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Abstract. The contribution of this paper is twofold. First, it builds and makes use of long-
run data from Sweden on formal education that have never been used to date. Second, it
provides a quantitative application of recent theoretical work on the link between demo-
graphic changes and economic growth through their effect on education. It concludes that
changes in longevity may account for as much as 20% of the observed rise in education
over the period from 1800–2000 via a horizon effect, but have little impact on income
growth over the period. On the contrary, changes in population density and composition
are central, mainly thanks to their effect on productivity. Most income growth over this
period would not have materialized if demographic variables had stayed constant since
1800. JEL classification: J10, O41, I20, N33

Croissance économique et éducation en Suède depuis 1800. Ce mémoire construit et fait us-
age des données à long terme sur l’éducation formelle en Suède qui n’ont jamais été utilisées
et fait usage d’applications de travaux théoriques récents sur les liens entre changements
démographiques et croissance économique par le truchement de l’effet sur l’éducation.
On conclut que les changements dans la longévité peuvent expliquer jusqu’à 20% de
l’accroissement observé en éducation entre 1800 et 2000 à cause de l’effet d’horizon, mais
que cela a peu d’effet sur la croissance du revenu au cours de la période. D’autre part,
les changements dans la densité et la composition de la population ont une importance
centrale, surtout à cause de leur effet sur la productivité. Le gros de la croissance dans
le revenu ne se serait pas matérialisé si les variables démographiques étaient demeurées
constantes depuis 1800.
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1. Introduction

The transition from stagnation to growth has been the subject of intensive re-
search in the growth literature in recent years. Galor and Weil (2000) propose
a unified theory of economic growth in which the inherent Malthusian interac-
tion between technology and population accelerated the pace of technological
progress through rising population density and ultimately brought about an in-
dustrial demand for human capital. Human capital formation and thus further
technological progress triggered a demographic transition, enabling economies
to convert a larger share of the fruits of factor accumulation and technological
progress into growth of income per capita.

Boucekkine, de la Croix, and Licandro (2002) argue that this picture should
be completed to account for the specific effect of mortality on the incentive to
accumulate human capital. They show in Boucekkine, de la Croix, and Licandro
(2003) that the very first acceleration of growth can be related to early drops in
adult mortality. In a recent paper, Boucekkine, de la Croix, and Peeters (2007)
develop a quantitative theory that argues that the effect of population density on
human capital formation prior to the Industrial Revolution was a major force
in the process of industrialization. They provide foundations for the effect of
population density on human capital formation in the transition from stagna-
tion to growth. The increase in population density made the establishment of
schools profitable, stimulating human capital formation (and thereby technolog-
ical progress) and economic growth.

In this paper, these mechanisms relating income growth to demographic
change are confronted with empirical data by calibrating an endogenous growth
model on Swedish long-term time series of mortality, education, age structure,
and per capita income. In our model, demographic variables are exogenous and
influence income growth rates through human capital accumulation and pro-
ductivity. In a first step, we use long-term data to calibrate the model so as to
reproduce the take-off process and the rise in growth rates from stagnation prior
to the 18th century to 2% growth in the 20th century. The main mechanisms at
work are (a) rises in life expectancy that increase the incentive to get an education,
which in turn has permanent effects on growth through a human capital external-
ity and (b) the fact that there is a scale effect from the active population on total
factor productivity and growth. In a second step we run different counter-factual
scenarios to quantify the effect of demographic change on growth and education.
We do not expect demographic changes to explain the whole pattern of develop-
ment, but we use the model to measure the changes we need in the other variables
to convincingly reproduce the growth of Sweden over 250 years. The conclusion
is that demographic change does indeed play a significant role for long-run in-
come growth. Total factor productivity is the most important intermediate factor
between demography and income per capita. However, a full understanding of
the growth process, especially the one leading to increasing levels of education,
will require mechanisms in addition to those we have used in this paper.
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The paper is organized as follows. Section 1 presents the Swedish demographic
transition from 1750 to 2000 and new data on education of this period. Section 2
details the theoretical model, its main theoretical implications, its calibration
to data, and its simulation under alternative demographic scenarios. Section 3
concludes.

