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A Proofs of Propositions

A.1 Existence of the Nash equilibrium

A Nash equilibrium can also be defined in terms of the best response functions as a strategy
profile (na⋆

t , nb⋆
t , e

a⋆
t , eb⋆t ) = (na(xt), n

b(xt), e
a(xt), e

b(xt)) such that ∀xt ∈ [0, 1]
Bxt(n

b⋆
t , e

b⋆
t ) = argmax

na
t ,e

a
t

Vt(n
a
t , n

b⋆
t , e

a
t , e

b⋆
t , xt),

B1−xt(n
a⋆
t , ea⋆t ) = argmax

nb
t ,e

b
t

Vt(n
a⋆
t , nb

t , e
a⋆
t , ebt , 1− xt).

In what follows, we denote si = (ni, ei). Define the set of best response functions B : X 2 → X 2

given by B(sa, sb) = {Bxt(s
b),B1−xt(s

a)}.

Lemma 1 Suppose that α ≤ 1/2. There exist µ̂ ∈ (1,+∞], µ̄ ∈ (1,+∞], λ̄ ∈ R+, γ̄ ∈ R+

such that ∀µ ≤ min{µ̂, µ̄}, ∀λ < λ̄ and ∀γ < γ̄, B is a non-empty convex-valued function.

Proof.

Existence of the function B.

First, because the function Vt is continuous and defined on a compact set, by Weirstrass’s
theorem we deduce that there exists a function Bxt : [0, n̄]× [0, ē] → [0, n̄]× [0, ē] and a function
B1−xt : [0, n̄]× [0, ē] → [0, n̄]× [0, ē] given by

Bxt(n
b
t , e

b
t) = argmax

na
t ,e

a
t

Vt(n
a
t , n

b
t , e

ia
t , e

b
t , xt),

B1−xt(n
a
t , e

a
t ) = argmax

nb
t ,e

b
t

Vt(n
b
t , n

a
t , e

b
t , e

a
t , 1− xt).

Hence there exists a function B : [0, n̄]2 × [0, ē]2 → [0, n̄]2 × [0, ē]2 given by B(sa, sb) =
{Bxt(s

b),B1−xt(s
a)}.

Convexity of the set {(sa, sb),B(sa, sb)}.

Let us skip time indexation.

Define the following functions:

f : R+ → R+ given by f(e) = eρ, ρ ∈ [0, 1]

g : R+ → R+ given by g(e) = eρµ, ρ ∈ [0, 1], µ ∈ [1,+∞).

F : R+2 → R+ given by

F (X, Y ) = X(1− α)(xiX +B)−α +
Y

xiY +B′α(x
iX +B)1−α

with B = f(e−i)n−i, B
′
= g(e−i)n−i.
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F̃ : R+2 → R+ given by F̃ (ni, ei) = F (f(ei)ni, g(ei)ni).

F̂ : R+4 → R+ given by F̂ (ni, ei, λ, γ) = F̃ (ni, ei)− λ
2
(ni)2 − γniei.

Let us express the first and second derivatives of F with respect to X and Y .

FX ≡ ∂F

∂X
= (1− α)(xiX +B)−α

(
1− α

xiX

xiX +B
+ α

xiY

xiY +B′

)
,

FY ≡ ∂F

∂Y
= α(xiX +B)1−α B

′

(xiY +B′)2
,

FXX ≡ ∂2F

∂X2
= xiα(1− α)(xiX +B)−α−1

(
−2 + (1 + α)

xiX

xiX +B
− α

xiY

xiY +B′

)
,

FY Y ≡ ∂2F

∂Y 2
= −2α(xiX +B)1−α xiB

′

(xiY +B′)3
,

FXY ≡ ∂2F

∂X∂Y
= xi(1− α)α(xiX +B)−α B

′

(xiY +B′)2
.

We have FY > 0, FY Y < 0, FXY > 0. Using xiX/(xiX + B) < 1 and xiY/(xiY + B
′
) < 1, we

easily find FX > 0 FXX < 0.

We have F̂ (ni, ei, λ, γ) = V (ni, n−i, ei, e−i, xi). Then, V is quasi-concave in (ni, ei), if and only
if F̂ is quasi-concave in (ni, ei). To determine whether F̂ is quasi-concave, let us express the
bordered Hessian matrix of F̂ which we denote by H(ni, ei).

H(ni, ei) =

 0 F̂n F̂e

F̂n F̂nn F̂ne

F̂e F̂ne F̂ee


where

F̂n = F̃n − λni − γei,

F̂e = F̃e − γni,

F̂nn = F̃nn − λ,

F̂ne = F̃ne − γ,

F̂ee = F̃ee,

and

F̃n = FXf(e
i) + FY g(e

i),

F̃e = FXf
′
(ei)ni + FY g

′
(ei)ni,

F̃nn = FXX(f(e
i))2 + FY Y (g(e

i))2 + 2FXY f(e
i)g(ei),

F̃ee = FXf
′′
(ei)ni + FY g

′′
(ei)ni + FXX(f

′
(ei)ni)2 + FY Y (g

′
(ei)ni)2 + 2FXY f

′
(ei)g

′
(ei)(ni)2,

F̃en = FXf
′
(ei) + FY g

′
(ei) + FXXf

′
(ei)f(ei)ni + FY Y g

′
(ei)g(ei)ni+

FXY f
′
(ei)g(ei)ni + FXY g

′
(ei)f(ei)ni.
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The function F̂ is quasi-concave if the determinant of H is positive. The determinant of H is
given by

Det(H) =−
(
F̂n

)2
F̂ee + 2F̂nF̂eF̂en −

(
F̂e

)2
F̂nn

=−
(
F̃n − λni − γei

)2
F̃ee + 2

(
F̃n − λni − γei

)(
F̃e − γni

)(
F̃en − γ

)
−
(
F̃e − γni

)2 (
F̃nn − γ

)
Define D : R+2 → R+ given by D(λ, γ) = Det(H).

We will first interest in D(0, 0). Note that we have F̃n > 0 and F̃e ≥ 0 so that sufficient
conditions to have D(0, 0) > 0 are

F̃nn < 0, and F̃ee < 0, and F̃en > 0.

Now, we will show there exist µ̂ ∈ (1,+∞], µ̄ ∈ (1,+∞], such that ∀µ ≤ min{µ̂, µ̄} and
α < 1/2, then those conditions are satisfied.

1. We start with F̃nn for which we give two expressions.

F̃nn =
f(ei)

ni
xiα(1− α)(xiX +B)−α

(
2

B
′
Y

(xiY +B′)2

+
xiX

xiX +B

(
−2 + (1 + α)

xiX

xiX +B
− α

xiY

xiY +B′

))
+ FY Y (g(e

i))2,

or

F̃nn =2g(ei)xiα
(xiX +B)−αB

′

(xiY +B′)2

(
(1− α)− (xiX +B)/xiX

(xiY +B′)/xiY

)
.

+ FXX(f(e
i))2,

where X ≡ f(ei)ni and Y ≡ g(ei)ni.

Since FXX < 0 and FY Y < 0. A sufficient condition to have F̃nn < 0 is

2
xiB

′
Y

(xiY +B′)2
+

xiX

xiX +B

(
−2 + (1 + α)

xiX

xiX +B
− α

xiY

xiY +B′

)
< 0,

or

(1− α)− (xiX +B)/xiX

(xiY +B′)/xiY
< 0.

