i(d−i, 0), êi(0, d−i), êi(0, d−i), ê−i(d−i, 0), xi)

= V (n̂i(0, d−i), n̂−i(d−i, 0), êi(0, d−i), ê−i(d−i, 0), xi)

< V (n̂i(1, d−i), n̂−i(d−i, 1), êi(1, d−i), ê−i(d−i, 1), xi)

which is equivalent to

Ω(1, d−i, xi) > Ω(0, d−i, xi) ∀d−i ∈ {0, 1} ∀xi ∈ [0, 1].

(ii) Comparison between Ω(1, 1, 0) and Ω(1, 1, 1). Remind that we set xa = 0.

Define the function Ψ : [0, n̄]× [0, ē]→ R given by

Ψ(n, e) = βτn

(
(1− α)H−α(e)ρ +

(e)ρµ

D
αH1−α

)
− γ ne− λ

2
(n)2 , (1)

where

H = n̂b(1, 1)(êb(1, 1))ρ

D = n̂b(1, 1)(êb(1, 1))ρµ
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We have

Ω(1, 1, 0) = Ψ(n̂a(1, 1), êa(1, 1))

Ω(1, 1, 1) = Ψ(n̂b(1, 1), êb(1, 1)).

Note that Ψ(ni, ei) = V (ni, n̂b(1, 1), ei, êb(1, 1), 0) so that

max
(ni,ei)∈[0,n̄]×[0,ē]

V (ni, n̂b(1, 1), ei, êb(1, 1), 0) = max
(ni,ei)∈[0,n̄]×[0,ē]

Ψ(n̂i, êi)

= V (n̂a(1, 1), n̂b(1, 1), êa(1, 1), êb(1, 1), 0)

= Ψ(n̂a(1, 1), êa(1, 1)).

We deduce that

Ψ(n̂a(1, 1), n̂a(1, 1)) > Ψ(n̂b(1, 1), êb(1, 1)),

⇔Ω(1, 1, 0) > Ω(1, 1, 1).

Using a similar reasoning we can also deduce

Ω(0, 1, 0) > Ω(0, 1, 1).

(iii) Comparison between Ω(1, 1, 1) and Ω(1, 0, 1).

We have

Ω(1, 1, 1) = Ψ(n̂b(1, 1), êb(1, 1))

Ω(1, 0, 1) = Ψ(n̂b(1, 1), êb(1, 1)).

We deduce Ω(1, 1, 1) = Ω(1, 0, 1).

(iv) Comparison between Ω(1, 0, 0) and Ω(1, 1, 1). We have

Ω(1, 0, 0) = βτn̂a(1, 0)

(
(1− α)H−α(êa(1, 0))ρ +

(êa(1, 0))ρµ

D
αH1−α

)

−γ n̂a(1, 0)êa(1, 0)− λ

2
(n̂a(1, 0))2 ,

where

H = n̂b(0, 1)(êb(0, 1))ρ

D = n̂b(0, 1)(êb(0, 1))ρµ
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Ω(1, 1, 1) = βτn̂b(1, 1)

(
(1− α)H−α(êb(1, 1))ρ +

(êb(1, 1))ρµ

D
αH1−α

)

−γ n̂b(1, 1)êb(1, 1)− λ

2

(
n̂b(1, 1)

)2
,

where

H = n̂b(1, 1)(êb(1, 1))ρ

D = n̂b(1, 1)(êb(1, 1))ρµ

Note that ∀db ∈ {0, 1}, the FOC for education at xb = 1 gives

(1− α)H−α =
γNα

ρβτ
(êb(db, 1))1−ρ

Using that in the above equations, we obtain

Ω(1, 0, 0) = n̂a(1, 0)
γNα

ρ(1− α)

(
(1− α) êb(0, 1))(1−ρ)(êa(1, 0))ρ + α(êa(1, 0))ρµ êb(0, 1))(1−ρµ)

)

−γ n̂a(1, 0)êa(1, 0)− λ

2
(n̂a(1, 0))2 ,

and

Ω(1, 1, 1) = n̂b(1, 1)
γNα

ρ(1− α)