2. Long-term trends in Sweden

In this section, we describe the main characteristics of long-term growth in Swe-
den, for both demographic variables and income growth. We also pay special
attention to education, since it may be part of the link between the two. For
this purpose we will construct long-run data on the average length of education,
which have never been used to date. Finally, we argue that the process leading
Sweden to sustained income growth through its demographic transition can be
generalized to other countries as well.

2.1. Population
As early as 1749, Sweden established a public agency responsible for producing
population statistics. These statistics were based on population records kept by
the parish ministry of the Swedish Lutheran church. Thanks to this effort we have
access to detailed and high-quality data on how mortality and fertility changed
over two and a half centuries.

The demographic transition in Sweden follows the standard pattern. Adult
life expectancy starts to increase around 1825, while a clear downward trend
in Swedish fertility did not materialize until the last quarter of the nineteenth
century. That is, at a time when mortality had been declining for almost a century.

The long-term trend in mortality and fertility has led to a total transformation
of the Swedish age structure (Malmberg and Sommestad 2000). This is illustrated
in figure 1, where the population has been divided into five 20-year age brackets:
0–19, 20–39, 40–59, 60–79, and 80+. Declining mortality and fertility lead to a
change in the age structure from a population dominated by children and young
adults to a population where all 20-year age brackets except the oldest have about
the same size.

2.2. Income
Historical estimates of GDP per capita in Sweden are available from several
sources. In this paper we use the series provided by Maddison (2003). Up to the
1820s we have stagnation in per capita income, but there is an increasing growth
trend, and after 1850 average growth rates start to exceed the 1% level. After a
crisis in the 1870s, the growth takeoff gains strength again, rising above the 2%
level in the early twentieth century. Apart from temporary setbacks connected to
the world wars and later oil crises, the long-run averages have remained around
these levels ever since.
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FIGURE 1 Changing age structure

2.3. Education
Constructing long time series for education is made difficult by the successive
reforms of the Swedish educational systems. The solution chosen here was to
take the current system as a starting point and assign earlier educational pro-
grams to the categories in use today. Ever since the 1970s Swedish education has
been divided into three levels: extended primary education, upper secondary ed-
ucation, and tertiary education. Extended primary education comprises grades
1–9, that is, primary and lower secondary education. Upper secondary school in-
cludes both theoretical and vocational programs. For the post-1870 period, data
on educational enrolment are available in the official Swedish statistics. Pre-1870
data are based on calculations made by Sjöstrand (1961) and Aquilonius and
Fredriksson (1941). Detailed sources are provided in appendix B.

As can be seen in figure 2, the expansion of Swedish education has been a four-
step process. The first step was an expansion of primary and lower secondary
education that took place from the mid-nineteenth century to the early twentieth
century. The second step was the expansion of upper secondary education. This
expansion accelerated after the First World War and continued up to about 1980.
The third step was the post-1940 expansion of extended primary education. Part
of this expansion was due to an increase in cohort size following a baby boom
in the 1940s, but the extension of compulsory education from six to nine years
was also an important factor. The fourth step has been the expansion of tertiary
education after 1950. This expansion was particularly rapid in the 1960s and the
1990s.
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FIGURE 2 Enrolment history

In table 1, we present data on the mean length of education per birth cohort.
For cohorts born before 1930, these figures are obtained by adding the yearly, age-
specific enrolment rates that result from dividing the number of enrolled pupils
per grade with the mean cohort size in the relevant age bracket. For cohorts born
between 1930 and 1976, the mean length of education is as observed in 2004 in the
Statistics Sweden (2005) Swedish Register of Education. The figures for cohorts
born after 1976 are based on the assumption that growth in the observed mean
length of education will continue until it reaches 13 years for the cohort born in
1980 and then remains constant.

3. The endogenous growth model

We will now describe the model we use to quantify the effect of demographic
change on income growth, its calibration, and the various counterfactual exper-
iments we ran.