Let us introduce new notations. We set z ≡ (nixi)/(n−ix−i) and c ≡ (ei/e−i)ρ. The above
conditions rewrites as

2
1

(1 + c−µz−1)(1 + cµz)
+

1

(1 + c−1z−1)

(
−2 + (1 + α)

1

(1 + c−1z−1)
− α

1

(1 + c−µz−1)

)
< 0,

or

(1− α)− (1 + c−1z−1)

(1 + c−µz−1)
< 0.
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We will consider several cases : (i) c > 1, (ii)-a c < 1 and cz < 1, (ii)-b c < 1 and cz > 1.

(i) The second inequality holds whenever (1 + c−1z−1)/(1 + c−µz−1) > 1 which is equivalent to
c > 1. Hence when c > 1 we have F̃nn < 0.

Consider the case c < 1 and look at the first inequality.

Define the functions Z : [1,+∞) → R+, L : R+ → R+ and G : R+ → R+, G̃ : [1,+∞) → R+

respectively given by

Z(µ) = cµz

L(z̃) =
1

(1 + z̃−1)

(
−2 + (1 + α)

1

(1 + z̃−1)

)
,

G(Z) = 2
1

(1 + Z)(1 + Z−1)
+ L(z̃),

G̃(µ) = G(Z(µ)).

(ii)- a A sufficient condition for the first inequality to hold is G̃(µ) < 0. Suppose that c < 1.
We show that provided that cz < 1, ∀µ ∈ [1,+∞), G̃(µ) < 0.

To do so first we can compute G(1). We find

G̃(1) =
1

(1 + c−1z−1)

(
2

(1 + cz)
− 2 +

1

(1 + c−1z−1)

)
= − 1

(1 + c−1z−1)(1 + c−1z−1)(1 + cz)
< 0.

Second, let us compute the derivative of G̃ with respect to µ. We obtain

G̃
′
(µ) = G

′
(Z(µ))Z

′
(µ).

We easily show that G
′
(Z(µ)) > 0 if and only if Z(µ) < 1 and Z

′
(µ) > 0 if and only if c > 1.

By assumption c < 1 so that Z
′
(µ) < 0. Suppose, in addition that cz < 1. It implies cµz < 1

equivalent to G
′
(Z(µ)) > 0 so that we deduce G̃

′
(µ) < 0 which, with the continuity of G, allows

us to deduce that G̃(µ) < 0 ∀µ ∈ [1,+∞).

(ii)- b Finally consider the case c < 1 and cz > 1. Note that G(Z) < 1/2 + L(z̃) ∀Z ∈ R+. A
sufficient condition to have G(Z) < 0 (which in turn implies that the first inequality holds) is
L(z̃) < −1/2. The function L is convex, decreasing for all z̃ ∈ [0, 1/α] and increasing for all
z̃ > 1/α. We have L(1) = −1/4(3 + α) < −1/2 and limz̃→∞ L = −(1− α) which is lower than
one half whenever α ≤ 1/2. Hence we deduce that L(z̃) < −1/2 which implies that the second
inequality holds.

Finally we can deduce that F̃nn < 0.
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2. Consider the case F̃en.

F̃en =f
′
(ei)(1− α)(xiX +B)−α

[
1− α

xiX

xiX +B
+ α

xiY

xiY +B′ .

+α
xiX

xiX +B

(
−2 + (1 + α)

xiX

xiX +B
− α

xiY

xiY +B′

)
+ α

xiY B
′

(xiY +B′)2

]
+ αg

′
(ei)

(xiX +B)1−αB
′

(xiY +B′)2

(
1− 2

xiY

xiY +B′ + (1− α)
xiX

xiX +B

)
.

Use the notations z ≡ (nixi)/(n−ix−i) and c ≡ (ei/e−i)ρ and define the function M : [1,+∞) →
R given by

M(µ) =ρ(1− α)
1

1 + c−1z−1

[
1− α

1

1 + c−1z−1
+ α

1

1 + c−µz−1
.

+α
1

1 + c−1z−1

(
−2 + (1 + α)

1

1 + c−1z−1
− α

1

1 + c−µz−1

)
+ α

1

1 + c−µz−1

1

1 + cµz

]
+ αρµ

1

1 + c−µz−1

1

1 + cµz

(
1− 2

1

1 + c−µz−1
+ (1− α)

1

1 + c−1z−1

)
.

The inequality F̃en > 0 is equivalent to M(µ) > 0.

Let us compute M(1). We obtain

M(1) =ρ(1− α)
1

1 + c−1z−1

[
1− 2α

1

1 + c−1z−1
+ α

(
1

1 + c−1z−1

)2
]

+ αρ
1

1 + c−1z−1

1

1 + cz

(
2− α− (1 + α)

1

1 + c−1z−1

)
.

Since 1
1+c−1z−1 < 1 we deduce that

M(1) >ρ(1− α)
1

1 + c−1z−1

[
1− 2α + α

(
1

1 + c−1z−1

)2
]

+ αρ
1

1 + c−1z−1

1

1 + cz
(1− 2α) .

Suppose that α ≤ 1/2. Then we the RHS is positive so that M(1) > 0. Given that the
function M is continuous on [1,+∞), we deduce that there exists µ̂ ∈]1,+∞] such that ∀µ ≤ µ̂
M(µ) ≥ 0 which is equivalent to F̃en ≥ 0.

3. Consider the case F̃ee.

F̃ee = FXf
′′
(ei)ni + FXX(f

′
(ei)ni)2+

ρµα
B

′
Y

(xY +B′)2

(
2ρ(1− α)

xX

(xX +B)
− 2ρµ

xY

(xY +B′)
+ ρµ− 1

)
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The terms of the first line are all negative. Hence, F̃ee is negative if the term of the second line
is negative. Again, we set z ≡ (nixi)/(n−ix−i) and c ≡ (ei/e−i)ρ and we define the function
N : [1,+∞) → R given by

N(µ) =ρµα
1

xi

1

(1 + c−µz−1)(1 + cµz)

(
2ρ(1− α)

1

(1 + c−1z−1)
− 2ρµ

1

(1 + c−µz−1)
+ ρµ− 1

)

We have N(1) < 0. Given that the function N is continuous on [1,+∞), we deduce that there
exists µ̄ ∈]1,+∞] such that ∀µ ≤ µ̄ N(µ) < 0 which implies F̃ee < 0.

Last step.

It is easy to check that D is continuous in (0, 0) that is, if (λn, γn) → (0, 0) then D(λn, γn) →
D(0, 0). Using that fact and D(0, 0) > 0 we can deduce that there exist two thresholds λ̄, γ̄
such that when λ < λ̄ and γ < γ̄ then D(λ, γ) > 0. It is equivalent to say that for λ < λ̄ and
γ < γ̄, ∀xi ∈ [0, 1], the function Vt is quasi-concave in si.

Proposition 1 Suppose that α ≤ 1/2, µ ≤ min{µ̂, µ̄}, λ < λ̄ and γ < γ̄, for any xt ∈ [0, 1],
(i) there exists a pure-strategy Nash equilibrium, and (ii) the pure-strategy Nash equilibrium is
the symmetric strategy profile (na(xt), n

a(1− xt), e
a(xt), e

a(1− xt)).