(
(1− α)êb(1, 1))(1−ρ)(êb(1, 1))ρ + α(êb(1, 1))ρµêb(1, 1))(1−ρµ)

)

−γ n̂b(1, 1)êb(1, 1)− λ

2

(
n̂b(1, 1)

)2
,

Define the function Φ : [0, n̄]× [0, ē]2 → R given by

Φ(n, e, y) = n
γNα

ρ(1− α)

(
(1− α) (y)(1−ρ)(e)ρ + α(e)ρµ (y)(1−ρµ)

)
− γ ne− λ

2
(n)2 .

Then we have

Φ(n̂b(1, 1), êb(1, 1), êb(1, 1)) = Ω(1, 1, 1),

and

Φ(n̂a(1, 0), êa(1, 0), êb(0, 1)) = Ω(1, 0, 0).

18



Note that when ρµ ≤ 1, the sign of ∂Φ/∂y is positive. When ρµ > 1, the sign of ∂Φ/∂y is
ambiguous. Let us consider the two cases.

First, suppose that ∂Φ/∂y < 0. Remind that êb(1, 1) > êb(0, 1). Together these two conditions
imply that ∀(n, e) ∈ [0, n̄]× [0, ē]

Φ(n, e, êb(1, 1)) < Φ(n, e, êb(0, 1)).

In particular, we have

Φ(n̂b(1, 1), êb(1, 1), êb(1, 1)) < Φ(n̂b(1, 1), êb(1, 1), êb(0, 1)).

But, we know that

Φ(n̂a(1, 0), êa(1, 0), êb(0, 1)) = max
(n,e)∈[0,n̄]×[0,ē]

Φ(n, e, êb(0, 1)) > Φ(n̂b(1, 1), êb(1, 1), êb(0, 1)).

We deduce that Ω(1, 0, 0) > Ω(1, 1, 1).

Second, suppose that ∂Φ/∂y > 0. Using this condition and êb(1, 1) > êb(0, 1) we obtain

Φ(n, e, êb(1, 1)) > Φ(n, e, êb(0, 1)).

Then, on the one hand, we have

Φ(n̂b(1, 1), êb(1, 1), êb(1, 1)) > Φ(n̂b(1, 1), êb(1, 1), êb(0, 1)).

But, on the other hand, we know that

Φ(n̂a(1, 0), êa(1, 0), êb(0, 1)) = max
(n,e)∈[0,n̄]×[0,ē]

Φ(n, e, êb(0, 1)) > Φ(n̂b(1, 1), êb(1, 1), êb(0, 1)).

In this case, the sign of Ω(1, 0, 0)− Ω(1, 1, 1) is ambiguous.

(v) Comparison between Ω(1, 0, 0) and Ω(1, 1, 0). Using similar arguments (to the ones used in
case iv) we can deduce that

∂Φ

∂y
< 0 ⇔ Ω(1, 0, 0) > Ω(1, 1, 0)

∂Φ

∂y
> 0 ⇔ Ω(1, 0, 0) < Ω(1, 1, 0).

(vi) Comparison between Ω(0, 0, 0) and Ω(0, 1, 0). As well we can deduce the following.

∂Φ

∂y
< 0 ⇔ Ω(0, 0, 0) > Ω(0, 1, 0)

∂Φ

∂y
> 0 ⇔ Ω(0, 0, 0) < Ω(0, 1, 0).
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Step 2. The different outcomes of the game can be represented in the payoff matrix below.

Individual a

da = 0 da = 1

Individual b
db = 0 Ω(0, 0, 1) > 0,Ω(0, 0, 0) > 0 Ω(0, 1, 1) > 0,Ω(1, 0, 0)− κ

db = 1 Ω(1, 0, 1)− κ,Ω(0, 1, 0) > 0 Ω(1, 1, 1)− κ,Ω(1, 1, 0)− κ

Let us look at the values of these payoffs. To do so, we define

κ̃1 ≡ Ω(1, 1, 0)− Ω(0, 1, 0),

κ̃2 ≡ Ω(1, 1, 1)− Ω(0, 1, 1) = Ω(1, 1, 1)− Ω(0, 0, 0) = Ω(1, 0, 1)− Ω(0, 0, 0),

κ̃3 ≡ Ω(1, 0, 0)− Ω(0, 0, 0).