3.1. The model

3.1.1. Demographic structure
Time is continuous and at each point in time there is a continuum of generations
indexed by the date at which they were born. Each individual has an uncertain
lifetime. The unconditional probability for an individual belonging to the cohort
t of reaching age a ∈ [0, M(t)], is given by the survival law
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TABLE 1
Years of education

Mean length of Mean length of
education for education of

Year birth cohort those aged 25

1820 0.53 0.26
1870 5.57 4.22
1913 5.72 5.64
1950 10.81 7.17
1980 13 11.88

m(a, t) = α(t) − eβ(t)a

α(t) − 1
, (1)

with both functions α(t) > 1 and β(t) > 0 being continuous. This two-parameter
function is much more realistic than the usual one-parameter function used, for
example, in Kalemli-Özcan, Ryder, and Weil (2000); like the actual survival laws,
it is concave, reflecting the fact that the death probability increases with age. It
also makes it possible to define a maximum age M(t) that an individual can reach
as

M(t) = log(α(t))
β(t)

. (2)

If we assume that the initial size of a newborn cohort is N(t), its size at time
z > t is

N(t) m(z − t, t), for z ∈ [t, t + M(t)]. (3)

The mortality processes α(t), β(t) and the process for births N(t) are considered
exogenous in the model in conformity with the purpose of forecasting, as noted
in the introduction. For given (α(t), β(t), N(t)) we can easily compute life ex-
pectancy at all ages, as well as sizes of any population group. The unconditional
life expectancy is

�(t) = α(t) log(α(t))
(α(t) − 1)β(t)

− 1
β(t)

. (4)

An increase in life expectancy can arise either through a decrease in β(t) or
an increase in α(t). These two shifts do not lead to the same changes in the
survival probabilities. When α(t) increases, the improvement in life expectancy
relies more on reducing death rates for young and middle-aged agents. When β(t)
decreases, the old agents benefit the most from the drop in death rates, which has
an important effect on the maximum age.
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The size of total population at time t is given by

P(t) =
∫ t

t−M̄(t)
N(z) m(t − z, z) dz, (5)

where M̄(t) is the age of the oldest cohort still alive at time t; that is, M̄(t) =
M(t − M̄(t)).

3.1.2. The households’ problem
An individual born at time t, ∀t � 0 has the following expected utility:

∫ t+M(t)

t
c(t, z) m(z − t, t) e−θ (z−t) dz, (6)

where c(t, z) is consumption of a generation t member at time z. The pure time
preference parameter is θ .

There is a unique material good, the price of which is normalized to 1, which
can be used for consumption. Every working household produces a quantity of
good y(t) using human capital h(t) according to the following simple technology:
y(t) = h(t). Households’ human capital depends on the time spent on education,
T(t), on the average human capital, H̄(t), of the society at birth, and on the state
of technology at birth, A(t):

h(t) = A(t)H̄(t)T(t)η(t), (7)

In equation (7) we make two specific assumptions. First, with H̄(t) we introduce
the typical externality that positively relates the future quality of the agent to the
cultural ambience of the society (through, for instance, the quality of the school).
This formulation amounts to linking the externality to the output per capita,
which is another way of reflecting the general quality of a society. Second, the
variable η(t) ∈]0, 1[ is the elasticity of income to years of schooling. This variable
can change over time, depending on exogenous factors. Technology A(t) is also
time varying. We presuppose that it is only their value at time t that matters for the
cohort born at time t, which reflects that it is the education technology at the start
of studies that determines its outcome. A more general formulation including the
change in A(t) and η(t) during the schooling period would not particularly alter
the results.

The intertemporal budget constraint of the agent born at t is

∫ t+M(t)

t
c(t, z)R(t, z) dz =

∫ t+F(t)

t+T(t)
h(t)R(t, z) dz. (8)

We assume the existence of complete annuity markets. This assumption is equiv-
alent to one with no annuity markets, but with a redistribution of the wealth of
the deaths to the persons of the same generation. R(t, z) is the contingent price
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paid by a member of generation t to receive one unit of the physical good at time
z in the case where he is still alive. By definition, R(t, t) = 1. The left-hand side is
the actual cost of contingent life-cycle consumptions. The right-hand side is the
actual value of contingent earnings.

The individual enters the labour market at age T(t) with human capital h(t)
and produces h(t) per unit of time. F(t) is the age until which individuals can
work. It can be interpreted either as the age above which the worker is no longer
able to work or as a mandatory retirement age.