Note that in this definition, the term symmetry is used to refer to a symmetry of strategic
choices with respect to x = 1/2 (and not to an equality of choices at equilibrium).

Proof. Because the set of strategy is non-empty, convex and compact, using Lemma 1, we can
apply Kakutani’s fixed point theorem to deduce item (i) of Proposition 1.

Let us prove item (ii).

Define fas and fbs the functions going from [0, 1] into [0, n̄]× [0, ē] which for each value of x gives
the vector of strategy of one group at the Nash equilibrium. That is ,

fas (x) ≡ (na(xt), e
a(xt)),

fbs (x) ≡ (nb(xt), e
b(xt)).

By definition,

fas (x) = Bx(f
b
s (x)),

fbs (x) = B1−x(f
a
s (x)).

Therefore, the functions fas and fbs are implicitly given by

fas (x)−Bx(B1−x(f
a
s (x))) = 0,

fbs (x)−B1−x(Bx(f
b
s (x))) = 0.
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Hence, we have

fas (1− x)−B1−x(Bx(f
a
s (1− x))) = 0,

so that we deduce fas (1− x) = fbs (x).

A.2 Proof of Proposition 2

Suppose that µ = 1. The first order conditions can be rewritten as

xt(e
a
t )

ρ

na
txt(eat )

ρ + nb
t(1− xt)(ebt)

ρ
Πb

t+1N
−α
t

(na
txt(e

a
t )

ρ + nb
t(1− xt)(e

b
t)

ρ)(1−α)

xt

+Πa
t+1N

−α
t (1− α)

(na
txt(e

a
t )

ρ + nb
t(1− xt)(e

b
t)

ρ)−α

xt

(eat )
ρxt = γeat + λna

t

ρ (eat )
ρ−1 na

txt

na
txt(eat )

ρ + nb
t(1− xt)(ebt)

ρ
Πb

t+1N
−α
t

(na
txt(e

a
t )

ρ + nb
t(1− xt)(e

b
t)

ρ)(1−α)

xt

+ ρΠa
t+1(1− α)N1−α

t

(na
txt(e

a
t )

ρ + nb
t(1− xt)(e

b
t)

ρ)−α

xt

na
t e

a
t
ρ−1xt = γna

t

Equalizing, the second FOC for group 1 and 2, we obtain(
eat
ebt

)−(1−ρ)

=
1− αΠb

t+1

1− αΠa
t+1

Also using the two FOC together (for group 1) we deduce that

xt(e
a
t )

ρ

na
txt(eat )

ρ + nb
t(1− xt)(ebt)

ρ
Πb

t+1N
−α
t

na
txt(e

a
t )

ρ + nb
t(1− xt)(e

b
t)

ρ)(1−α)

xt

+Πa
t+1N

−α
t (1− α)

(na
txt(e

a
t )

ρ + nb
t(1− xt)(e

b
t)

ρ)−α

xt

(eat )
ρxt =

λ

1− p
na
t

Equalizing, this equation for for group 1 and 2, we obtain(
eat
ebt

)ρ

=
1− αΠb

t+1

1− αΠa
t+1

na
t

nb
t

.

We deduce

eat
ebt

=
na
t

nb
t

.

Hence,
n1∗
t

n2∗
t

is implicitely given by(
n1∗
t

n2∗
t

)−(1−ρ)

−
1− αΠ2∗

t+1

1− αΠ1∗
t+1

≡ k(
n1∗
t

n2∗
t

) = 0,
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where

Π1∗
t+1 =

1

1 +
na
t

nb
t

−1−ρ
(1− xt)

,

Π2∗
t+1 =

1

1 +
na
t

nb
t

1+ρ
xt

One has

d
n1∗
t

n2∗
t

dxt

= −
∂k
∂xt

∂k

∂
n1∗
t

n2∗
t

.

One easily finds that

∂k

∂xt

< 0,

∂k

∂
n1∗
t

n2∗
t

< 0,

so that we deduce
d
n1∗
t

n2∗
t

dxt
=

d
e1∗t
e2∗t
dxt

< 0.

Finally, using Proposition 1, we deduce that deat /dxt < 0, debt/dxt > 0, dna
t /dx<0, dn

b
t/dxt > 0.

A.3 Proof of Proposition 3

Let us drop time indexation and define

H ≡
(
na(ea)ρx+ nb(eb)ρ(1− x)

)
.

Remind that Πa = Πa(Na, N b, ha, hb) with

Πa(Na, N b, ha, hb) =



(ha)µ nax

(ha)µ nax+ (hb)µ nb(1− x)
, if hi ̸= 0 and ni ̸= 0 ∀i ∈ {a, b},

nax

nax+ nb(1− x)
, if hi = 0 and ni ̸= 0 ∀i ∈ {a, b},

(ha)µ

(ha)µ + (hb)µ
, if hi ̸= 0 and ni

t = 0 ∀i ∈ {a, b},
1
2
, if hi = 0 and ni

t = 0 ∀i ∈ {a, b},

Each household in group a solves the following program

max
na,ea

βτnaN−α

(
(1− α)H−α(ea)ρ +ΠaαH

1−α

xna

)
− γ naea − λ

2
(na)2 .
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The first order conditions associated to this program are

βτN−α

(
(1− α)H−α(ea)ρ +ΠaαH

1−α

xna

)
−βτnaN−αα(1− α)H−α−1(ea)2ρx+ βτnaN−αα(1− α)ΠaH

−α

xna
(ea)ρx

−βτnaN−ααH1−α (ha)2µ x

((ha)µ nax+ (hb)µ nb(1− x))
2 − γ ea − λna = 0.

and

βτnaN−αρ(1− α)H−α(ea)ρ−1

−βτnaN−αα(1− α)H−α−1(ea)ρxnaρ(ea)ρ−1 + βτnaN−αα(1− α)ΠaH
−α

xna
naxρ(ea)ρ−1

+βτnaN−ααH1−α ρµ(ea)ρµ−1
(
hb
)µ

nb(1− x)

((ha)µ nax+ (hb)µ nb(1− x))
2 − γ na = 0.

Set x = 1 and denote (na1, ea1) the vector which solves the above system of equation. We find

βτN−α
((

na1
)−α

(ea1)(1−α)ρ
)
(1− α)− γ ea1 − λna1 = 0,

and

ρβτN−α
((

na1
)−α+1

(ea1)(1−α)ρ−1
)
(1− α)− γ na1 = 0.

We obtain

(ea1)1−ρ(1−α) =
ρβτN−α(1− α)

γ

(
na1
)−α

,

(na1)1+α =
βτN−α

λ
(ea1)ρ(1−α)(1− α)(1− ρ).

Set x = 0 and denote (na0, ea0) the vector which solves the above system of equation. In that
case, we obtain

na0 =
βτN−α

λ
(ea0)ρ(na1)−α(ea1)−αρ

(
(1− α)(1− ρ)− α

(ea0)ρ(µ−1)

(ea1)ρ(µ−1)
(ρµ− 1)

)
and

(ea0)1−ρ =
ρβτN−α

γ
(na1)−α(ea1)−αρ

(
(1− α) + αµ

(ea0)ρ(µ−1)

(ea1)ρ(µ−1)

)
.