From (i) we deduce that κ̃1 > 0, κ̃2 > 0, κ̃3 > 0. From (ii) we deduce that the sign of κ̃1 − κ̃2

is ambiguous. From (iii) and (iv) we deduce that the sign of κ̃2 − κ̃3 is ambiguous. Finally,
from (v) and (vi) we deduce that the sign of κ̃1 − κ̃3 is ambiguous. Hence, depending on the
model’s parameters, there are six possibilities for the ranking of the thresholds. Let us focus
on the case κ̃2 < min{κ̃3, κ̃1}.

a. Suppose that κ > max{κ̃3, κ̃1}. Then Ω(1, 0, 0) − κ < Ω(0, 0, 0), Ω(1, 1, 0) − κ < Ω(0, 1, 0),
Ω(1, 0, 1)− κ < Ω(0, 0, 1) and Ω(1, 1, 1)− κ < Ω(0, 1, 1). We deduce that there exists only one
equilibrium of this game: (da?t , d

b?
t , n

a?
t , n

b?
t , e

a?
t , e

b?
t ) = (0, 0, n̂a(0, 0), n̂b(0, 0), êa(0, 0), êb(0, 0)).

b. Suppose that κ < κ̃2. Then Ω(1, 0, 0)−κ > Ω(0, 0, 0), Ω(1, 1, 0)−κ > Ω(0, 1, 0), Ω(1, 0, 1)−
κ > Ω(0, 0, 1) and Ω(1, 1, 1)− κ > Ω(0, 1, 1). We deduce that there exists only one equilibrium
of this game: (da?t , d

b?
t , n

a?
t , n

b?
t , e

a?
t , e

b?
t ) = (1, 1, n̂a(1, 1), n̂b(1, 1), êa(1, 1), êb(1, 1)).

c. Suppose that κ̃3 > κ > κ̃2. We know that Ω(1, 0, 1) − κ < Ω(0, 0, 1) and Ω(1, 1, 1) − κ <
Ω(0, 1, 1) so that db?t = 0. Furthermore, we know that Ω(1, 0, 0)−κ > Ω(0, 0, 0) so that da?t = 1.

C.7 Proof of Corollary 1

Suppose that κ̃2 < min{κ̃1, κ̃3}, from Proposition 5 we know that ∀κ ∈ (κ̃2, κ̃3) the equilibrium
is given by (da?t , d

b?
t , n

a?
t , n

b?
t , e

a?
t , e

b?
t ) = (1, 0, n̂a(1, 0), n̂b(0, 1), êa(1, 0), êb(0, 1)).

To simplify the notations, here let us denote êb(0, 1) ≡ eb, êa(1, 0) ≡ ea, n̂b(0, 1) ≡ nb and
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n̂a(1, 0) ≡ na. The FOC give us

(ea)1−ρ =
ρβτN−α

γ
(nb)−α(eb)−αρ

(
(1− α) + αµ

(ea)ρ(µ−1)

(eb)ρ(µ−1)

)
,

(eb)1−ρ =
ρβτN−α

γ
(nb)−α(eb)−αρ(1− α),

na =
βτN−α

λ
(ea)ρ(nb)−α(eb)−αρ

(
(1− α)(1− ρ)− α(ea)ρ(µ−1)

(eb)ρ(µ−1)
(ρµ− 1)

)
,

nb =
βτN−α

λ
(eb)ρ(nb)−α(eb)−αρ ((1− α)(1− ρ) + α) .

First, we easily deduce ea > eb. Second, na < nb is equivalent to

Γ̂(ea/eb) < 0,

where the function Γ̂ : R+ → R is given by

Γ̂(x, α) = xρ
(
(1− α)(1− ρ)− αxρ(µ−1)(ρµ− 1)

)
− (1− α)(1− ρ)− α.