The problem of the representative individual of generation t is to select a con-
sumption contingent plan and the duration of his or her education to maximize
the expected utility, subject to the intertemporal budget constraint and given the
per capita human capital and the sequence of contingent wages and contingent
prices. The corresponding first-order necessary conditions for a maximum are

m(z − t, t) e−θ (z−t) − λ(t)R(t, z) = 0 (9)

η(t)T(t)η(t)−1
∫ t+F(t)

t+T(t)
R(t, z) dz − T(t)η(t) R(t, t + T(t)) = 0, (10)

where λ(t) is the Lagrangian multiplier associated with the intertemporal budget
constraint. Since R(t, t) = 1 and m(0, t) = 1, we obtain from equation (9) λ(t) =
1. Using this in (7), we may rewrite contingent prices as

R(t, z) = m(z − t, t) e−θ (z−t). (11)

Equation (11) reflects that, with linear utility, contingent prices are just equal to
the discount factor in utility, which includes the survival probabilities.

The first-order necessary condition for schooling time is (10). The first term
is the marginal gain of increasing the time spent at school and the second is the
marginal cost, that is, the loss in income if entry on the job market is delayed.

From (10) and (11) the solution for T(t) should satisfy

T(t) m(T(t), t) e−θT(t) = η(t)
∫ F(t)

T(t)
m(a, t) e−θa da, (12)

where the right-hand side represents the discounted flow of income per unit of
human capital. Notice that optimal schooling does not depend on productivity
A(t), because A(t) symmetrically affects opportunity costs and benefits.
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3.1.3. Aggregate human capital
The productive aggregate stock of human capital is computed from the human
capital of all generations currently at work:

Y(t) = H(t) =
∫ t−T̄(t)

t−F̄(t)
en(z)z m(t − z, z)h(z) dz, (13)

where t − T̄(t) is the last generation that entered the job market at t and t −
F(t) is the oldest generation still working at t. Then, T̄(t) = T(t − T̄(t)), and
F̄(t) = F(t − F̄(t)). Accordingly, the size of the active population is

PA(t) =
∫ t−T̄(t)

t−F̄(t)
N(z) m(t − z, z) dz. (14)

The average human capital at the root of the externality (7) is obtained by dividing
the aggregate human capital by the size of the population given in (5):

H̄(t) = H(t)
P(t)

. (15)

The dynamics of human capital accumulation can be obtained by combining (7)
with (13) and (15). To evaluate H(t), for t � 0, we need to know initial conditions
for H(t), for t ∈ [−M̄(0), 0[.

3.2. Some theoretical results
As reflected in equation (13), total output is obtained from aggregating
generation-specific production. This implies that the composition of population
matters. For example, when the workforce is aging, there is more demographic
weight put on old human capital, which was acquired some time ago with old edu-
cation technology negatively influencing average output. This property is similar
to the one of vintage capital models. In Boucekkine, de la Croix, and Licandro
(2002) some interesting properties of the theoretical model have been derived.
Let us provide the intuition for three of them.

PROPERTY 1. A rise in life expectancy � (either via an increase in α or a drop in
β) increases the optimal length of schooling.

A key property of the model is that a decrease in the death rates or, equivalently,
an increase in life expectancy induces individuals to study more. This prediction
is consistent with the joint observation of a large increase in both life expectancy
and years of schooling during the last 150 years.

PROPERTY 2. When demographic variables are constant through time, income grows
at a constant rate.
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There is thus a balanced growth path. The value of the long-run growth rate
is a function of various factors, such as the efficiency of education A and the
elasticity η. Notice also that the income of an individual does not grow over time;
growth in the economy is linked to the appearance of new generations. Hence,
the objective function of an individual is always finite.

PROPERTY 3. A rise in life expectancy � has a positive effect on economic growth
for low levels of life expectancy and a negative effect on economic growth for high
levels of life expectancy.

Intuitively, the total effect of an increase in life expectancy results from com-
bining three factors: (a) agents die on average later, thus the depreciation rate of
aggregate human capital decreases; (b) agents tend to study more because the ex-
pected flow of future wages has risen, and the human capital per capita increases;
(c) the economy consists more of old agents who did their schooling a long time
ago. The first two effects have a positive influence on the growth rate, but the third
effect has a negative influence. Notice that the last two effects are still effective
even if there is a fixed retirement age (which does not change with life expectancy)
or if we had assumed that human capital becomes fully depreciated after a given
age. This is due to the fact that a rise in life expectancy reduces the probability
of dying during the activity period. Notice that this property holds whether life
expectancy increases via a rise in α, or via a drop in β.