Set x = 1/2 and denote (na1/2, ea1/2) the solution to the above system of equation. We find

(ea1/2)1−ρ(1−α) =
ρβτN−α

γ

(
na1/2

)−α
(
1− α +

αµ

2

)
,
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(na1/2)1+α =
βτN−α

λ
(ea1/2)ρ(1−α)

(
(1− α

2
)− ρ(1− α)− ραµ

2

)
Now we will show that provided that µ ∈ (µ∗, µ̃), we have

ea0 > ea1/2 > ea1 and na1/2 > na1 > na0.

Step 1. We start by comparing choices at x = 1/2 and x = 1.

Using the FOC at x = 1 and x = 1/2, we can perform the following quantities

ea1 = (βτ)
1

(1+α−ρ(1−α))

(
ρ(1− α)

γ

) (1+α)
(1+α−ρ(1−α))

(
(1− α)(1− ρ)

λ

) −α
(1+α−ρ(1−α))

,

na1 = (βτ)
1

(1+α−ρ(1−α))

(
ρ(1− α)

γ

) ρ(1−α)
(1+α−ρ(1−α))

(
(1− α)(1− ρ)

λ

) (1−ρ(1−α))
(1+α−ρ(1−α))

,

ea1/2 = (βτ)
1

(1+α−ρ(1−α))

(
ρ(1− α + αµ/2)

γ

) (1+α)
(1+α−ρ(1−α))

×
(
(1− α/2− ρ(1− α + αµ/2)

λ

) −α
(1+α−ρ(1−α))

,

and

na1/2 = (βτ)
1

(1+α−ρ(1−α))

(
ρ(1− α + αµ/2)

γ

) ρ(1−α)
(1+α−ρ(1−α))

×
(
(1− α/2− ρ(1− α + αµ/2)

λ

) (1−ρ(1−α))
(1+α−ρ(1−α))

.

Note that at µ = 1 we have na1/2 > na1 and ea1/2 > ea1. One easily shows that ∂ea1/2/∂µ > 0
∀µ ∈ R+. Let us perform the derivative of na1/2 with respect to µ. We find

∂na1/2

∂µ
=

ρα

2λ(1 + α− ρ(1− α))

(
ρ(1− α + αµ/2)

γ

) ρ(1−α)
(1+α−ρ(1−α))

×
(
(1− α/2− ρ(1− α + αµ/2)

λ

) 1−ρ(1−α)
(1+α−ρ(1−α))

−1

×
[
(1− α)

(
(1− α/2− ρ(1− α) + αµ/2)

(1− α + αµ/2)

)
− (1− ρ(1− α))

]
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which has the same sign as

(1− α)

(
(1− α/2− ρ(1− α + αµ/2)

(1− α + αµ/2)

)
− (1− ρ(1− α)).

Note that

(1− α)

(
(1− α/2− ρ(1− α) + αµ/2)

(1− α + αµ/2)

)
− (1− ρ(1− α))

< 1− α/2− ρ(1− α)− αµ/2− 1 + ρ(1− α) = −α/2− αµ/2 < 0.

Hence, ∂na1/2/∂µ < 0 ∀µ ∈ R+.

When µ is such that 1−α/2− ρ(1−α)−αµ/2 = 0, then na1/2 = 0 < na1. We can deduce that
there exists a unique µ̃ implicitly given by(

1− α + αµ̃/2

1− α

)ρ(1−α)(
(1− α/2− ρ(1− α + αµ̃/2)

(1− α)(1− ρ)

)(1−ρ(1−α))

− 1 = 0,

such that µ < µ̃ ⇔ na1/2 > na1.

Hence for any µ ∈ [1, µ̃) we have na1/2 > na1 and ea1/2 > ea1.

Step 2. Now we show that na1 > na0.

First, we easily find that ea0 > ea1. We have

na0 < na1

⇔(ea0)ρ

(ea1)ρ

(
(1− α)(1− ρ) + α

(ea0)ρ(µ−1)

(ea1)ρ(µ−1)
(1− ρµ)

)
− (1− α)(1− ρ) < 0.

Define the function Γ : R+ → R given by

Γ(x) = xρ
(
(1− α)(1− ρ)− αxρ(µ−1)(ρµ− 1)

)
− (1− α)(1− ρ).

One can compute

Γ
′
(x) = ρxρ−1

(
(1− α)(1− ρ)− αxρ(µ−1)(µρ− 1)

)
− αxρρ(µ− 1)xρ(µ−1)−1(ρµ− 1).

Suppose that ρµ > 1. Then, the function Γ reaches a maximum at xm =
(

(1−α)(1−ρ)
α(ρµ−1)µ

) 1
ρ(µ−1)

.

A sufficient condition for Γ(ea0/ea1) < 0 is Γ(xm) < 0 which is equivalent to Λ(µ) < 0 where
Λ : [1,+∞) → R is given by

Λ(µ) = (1− α)(1− ρ)

((
(1− α)(1− ρ)

α(ρµ− 1)µ

) 1
(µ−1)

(1− 1

µ
)− 1.

)
First, suppose that (1− α)(1− ρ)/ (α(ρµ− 1)µ) < 1 which is equivalent to µ > µh where µh is
such that

(1− α)(1− ρ)

α(ρµh − 1)µh

= 1.

12



In that case, one finds Γ(xm) < 0. Second, suppose that 1/ρ < µ < µh. Let us perform Λ
′
(µ).

We find

Λ′(µ) = (1− α)(1− ρ)

(
(1− α)(1− ρ)

α(ρµ− 1)µ

) 1
(µ−1) 1

µ

×
(
− 1

(µ− 1)
ln

(
(1− α)(1− ρ)

α(ρµ− 1)µ

)
− 2(ρµ− 1)

µ

)
< 0.

Since Λ(1/ρ) = +∞, Λ(µh) < 0 and Λ is continuous, we deduce that there exists a unique
µ∗ ∈ [1/ρ, µh] such that µ ≥ µ∗ is equivalent to Λ(µ) ≤ 0 which implies na < nb.

Step 3. Finally, we show that ea0 > ea1/2.

ea0 > ea1/2,

⇔(na1)−α(ea1)−αρ

(
(1− α) + αµ

(ea0)ρ(µ−1)

(ea1)ρ(µ−1)

)
>
(
na1/2

)−α
(ea1/2)−αρ

(
1− α +

αµ

2

)
,

In Step 1 we showed that na1/2 > na1 and ea1/2 > ea1 which implies
(
na1/2

)−α
(ea1/2)−αρ <

(na1)−α(ea1)−αρ. A sufficient condition for the above inequality to hold is

αµ
(ea0)ρ(µ−1)

(ea1)ρ(µ−1)
>

αµ

2
,

which is true since we showed in Step 2. that ea0/ea1 > 1. Hence we deduce that ea0 > ea1/2.

B Strategic decisions on whether to establish norms

Let us define di ∈ {0, 1}, where di equal to one when group i chooses to build the cultural
institution. Remind that di is chosen at date t = 1 but let us skip time indexation to simplify
notation.