One has

Γ̂′(x) = ρxρ−1
(
(1− α)(1− ρ)− αxρ(µ−1)(µρ− 1)

)
− αxρρ(µ− 1)xρ(µ−1)−1(ρµ− 1).

Suppose that ρµ > 1. Then, the function Γ̂ reaches a maximum at xm =
(

(1−α)(1−ρ)
α(ρµ−1)µ

) 1
ρ(µ−1)

.

A sufficient condition for Γ̂(ea0/ea1) < 0 is Γ̂(xm) < 0 which is equivalent to Λ̂(µ) < 0 where
Λ̂ : [1,+∞)→ R is given by

Λ̂(µ) = (1− α)(1− ρ)

((
(1− α)(1− ρ)

α(ρµ− 1)µ

) 1
(µ−1)

(1− 1

µ
)− 1.

)

First, suppose that (1− α)(1− ρ)/ (α(ρµ− 1)µ) < 1 which is equivalent to µ > µh (defined in
proof of Proposition 4). In that case, one finds Γ̂(xm) < 0. Second, suppose that 1/ρ < µ < µh.
We have Λ̂

′
(µ) = Λ

′
(µ) < 0.

Since Λ̂(1/ρ) = +∞, Λ̂(µh) < 0 and Λ̂ is continuous, we deduce that there exists a unique
µ∗∗ ∈ [1/ρ, µh] such that µ ≥ µ∗ is equivalent to Λ(µ) ≤ 0 which implies na < nb. Furthermore
we know that ∀µ ∈ [1,+∞), Λ̂(µ) < Λ(µ) which implies Λ̂(µ∗) < Λ(µ∗) = 0. We deduce that
µ∗∗ < µ∗.
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D Numerical example

Assume α = 0.25, λ = 0.2, ρ = 0.5, γ = 0.3. Figure 2 shows how fertility and education of
group a change when the share of the group varies, in the case µ = 1. This illustrates the
results of Proposition 3. Figure 3 shows the same variables in the case µ = 3. This illustrates
the results of Proposition 4.

Figure 2: Numerical example: Case µ = 1

Figure 3: Numerical example: Case µ = 3(> 1/ρ)
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E The full game

Group a

Would-be parents decide
to build a cultural institu-
tion at cost κ

the institution sets the
norm {nacc

t , eacc
t } and

{nac�ct , eac�ct }

yes (sat = c)no (sat = �c)

Would be parents act ac-
cording to the norm

would be parents decide

on {na�cc
t , ea�cc

t } and

{na�c�ct , ea�c�ct }

The equilibrium strategy {sa?t , sb?t , na?t , nb?t , ea?t , eb?t } is a Nash equilbrium

Grown up children transfer a share τ of
their income to their old parents

Group b

Would-be parents decide
to build a cultural institu-
tion at cost κ

the institution sets the
norm {nbcc

t , ebcc
t } and

{nbc�ct , ebc�ct }

yes (sbt = c)no (sbt = �c)

Would be parents act ac-
cording to the norm

would be parents decide

on {nb�cc
t , eb�cc

t } and

{nb�c�ct , eb�c�ct }

Production takes place according to Ht+1 = hat+1N
a
t+1 + hbt+1N

b
t+1, Yt+1 = H1−α

t+1

αH1−α
t+1

profits

(1− α)H−α
t+1h

a
t+1 (1− α)H−α

t+1h
b
t+1

Grown-up children work, get wages, and a share Πi
t+1

of land income depending on contest

yat+1
ybt+1

dat+1 dbt+1

Π
a
t+1

=

(N
a
t+1

(h
a
t+1

)
µ )

(N
a
t+1

(h
a
t+1

)µ )+(N
b
t+1

(h
b
t+1

)µ )

1−Πa
t+1

hat+1 = (ea?t )ρ, Na
t+1 = Na

t n
a?
t

Human capital of grown up kids is built
hbt+1 = (eb?t )ρ, N b

t+1 = N b
t n

b?
t

P
e
ri
o
d
t

P
e
ri
o
d
t

+
1

wages
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