3.3. Calibration
We calibrate the demographic processes of the model on the population data
presented in section 1. In order to focus on adult mortality, we disregard the
huge fluctuations affecting infant mortality in the seventeenth, eighteenth, and
early nineteenth centuries. Accordingly, we will consider that the birthdate in
our model corresponds to age 10 in the data. One decision variable is affected
by this time shift: the schooling time, T(t). If the birthdate is 10, one can legit-
imately argue that the true schooling time is not T, but T(t) + T0, where T 0 is
the time spent at school before 10. In our empirical assessment, we take into
account this crucial aspect and replace T(t) with T(t) + T0 in the model. More
precisely, we set T0 = 4, which means that the representative individual has al-
ready cumulated four years of education at birth, and replace T(t) by T(t) + 4 in
equation (7) (not in equation (8), where T(t) determines the length of a working
life).

To calibrate the model, the exogenous processes α(t), β(t), and N(t) should be
made explicit. We assume that all these processes follow a polynomial function
of time. Polynomials of order 3 are sufficient to capture the main trends in the
data. For the survival function processes α(t) and β(t), the parameters of the
polynomial are chosen by minimizing the distance (measured as the square of
the deviation) between the model’s life expectancies at ages 10 to 80 with their
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empirical counterparts. The parameters of the process for N(t) are chosen so that
the distance between the share of the age groups 10–15, 15–30, 30–50, 50–65,
and 65+ in total population P(t) and the observed levels is minimized. Notice
that changes in N(t) reflect mostly change in birth rates but also to some extent
capture migration patterns. Appendix A details the results obtained. In particular
figures A1 and A2 in the appendix show that the 13 time series (8 life expectancies
and 5 age groups) are replicated quite well using only 3 functions, α(t), β(t) and
N(t), in turn characterized by 12 parameters (4 per function).

For the risk-free interest rate, we choose 2% per year, which sets θ = 0.02. The
total discount rate, including mortality, would then be around 4% on average
over life for a life expectancy equal to 50.1 The effective retirement age F(t) is set
constant to 53 (that is, age 63). This number is in accordance with the estimate of
the effective retirement age made by Blondal and Scarpetta (1997) in the recent
past. Since we do not have more information on its historical value, we keep it
constant through time.

Once we have calibrated the demographic processes and chosen the discount
rate, we need to determine the process for η(t), the elasticity of income to school-
ing. A value for the elasticity of income to schooling of around 0.5–0.6 is generally
drawn from the estimations of the wage equations (see the discussion in de la Croix
and Doepke 2003). This value, however, is correct only for the recent years; at
least for the very low averages we observe in the nineteenth century we would ex-
pect that the income elasticity of average schooling should have increased. Given
that we have constructed data corresponding to the average schooling duration
T(t), we can use equation (12) to compute the η(t) that is necessary to match
the observed length of schooling. This amounts to solving equation (12) for η(t)
after having replaced T(t) by the observations. Once we have computed a series
for η(t), we smooth it by estimating a polynomial of order 3 in time, to eliminate
the short/medium-run variations we are not interested in. In table 2 some values
of η(t) are reported.

The fact that we need such an increase in the return to schooling to capture the
rise in educational attainment indicates that the latter cannot be entirely explained
by higher longevity. Part of the rise in education needs to be explained by other
factors related to the return to education, such as skill-biased technical progress
and public funding of education.

Another parameter that is likely to have changed over two centuries is the pro-
ductivity parameter A(t). Here we want to reflect the idea of ‘population-induced’
technical progress as in Galor and Weil (2000), Lagerlöf (2003), and Boucekkine,
de la Croix, and Peeters (2007). This assumption is meant to capture a positive
effect in more dense populations of transmission of skills and knowledge, that
is, in regions with shorter geographical distance between people. To calibrate the
changes in this process, we follow Lagerlöf (2006) by assuming that population

1 Robustness analysis shows that the value of θ , provided it remains small, does not influence the
characteristics of our simulations.
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TABLE 2
Elasticity of income to schooling

t η(t)

1800 0.14
1850 0.14
1900 0.22
1950 0.37
2000 0.45

density exerts a positive effect only in a certain range.2 We therefore calibrate a
process of the form:

A(t) = max
[
µ1, µ1 + min

[
µ2 PA

t , µ3
]]

.