Definition 1 (Stackelberg-Nash equilibrium)
A Stackelberg-Nash equilibrium is a strategy profile (da⋆, db⋆, na⋆, nb⋆, ea⋆, eb⋆) =
(da(x), db(x), na(x), nb(x), ea(x), eb(x)) with di : [0, 1] → {0, 1} ni : [0, 1] → [0, n̄] and ei :
[0, 1] → [0, ē] such that for all i ∈ {a, b},

di⋆ ∈ argmax
di∈{0,1}

V (n̂i(di, d−i), n̂−i(d−i, di), êi(di, d−i), ê−i(d−i, di), xi)− κdi

where n̂i : {0, 1} × {0, 1} → [0, n̄] , êi : {0, 1} × {0, 1} → [0, ē] are given by(
n̂i(1, d−i), êi(1, d−i)

)
∈ argmax

(ni,ei)∈X
V (ni, n̂−i(d−i, 1), ei, ê−i(d−i, 1), xi) ∀xi ∈ [0, 1](

n̂i(0, d−i), êi(0, d−i)
)
∈ argmax

(nij ,eji)∈X
W (nji, n̂i(0, d−i), n̂−i(d−i, 0), eji, êi(0, d−i), ê−i(d−i, 0), xi)

∀xi ∈ [0, 1] ∀j ∈ [0, Nxi].
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The functions n̂i(di, d−i) and êi(di, d−i) are the optimal choices of fertility and education of
household j of group i for any choices of the leaders of group, di and d−i.

When di = 1, the leader chooses to build a cultural institution. Each household j in group i
acts as a representative individual of group i and chooses the level of education and fertility -
ni, ei - which maximizes the welfare of the group, taking the choices of members of the other
group - n−i, e−i equal to n̂−i(d−i, 1), ê−i(d−i, 1) at equilibrium - as given.

When di = 0, the leader chooses not to build a cultural institution. In group i, each household
j chooses its level of fertility and education - nji, eji - taking the choices of all other members
of group i - ni, ei equal to n̂i(0, d−i), êi(0, d−i) at equilibrium - and the choices of members of
the other group - n−i, e−i equal to n̂−i(d−i, 0), ê−i(d−i, 0) at equilibrium - as given.

In what follows, we focus on the game between small groups (x ≈ 0) and large groups (x ≈ 1).

Proposition 2 Suppose that xa
t = 0. There exist κ̃1, κ̃2, κ̃3 such that if κ̃2 < min{κ̃1, κ̃3},

κ̃1 ̸= κ̃3, there exists a unique Stackelberg-Nash equilibrium given by

(da⋆, db⋆, na⋆, nb⋆, ea⋆, eb⋆) = (1, 1, n̂a(1, 1), n̂b(1, 1), êa(1, 1), êb(1, 1)) ∀κ < κ̃2,

(da⋆, db⋆, na⋆, nb⋆, ea⋆, eb⋆) = (1, 0, n̂a(1, 0), n̂b(0, 1), êa(1, 0), êb(0, 1)) ∀κ ∈ (κ̃2, κ̃3),

(da⋆, db⋆, na⋆, nb⋆, ea⋆, eb⋆) = (0, 0, n̂a(0, 0), n̂b(0, 0), êa(0, 0), êb(0, 0)) ∀κ > κ̃3.

The proof is developed in the following subsection.

This proposition reveals that in a game between small and large groups, there exists a unique
Stackelberg-Nash equilibrium which depends on the cost of building a cultural institution.
First, uniqueness holds because, the actions chosen by the small group do not influence total
outcome (and so the payoff of the large group). This implies that the choices of large groups
are independent of the actions chosen by small groups (i.e., the reaction function of the large
group is constant). For each set of actions taken by the large group, there is a unique optimal
set of actions for the small group so that the equilibrium is unique.

When the cost of building a cultural institution is small we are back to the benchmark model
where the existence of norms on fertility and education are given. This is because the benefit
from coordination is strictly positive since it allows to internalize intra-group externalities.
Reversely, when the cost of creating a cultural institution is very high, we are back to the case
where norms on education and fertility are absent. In that case, whatever the size of the group,
the benefit from coordination is too low compared to the cost. Interestingly, when the fixed
cost is intermediate, an asymmetric type of equilibrium emerges in which small groups create
a cultural institution while large groups do not. This result requires κ̃2 < κ̃3 which means that
the payoff to coordination of the small group (group a), when the large group (group b) does
not coordinate, is higher than the payoff to coordination of the large group.1 We show that
this condition holds when µ, the impact of human capital on appropriation, is not too low.

1The condition κ̃2 < κ̃1 is imposed to simplify the exposition.
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B.1 Proof of Proposition 2

This proof is divided in two steps.

In step 1, we compare (i) Ω(1, d−i, xi) and Ω(0, d−i, xi), (ii) Ω(1, 1, 0) and Ω(1, 1, 1), (iii) Ω(1, 0, 1)
and Ω(1, 1, 1), (iv) Ω(1, 1, 1) and Ω(1, 0, 0).

In step 2, we show that the Stackelberg-Nash equilibrium is unique and we determine the
values of d0 and d1 at the equilibrium. We deduce the value of education and fertility at the
equilibrium.

Step 1:

We start by defining the function Ωi : {0, 1}×{0, 1}× [0, 1] → R+ which is given by ∀i ∈ {a, b}

Ω(di, d−i, xi) = V (n̂i(di, d−i), n̂−i(d−i, di), êi(di, d−i), ê−i(d−i, di), xi) ∀xi ∈ [0, 1].

where the functions n̂i and êi are as in Definition 1.

(i) Comparison between Ω(1, d−i, xi) and Ω(0, d−i, xi). By definition, we have

Ω(1, d−i, xi) = max
(ni,ei)∈[0,n̄]×[0,ē]

V (ni, n̂−i(d−i, 1), ei, ê−i(d−i, 1), xi)

= V (n̂i(1, d−i), n̂−i(d−i, 1), êi(1, d−i), ê−i(d−i, 1), xi),

and

Ω(0, d−i, xi) = max
(nij ,eji)∈[0,n̄]×[0,ē]

W (nji, n̂i(0, d−i), n̂−i(d−i, 0), eji, êi(0, d−i), ê−i(d−i, 0), xi)

= W (n̂i(0, d−i), n̂i(0, d−i), n̂−i(d−i, 0), êi(0, d−i), êi(0, d−i), ê−i(d−i, 0), xi)

Also, by definition, we have

W (n̂i(0, d−i), n̂i(0, d−i), n̂−i(d−i, 0), êi(0, d−i), êi(0, d−i), ê−i(d−i, 0), xi)

= V (n̂i(0, d−i), n̂−i(d−i, 0), êi(0, d−i), ê−i(d−i, 0), xi)

< V (n̂i(1, d−i), n̂−i(d−i, 1), êi(1, d−i), ê−i(d−i, 1), xi)

which is equivalent to

Ω(1, d−i, xi) > Ω(0, d−i, xi) ∀d−i ∈ {0, 1} ∀xi ∈ [0, 1].

(ii) Comparison between Ω(1, 1, 0) and Ω(1, 1, 1). Remind that we set xa = 0.

Define the function Ψ : [0, n̄]× [0, ē] → R given by

Ψ(n, e) = βτn

(
(1− α)H−α(e)ρ +

(e)ρµ

D
αH1−α

)
− γ ne− λ

2
(n)2 , (1)
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where

H = n̂b(1, 1)(êb(1, 1))ρ

D = n̂b(1, 1)(êb(1, 1))ρµ

We have

Ω(1, 1, 0) = Ψ(n̂a(1, 1), êa(1, 1))

Ω(1, 1, 1) = Ψ(n̂b(1, 1), êb(1, 1)).

Note that Ψ(ni, ei) = V (ni, n̂b(1, 1), ei, êb(1, 1), 0) so that

max
(ni,ei)∈[0,n̄]×[0,ē]

V (ni, n̂b(1, 1), ei, êb(1, 1), 0) = max
(ni,ei)∈[0,n̄]×[0,ē]

Ψ(n̂i, êi)

= V (n̂a(1, 1), n̂b(1, 1), êa(1, 1), êb(1, 1), 0)

= Ψ(n̂a(1, 1), êa(1, 1)).

We deduce that

Ψ(n̂a(1, 1), n̂a(1, 1)) > Ψ(n̂b(1, 1), êb(1, 1)),

⇔Ω(1, 1, 0) > Ω(1, 1, 1).

Using a similar reasoning we can also deduce

Ω(0, 1, 0) > Ω(0, 1, 1).

(iii) Comparison between Ω(1, 1, 1) and Ω(1, 0, 1).

We have

Ω(1, 1, 1) = Ψ(n̂b(1, 1), êb(1, 1))

Ω(1, 0, 1) = Ψ(n̂b(1, 1), êb(1, 1)).

We deduce Ω(1, 1, 1) = Ω(1, 0, 1).

(iv) Comparison between Ω(1, 0, 0) and Ω(1, 1, 1). We have

Ω(1, 0, 0) = βτn̂a(1, 0)

(
(1− α)H−α(êa(1, 0))ρ +

(êa(1, 0))ρµ

D
αH1−α

)

−γ n̂a(1, 0)êa(1, 0)− λ

2
(n̂a(1, 0))2 ,
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where

H = n̂b(0, 1)(êb(0, 1))ρ

D = n̂b(0, 1)(êb(0, 1))ρµ

Ω(1, 1, 1) = βτn̂b(1, 1)

(
(1− α)H−α(êb(1, 1))ρ +

(êb(1, 1))ρµ

D
αH1−α

)

−γ n̂b(1, 1)êb(1, 1)− λ

2

(
n̂b(1, 1)

)2
,

where

H = n̂b(1, 1)(êb(1, 1))ρ

D = n̂b(1, 1)(êb(1, 1))ρµ

Note that ∀db ∈ {0, 1}, the FOC for education at xb = 1 gives

(1− α)H−α =
γNα

ρβτ
(êb(db, 1))1−ρ

Using that in the above equations, we obtain

Ω(1, 0, 0) = n̂a(1, 0)
γNα

ρ(1− α)

(
(1− α) êb(0, 1))(1−ρ)(êa(1, 0))ρ + α(êa(1, 0))ρµ êb(0, 1))(1−ρµ)

)

−γ n̂a(1, 0)êa(1, 0)− λ

2
(n̂a(1, 0))2 ,

and

Ω(1, 1, 1) = n̂b(1, 1)
γNα

ρ(1− α)

(
(1− α)êb(1, 1))(1−ρ)(êb(1, 1))ρ + α(êb(1, 1))ρµêb(1, 1))(1−ρµ)

)

−γ n̂b(1, 1)êb(1, 1)− λ

2

(
n̂b(1, 1)

)2
,

Define the function Φ : [0, n̄]× [0, ē]2 → R given by

Φ(n, e, y) = n
γNα

ρ(1− α)

(
(1− α) (y)(1−ρ)(e)ρ + α(e)ρµ (y)(1−ρµ)

)
− γ ne− λ

2
(n)2 .
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Then we have

Φ(n̂b(1, 1), êb(1, 1), êb(1, 1)) = Ω(1, 1, 1),

and

Φ(n̂a(1, 0), êa(1, 0), êb(0, 1)) = Ω(1, 0, 0).

Note that when ρµ ≤ 1, the sign of ∂Φ/∂y is positive. When ρµ > 1, the sign of ∂Φ/∂y is
ambiguous. Let us consider the two cases.

First, suppose that ∂Φ/∂y < 0. Remind that êb(1, 1) > êb(0, 1). Together these two conditions
imply that ∀(n, e) ∈ [0, n̄]× [0, ē]

Φ(n, e, êb(1, 1)) < Φ(n, e, êb(0, 1)).

In particular, we have

Φ(n̂b(1, 1), êb(1, 1), êb(1, 1)) < Φ(n̂b(1, 1), êb(1, 1), êb(0, 1)).

But, we know that

Φ(n̂a(1, 0), êa(1, 0), êb(0, 1)) = max
(n,e)∈[0,n̄]×[0,ē]

Φ(n, e, êb(0, 1)) > Φ(n̂b(1, 1), êb(1, 1), êb(0, 1)).

We deduce that Ω(1, 0, 0) > Ω(1, 1, 1).

Second, suppose that ∂Φ/∂y > 0. Using this condition and êb(1, 1) > êb(0, 1) we obtain

Φ(n, e, êb(1, 1)) > Φ(n, e, êb(0, 1)).

Then, on the one hand, we have

Φ(n̂b(1, 1), êb(1, 1), êb(1, 1)) > Φ(n̂b(1, 1), êb(1, 1), êb(0, 1)).

But, on the other hand, we know that

Φ(n̂a(1, 0), êa(1, 0), êb(0, 1)) = max
(n,e)∈[0,n̄]×[0,ē]

Φ(n, e, êb(0, 1)) > Φ(n̂b(1, 1), êb(1, 1), êb(0, 1)).

In this case, the sign of Ω(1, 0, 0)− Ω(1, 1, 1) is ambiguous.

(v) Comparison between Ω(1, 0, 0) and Ω(1, 1, 0). Using similar arguments (to the ones used in
case iv) we can deduce that

∂Φ

∂y
< 0 ⇔ Ω(1, 0, 0) > Ω(1, 1, 0)

∂Φ

∂y
> 0 ⇔ Ω(1, 0, 0) < Ω(1, 1, 0).
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(vi) Comparison between Ω(0, 0, 0) and Ω(0, 1, 0). As well we can deduce the following.

∂Φ

∂y
< 0 ⇔ Ω(0, 0, 0) > Ω(0, 1, 0)

∂Φ

∂y
> 0 ⇔ Ω(0, 0, 0) < Ω(0, 1, 0).

Step 2. The different outcomes of the game can be represented in the payoff matrix below.

Individual a

da = 0 da = 1

Individual b
db = 0 Ω(0, 0, 1) > 0,Ω(0, 0, 0) > 0 Ω(0, 1, 1) > 0,Ω(1, 0, 0)− κ

db = 1 Ω(1, 0, 1)− κ,Ω(0, 1, 0) > 0 Ω(1, 1, 1)− κ,Ω(1, 1, 0)− κ

Let us look at the values of these payoffs. To do so, we define

κ̃1 ≡ Ω(1, 1, 0)− Ω(0, 1, 0),

κ̃2 ≡ Ω(1, 1, 1)− Ω(0, 1, 1) = Ω(1, 1, 1)− Ω(0, 0, 1) = Ω(1, 0, 1)− Ω(0, 0, 1),

κ̃3 ≡ Ω(1, 0, 0)− Ω(0, 0, 0).