The parameters are chosen so that the distance between the growth of income
per capita along the balanced growth path in 1760, 1835, 1865, 1895, 1925, 1955,
and 1985 and the growth rate estimated by Maddison over the corresponding
30-year periods is minimized, yielding µ1 = 0.846, µ2 = 0.000085, and µ3 =
0.288. The implied level of efficiency is plotted as a function of time in figure 3.
We observe that productivity starts to rise around 1780 once population passes
a given threshold; by the end of the nineteenth century productivity had stopped
increasing, and the scale effect no longer plays a role. Beyond that point, growth is
only driven by the human capital externality. Hence, the density effect is necessary
only to account for the early increase in income.

3.4. Simulation results
We ran our simulation with the assumption that the economy was on a balanced
growth path prior to 1750. Then we use the method proposed by Boucekkine,
Licandro, and Paul (1997) to solve models with differential-difference equations.
The simulation covers the period 1750–2050 and we report the results for 1820–
2003.3

3.4.1. Baseline
Figure 4 plots the cohorts’ schooling time in years. The curve Data (our estima-
tion) reports the series we computed from the enrolment rates presented above.

2 Notice also that the view according to which population density matters for growth is in
accordance with the empirical literature, which finds that density appears as a significant factor
in growth regressions across countries (see, e.g., Kelley and Schmidt 1995), across U.S. states
(Ciccone and Hall 1996) and in large European countries (Ciccone 2002).

3 The last available year from Maddison’s GDP is 2003. The forecasts of our model are combined
with forecasts from other models in de la Croix, Lindh, and Malmberg (2007) to evaluate whether
information on historical patterns helps to improve long-term forecasting of economic growth.
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The curve Baseline represents the simulated series in the baseline simulation:
remember that we chose the process η(t) in order to match the general trend
in the data. Schooling starts to rise in 1860, accelerates until 1930, and decel-
erates thereafter. Figure 5 plots the GDP per capita (in logs). It compares the
estimation of Maddison with our baseline simulation. Again the general trend
is captured, thanks to the calibration of the productivity process A(t): income
starts from very low levels in the eighteenth century, begins to increase during the
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nineteenth century, and then follows a sustained increase. Growth stays sustained,
since permanent changes in the return to education and in productivity have
occurred.

3.4.2. Counterfactual experiments
To evaluate the role of demographic variables in these developments, we first
analysed what would have happened if longevity had stayed at the 1750 level. To
answer this question, we ran a counterfactual experiment by keeping the param-
eters α and β at their 1750 level. This has several implications. First, incentives to
invest in education are reduced, and the length of schooling will never go beyond
11 years (7 + 4) instead of 13 in the baseline simulation (figure 4). Second, active
population will be much lower, implying that the effect of scale on productivity
is now smaller. Third, the age structure of the population is modified, with fewer
old people at all dates. The total effect of these factors is to depress income per
capita compared with the baseline during the nineteenth century (figure 5). After
1950 the effect is reversed, and GDP per capita with 1750 longevity is higher
than in the baseline; during this period, the third effect dominates, and income
benefits from the absence of old workers and retirees. On the whole, we conclude
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that changes in longevity may account for as much as 20% of the observed rise
in education over the period 1800–2000, but have little effect on income growth
over the period.

To further evaluate the role of demographic variables, we ‘shut down’ the
second channel of demographic changes by keeping the process N(t) constant at
its 1750 level. In this simulation, all the population variables are constant between
1750 and 2000. Results of these counterfactual experiments are reported under
the label Constant mortality and fertility. In this simulation, population density
is constant, which implies that total factor productivity A(t) is constant as well.
From figure 4 we see that the length of schooling is unchanged compared with
the ‘Constant mortality’ simulation, because the process A(t) does not intervene
in the determination of the investment in education. Considering now figure 5,
we observe that GDP per capita is much smaller than in the previous case. This
is mainly due to the fact that the rise in productivity A(t) does not occur in
this simulation, since total population (and hence population density) stays at
its 1750 level. Other less important effects arise through the composition of the
workforce. In this simulation, increases in GDP occur only via the exogenous rise
in the return to schooling η(t) and are kept sustained thanks to the human capital
externality. To sum up, most of income growth over the period 1820–2000 would
not have materialized if demographic variables had stayed constant since 1750.
This simulation also shows that total factor productivity is the most important
intermediate factor between demography and income per capita.