From (i) we deduce that κ̃1 > 0, κ̃2 > 0, κ̃3 > 0. From (ii) we deduce that the sign of κ̃1 − κ̃2

is ambiguous. From (iii) and (iv) we deduce that the sign of κ̃2 − κ̃3 is ambiguous. Finally,
from (v) and (vi) we deduce that the sign of κ̃1 − κ̃3 is ambiguous. Hence, depending on the
model’s parameters, there are six possibilities for the ranking of the thresholds. Let us focus
on the case κ̃2 < min{κ̃3, κ̃1}.

a. Suppose that κ > max{κ̃3, κ̃1}. Then Ω(1, 0, 0) − κ < Ω(0, 0, 0), Ω(1, 1, 0) − κ < Ω(0, 1, 0),
Ω(1, 0, 1)− κ < Ω(0, 0, 1) and Ω(1, 1, 1)− κ < Ω(0, 1, 1). We deduce that there exists only one
equilibrium of this game: (da⋆t , db⋆t , n

a⋆
t , nb⋆

t , e
a⋆
t , eb⋆t ) = (0, 0, n̂a(0, 0), n̂b(0, 0), êa(0, 0), êb(0, 0)).

b. Suppose that κ < κ̃2. Then Ω(1, 0, 0)−κ > Ω(0, 0, 0), Ω(1, 1, 0)−κ > Ω(0, 1, 0), Ω(1, 0, 1)−
κ > Ω(0, 0, 1) and Ω(1, 1, 1)− κ > Ω(0, 1, 1). We deduce that there exists only one equilibrium
of this game: (da⋆t , db⋆t , n

a⋆
t , nb⋆

t , e
a⋆
t , eb⋆t ) = (1, 1, n̂a(1, 1), n̂b(1, 1), êa(1, 1), êb(1, 1)).

c. Suppose that κ̃3 > κ > κ̃2. We know that Ω(1, 0, 1) − κ < Ω(0, 0, 1) and Ω(1, 1, 1) − κ <
Ω(0, 1, 1) so that db⋆t = 0. Furthermore, we know that Ω(1, 0, 0)−κ > Ω(0, 0, 0) so that da⋆t = 1.
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C Numerical example

Assume α = 0.25, λ = 0.2, ρ = 0.5, γ = 0.3. Figure 1 shows how fertility and education of
group a change when the share of the group varies, in the case µ = 1. This illustrates the
results of Proposition 2. Figure 2 shows the same variables in the case µ = 3. This illustrates
the results of Proposition 3.

Figure 1: Numerical example: Case µ = 1

Figure 2: Numerical example: Case µ = 3(> 1/ρ)
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D The full game

Group a

Would-be parents decide
to build a cultural institu-
tion at cost κ

the institution sets the
norm {nacc

t , eacc
t } and

{nac�ct , eac�ct }

yes (sat = c)no (sat = �c)

Would be parents act ac-
cording to the norm

would be parents decide

on {na�cc
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t } and

{na�c�ct , ea�c�ct }

The equilibrium strategy {sa?t , sb?t , na?t , nb?t , ea?t , eb?t } is a Nash equilbrium

Grown up children transfer a share τ of
their income to their old parents

Group b

Would-be parents decide
to build a cultural institu-
tion at cost κ

the institution sets the
norm {nbcc
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t } and

{nbc�ct , ebc�ct }

yes (sbt = c)no (sbt = �c)

Would be parents act ac-
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E The Indonesian Administrative System

Indonesia’s administrative system is composed of four main levels: 34 provinces, about 500
regencies or cities, over 6,000 districts and 75,000 villages. It has been a rather centralized
system since the Dutch era and after independence until the early 2000, with the central power
in Jakarta appointing governors at the province level, based on their loyalty rather than their
knowledge of the local context. The village administration level and its elected village chief
(lurah or kepala desa) in contrast has probably the most direct influence on a citizen’s daily
life. However, residential segregation is very strong in Indonesia. As noted by Bazzi, Koehler-
Derrick, and Marx (2020), the ethnic fractionalization index (the probability that any two
residents belong to different ethnicities) is of around 0.81 nationally, while it drops to a median
of 0.04 at the village level. For this reason, we believe that the village is not the most relevant
level at which to measure religious divisions, as it is not where the conflict about resource
appropriation by different groups happens.

Regencies (kabupaten) and cities (kota), led by regents (bupati) and mayors (walikota) respec-
tively, have become chief administrative units since the early 2000, responsible for providing
most government services, such as provision of public schools and public health facilities. In-
deed, following the implementation of drastic regional autonomy measures in 2001, regencies
have received the largest part of the decentralized competencies while the regents and the rep-
resentative council members have become elected officials for 5-year terms. This makes it the
ideal level of disaggregation to examine conflict over resource appropriation.

The decentralization movement has been accompanied by a massive wave of creation of new
regencies, stemming from older regencies splitting up, known as the pemekaran or blossoming,
taking the total number of regencies from about 300 to just over 500 in the interval of a
few years. We acknowledge that this movement may have been influenced by existing power
struggles across religious groups. It may also have inflected the dynamics of those struggles in
return by creating more homogenous regencies. We however rely on regency boundaries from
before the decentralization happened and consider that the division movement is too recent to
have substantially influenced cultural norms of different groups.

Nonetheless, to exclude this possibility altogether, we ran a robustness check using only the
data from the 1971, 1980 and 1990 Censuses, for which the religious shares correspond closely
to the regencies in use at the time. Results present very similar patterns to those in the bench-
mark sample, though at a higher level of fertility and a lower level of educational attainment,
consistent with the general time trend in these variables. The lower fertility of the first ventile
is less sharp that in the overall sample, especially in terms of number of surviving children, sug-
gesting that the phenomenon has grown stronger in recent years with more access to fertility
control and lower rates of infant mortality. Figures are available upon request.
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F Additional descriptive statistics

Table 1 shows summary statistics on the size of religious groups at the regency level and
decomposes its variance into a between observations and a within observation (across time)
standard deviation. The overall shares are somewhat different from those at the population
level because they are taken unweighted at the regency level.2 The distribution of religion shares
has not drastically changed over time. Most of the variation occurs across observations, while
that within variation is limited to between 2 and 6 percentage points. In contrast, Figure 3
shows strong trends in educational attainments, with a doubling of the number of years of
schooling over the period, and in child mortality, which has been divided by four.3

Mean Between obs. Within obs.

Religion size Std. Dev. Min Max Std. Dev. Std. Dev.

Buddhist 0.01 0.032 0.00 0.45 0.024 0.021

Hindu 0.03 0.157 0.00 1.00 0.156 0.018

Muslim 0.82 0.293 0.00 1.00 0.291 0.058

Catholic 0.05 0.150 0.00 1.00 0.157 0.026

Protestant 0.08 0.180 0.00 0.99 0.175 0.042

Confucian 0.01 0.054 0.00 0.94 0.037 0.039

# of obs. 1336

# of regencies 269

Table 1: Summary statistics on size of religious group

Figure 3: Distribution of regency-level controls

2Regencies with large shares of Protestants tend to be smaller in size, and conversely for Muslims, which
explains the discrepancies between regency-level and population means.