4. Conclusion

In the literature on demographic change and economic growth, the effect of longer
life expectancy on the demand for longer education has been given a prominent
place. Others have argued that population size (or density) might be an important
factor in triggering technological progress. Finally, recent theoretical work has
also argued that there is a link between age composition and economic growth.

In this paper, these mechanisms are confronted with empirical data by calibrat-
ing an endogenous growth model on Swedish long-term time-series of mortality,
education, age structure, and per capita income.

The goal has been to reproduce the take-off process and the rise in growth
rates from stagnation prior to the eighteenth century to 2% growth in the twen-
tieth century. The main mechanisms at work are rises in life expectancy that
increase the incentive to get an education, which in turn has permanent effects
on growth through a human capital externality. There is also a scale effect from
active population on growth going through total factor productivity.

Our conclusion is that changes in longevity may account for as much as 20% of
the observed rise in education over the period 1800–2000. Thus, longevity plays
an important role, but by itself cannot explain more than a part of the rise in
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the education level in a model with no credit restrictions. The remaining 80%
should be sought elsewhere, probably in the development of public subsidies to
education and/or to the acceleration of skill-biased technical progress.

The total effect of the demographic variables on growth is higher. Most income
growth over this period would not have materialized if demographic variables had
stayed constant since 1800.

The conclusion is that demography does indeed play an important role for
long-run growth. However, a full understanding of the process of increasing
education levels will require an even more elaborated model than the one we have
used in this paper.

Appendix A: Calibration of the demographic processes

The programs (written in Mathematica 5.0) and data used to calibrate
the model are available online through the CJE journal archive, http://
economics.ca/cje/en/archive.php, and linked to this article.

Given that the probability taken at age 0 of being alive at age a is given by
equation (1), life expectancy for a person born at time t taken at age b is given by

�b(t) =
α(t)(bβ(t)−log(α(t)))

ebβ(t)−α(t)
− 1

β(t)
.

The demographic processes α(t) and β(t) are constant before 1750 and after 2200.
In between they are polynomial functions of time:
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FIGURE A1 Life expectancy at different ages: data and model

Matrix Q gives the life expectancy data to which the processes will be calibrated.
Each element q(i , j ) gives life expectancy of the generation born at date i ∈ (1750,
1760 . . . 2200) taken at age j ∈ (10, 20, . . . 80).
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We choose the parameters in order to minimize
∑

i

∑
j

(� j (i ) − q(i, j ))2.

The result is

a0 = 2.77, b0 = 0.035, a1 = 41.16, b1 = 0.46, a2 = 279.03,

b2 = 2.92, a3 = 155.70, b3 = 2.98,

and the value of the criterion is 226.17. The achieved fit is displayed in figure A1.
The demographic process N(t) is constant before 1750 and after 2200. In

between, it is polynomial functions of time:

ln N(t) = If t > 2200, ln x0 + x3
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Population is divided into five groups indexed by k: 0–5 years, 5–20, 20–40, 40–55,
55+ (age 0 corresponds to age 10 in the data). Each group size can be computed
by integrating over the relevant age range. For example, the size of group 20–40
(k = 3) is given by

P3(t) =
∫ t−20

t−40
N(z)m(t − z, z) dz.

Matrix Z gathers the group sizes to which the process will be calibrated. Each
element q(i , k) gives thousands of persons of the generation born at date i ∈
(1750, 1760 . . . 2200) belonging to group k.

We choose the parameters in order to minimize
∑

i

∑
k

(Pk(i )/z(i, k) − 1)2.

The result is

x0 = 98.58, x1 = 7.62, x2 = −90.34, x3 = 296.1

and the value of the criterion is 2.87. Figure A2 presents the fitted values of the
population groups, expressed as shares in total population.



184 D. de la Croix, T. Lindh, and B. Malmberg

Group 10-15

1800 1900 2000 2100 2200
0.06

0.08

0.1

0.12

0.14
Group 15-30

1800 1900 2000 2100 2200
0.175

0.2

0.225

0.25

0.275

0.3

0.325

0.35

Group 30-50

1800 1900 2000 2100 2200

0.26

0.28

0.3

0.32

0.34

0.36
Group 50-65

1800 1900 2000 2100 22000.14

0.16

0.18

0.2

Group 65+

1800 1900 2000 2100 2200

0.1

0.15

0.2

0.25

0.3

FIGURE A2 Population group; percentage of total population: data and model. Note different
scales.
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