3The child mortality rate is computed following Baudin, de la Croix, and Gobbi (2018) as one minus the
share of surviving children among those ever born.
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A. Ethiopia B. Mozambique

C. Ghana D. Senegal

Figure 4: Fertility and education choices by group size
Source: Ethiopian Census, waves 1994-2007, Mozambican Census, wave 2007, Ghanaian Census, waves 2000-2010,
Senegalese Census, waves 1988-2013
Notes: Fertility corresponds to the count of children ever born predicted by the model estimated using Poisson re-
gression. Education is the number of years of schooling predicted by the model estimated using OLS. Corresponding
tables of coefficients are available upon request.
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G Robustness analysis

G.1 Analysis in terms of ethnic groups

Interreligious conflict is not necessarily the most salient in Indonesia and is definitely not
the dimension along which there is the largest amount of diversity. However, information on
ethnicity is available in ipums only in the 2010 census, which limits drastically the scope of the
analysis. We anyway performed a robustness check on the 2010 Census, using ethnicity rather
than religion to define the groups. To this end, we apply to the raw data on ethnicity the
new classification suggested by Ananta et al. (2015) to go from 1331 down to 119 groups. We
obtain deciles with a much more balanced variation in group size than for religion, as shown in
Figure 5.

Figure 5: Distribution of size of ethnic group by deciles

We then run the exact same regressions as in our benchmark and obtain Figure 6. We confirm
that fertility, whether measured by children ever born or surviving children, is substantially
higher for smaller groups (up to 4th/5th decile). Additionally, we re-establish that the first
ventile attains about 10 years of schooling, while all other categories are significantly below that.
The rest of the picture in terms of years of schooling is less sharp. While the point estimates of
the 2nd ventile and deciles 2, 3 and 4 suggest about 9.5 years of education, deciles 5, 7, 8 and 9
hover around 9 years only. Confidence intervals are large however, so we cannot establish with
certainty that education choices for intermediate groups is higher than those of large majorities.
Additionally, the point estimates in model 4 are all much closer to 9 years, suggesting that the
population that migrates is on average more educated. One issue may be that we are using the
delimitations of regencies from the 1990s while they have changed drastically during the 2000s.
We believe that this exercise suggests that we would find a similar picture with ethnicity as we
do with religion, if we had data on ethnicity in all censes waves.
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(a) Predicted count of children ever born by group size deciles

(b) Predicted count of surviving children by group size deciles

(c) Predicted years of education by group size deciles

Source: Indonesian Census 2010
Notes: Panels (a) and (b) are based on the fertility equation estimated using Poisson regression. Panel (c) is
based on the education equation estimated by OLS. Confidence intervals are all computed based on standard errors
clustered at the regency level. Corresponding tables of coefficients are available upon request.

Figure 6: Fertility and Education by Ethnic Group Size
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G.2 Exclusion of the last census from the sample

The decentralization movement of the early 21st century has been accompanied by a massive
wave of creation of new regencies, stemming from older regencies splitting up, known as the
pemekaran or blossoming, taking the total number of regencies from about 300 to just over 500
in the interval of a few years. In the main analysis, we rely on regency boundaries from before
the decentralization happened and consider that the division movement is too recent to have
substantially influenced cultural norms of different groups.

Nonetheless, to exclude the possibility of an effect of this multiplications of the number of
regencies, we run a robustness check using only the data from the 1971, 1980 and 1990 Censuses,
for which the religious shares correspond closely to the regencies in use at the time. Results
are given in Figure 7. They present very similar patterns to those in the benchmark sample,
though at a higher level of fertility and a lower level of educational attainment, consistent with
the general time trend in these variables. The lower fertility of the first ventile is less sharp
that in the overall sample, especially in terms of number of surviving children, suggesting that
the phenomenon has grown stronger in recent years with more access to fertility control and
lower rates of infant mortality.

G.3 Intensive vs extensive margins of fertility

In this appendix, we analyse separately the behavior of the extensive and intensive margins of
fertility.

We run two separate regressions: one with a dummy equal to one when a woman is childless as
the dependent variable and a second one with the count of children ever born, but restricting
to the sample of mothers of at least one child. Results are shown in Figure 8. Panel 8a
shows a pattern very similar to the one found for fertility overall, suggesting a limited role
for childlessness. Panel 8b confirms that childlessness varies little after the second ventile,
hovering between 5.5 and 7%. Interestingly, over this range, childlessness seems to be positively
correlated to completed fertility of mothers, while they generally move in opposite directions.

The first ventile is apart however, with a childlessness rate of 7 to 8% depending on the spec-
ifications. It suggests that the limitation of fertility in order to invest in education for that
group comes at the cost of increasing accidental childlessness, which may arise from postponing
marriage and conception attempts. One may have thought that childlessness should be partic-
ularly low for that group, as one needs at least one child to be able to reap the benefits of high
investment in education. However, this is not what we observe. Childlessness might not be as
detrimental in reality as in our model if there is some sort of cooperative breeding, whereby
childless women help mothers in their extended family raise and educate their children.

G.4 Rural vs urban

Finally, we split the sample according to urban versus rural status and run the analysis again.
Results are shown in Figure 9. The higher fertility of smaller groups seems to be especially
marked in rural areas, while the very low fertility of very small groups is a rather urban
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(a) Predicted count of children ever born by group size deciles

(b) Predicted count of surviving children by group size deciles

(c) Predicted years of education by group size deciles

Source: Indonesian Census waves 1971, 1980 and 1990
Notes: Panels (a) and (b) are based on the fertility equation estimated using Poisson regression. Panel (c) is
based on the education equation estimated by OLS. Confidence intervals are all computed based on standard errors
clustered at the regency level. Corresponding tables of coefficients are available upon request.

Figure 7: Fertility and Education by Religious Group Size, excluding 2000 and 2010
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(a) Predicted count of children ever born by group size deciles, sample of mothers

(b) Predicted probability to remain childless by group size deciles
Source: Indonesian Census, waves 1971-2010
Notes: Panel (a) is based on the fertility equation estimated using Poisson regression. Panel (b) has the same
controls as the fertility equation equation but is estimated by OLS as the dependent variable is a dummy equal to
1 if a woman is childless and 0 otherwise. Confidence intervals are all computed based on standard errors clustered
at the regency level. Corresponding tables of coefficients are available upon request.

Figure 8: Extensive and Intensive Margins of Fertility by Ethnic Group Size
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A. Rural fertility B. Urban fertility

C. Rural education D. Urban education

Figure 9: Fertility and education choices by group size and urban status
Source: Indonesian Census, waves 1971-2010
Notes: Fertility corresponds to the count of children ever born predicted by the model estimated using Poisson re-
gression. Education is the number of years of schooling predicted by the model estimated using OLS. Corresponding
tables of coefficients are available upon request.

phenomenon. In terms of education, we observe a negative relation with group size in both
urban and rural contexts, but the gradient is much steeper in urban areas.

30



References

Ananta, Aris, Evi Nurvidya Arifin, M Sairi Hasbullah, Nur Budi Handayani, and Agus Pra-
mono. 2015. Demography of Indonesia’s ethnicity. Institute of Southeast Asian Studies.

Baudin, Thomas, David de la Croix, and Paula E. Gobbi. 2018. “Development Policies when
Accounting for the Extensive Margin of Fertility.” Journal of the European Economic
Association 18:83–133.

Bazzi, Samuel, Gabriel Koehler-Derrick, and Benjamin Marx. 2020. “The Institutional Foun-
dations of Religious Politics: Evidence from Indonesia.” The Quarterly Journal of Eco-
nomics, pp. 845–911.

31


