Why corrupt governments may receive more foreign aid

By David de la Croix* and Clara Delavallade†

*IRES and CORE, Université catholique de Louvain, Place Montesquieu 3, B-1348 Louvain-la-Neuve, Belgium; e-mail: david.delacroix@uclouvain.be
†IFPRI and University of Cape Town; e-mail: clara.delavallade@ensae.org

Despite official discourses of donors, the most corrupt countries receive the highest amounts of foreign aid. The most corrupt countries are however also the poorest, and this is why they may receive more aid. This paper provides the first theoretical and empirical grounds for this rationale. The key is that corruption is not exogenous but, instead, an equilibrium phenomenon. We build a multi-country model of optimal aid in which we disentangle the correlation between aid and corruption into two components: the first reflects variations in the quality of institutions and the second variations in productivity levels. The data suggest that both components of the correlation are significant; however the effect of variations in productivity levels is stronger. Because the cross-country heterogeneity in productivity is more important than the heterogeneity in institutional quality, it is optimal to give more foreign aid to more corrupt countries.

JEL classification: O19.

1. Introduction

Since the early 1990s, international aid donors have indicated their intention to condition aid allocation on good governance, and especially on taking measures to fight against corruption. Had these intentions been translated into action, the measured correlation between aid and corruption, ceteris paribus, should have become negative. However, despite official positions and pronouncements, the policy selectivity of aid is still largely debatable: although Berthelemy and Tichit (2004) and Dollar and Levin (2006) report a positive correlation between aid and the policy quality of recipient countries, various studies have found aid not to be significantly policy selective (Nunnenkamp and Thiele, 2006; Easterly, 2007). This debate seems to result mostly from discrepancies in the definition of the policy variable (Clist, 2011). The literature arguing for the policy selectivity of aid does not include corruption as one dimension of the policy variable, which instead refers mostly to economic policies and the level of democracy (Berthelemy and Tichit, 2004; Dollar and Levin, 2006). By contrast, aid flows appear not to be policy
selective when corruption is embedded into the policy variable (Nunnenkamp and Thiele, 2006; Easterly, 2007). This paper sheds new light on this debate, by distinguishing between corruption, which is an equilibrium phenomenon, and its exogenous institutional determinants.

As far as corruption alone is concerned, Alesina and Weder (2002) show that more corrupt governments in fact receive more aid from developed countries.1 The rationale is rather straightforward and has been suggested in the literature before, by Alesina and Weder (2002) notably: the most corrupt countries receive the largest amounts of foreign aid because they are also the poorest, or, in other terms, poverty selectivity outweighs policy selectivity. This paper is the first to provide substantial theoretical and empirical support for this argument and shows that this finding can be in accordance with optimal behavior of donors.

Aid is allocated to countries with better institutions, but also to poorer countries2, i.e., those with lower productivity. In theory, an improvement in the quality of institutions induces a lower level of corruption and a higher level of aid reception. If this effect is a real one, the correlation between aid and corruption should be negative. However this can be counterbalanced by a ‘productivity effect’: lower levels of productivity are associated with higher levels of both corruption and optimal aid, leading to a positive correlation between aid and corruption. Therefore, if developing countries are more heterogenous in terms of productivity than in terms of institutional quality, the effect of the productivity component outweighs, and the level of aid received is positively correlated to, the level of corruption. Since indeed most corrupt countries are also the poorest it is optimal to provide them with more aid. Illustrations of this phenomenon are the cases of Botswana and Uganda: these two sub-Saharan countries display higher levels of productivity and ‘better institutions’ than other countries in the region. They receive about the lowest levels of foreign aid among sub-Saharan countries because in this region countries differ more by productivity levels than by governance quality.

In Section 2, we show that corrupt governments can receive more foreign aid in a very streamlined framework. In this model, households allocate their time between three activities: private production, government production and corruption, i.e., diversion of government production.3 In equilibrium the returns on the three occupations should be equalized. Given this incentive constraint, a donor has to allocate scarce resources to provide aid to a set of countries. In Section 3, we estimate the effect of productivity and institutional quality on foreign aid and the level of corruption in 159 aid-recipient countries; we decompose the correlation between aid and corruption and show that it is tilted towards being positive.

1Tavares (2003) interestingly finds aid to decrease corruption after instrumenting aid but our angle is different insofar as we focus on the institutional drivers of aid and its simple correlation with corruption.

2Poverty selectivity is quite consensual in the literature (Clist, 2011; Nunnenkamp and Thiele, 2006).

3Corruption is generally defined as the misuse of public office for private gain, but is here restricted to embezzlement.
because the variance of productivity across countries is high. Section 4 details the extent to which these findings are robust to the measurement of the variables, to the estimation method, and to the inclusion of additional variables as well as unobserved country characteristics. Section 5 concludes.

2. The model economy

We consider a one-period model economy populated by a continuum of workers of unitary mass. Workers choose to allocate their time between three activities: private production l_c, government production l_g, and diversion of government production l_x. This reflects for example that civil servants may also own a small shop and/or embezzle public resources. The total number of hours each worker is endowed with is normalized to one. The time resource constraint is

$$1 = l_c + l_g + l_x.$$

There are three goods in this economy: a consumption good produced by the private sector (say rice), a government good (say education), and labour. The consumption good is produced from labour; each unit of labour produces $a > 1$ units of good; l_c is labour input in this sector and a is a parameter reflecting exogenous productivity factors, such as soil quality or technological level. Assuming that firms are operated by self-employed workers, per capita income is equal to average productivity a.4

The government levies lump sum taxes in order to finance government spending. Each individual pays an amount t independently of the type of job she does. With this assumption taxes do not distort the choice of activity by workers. Total consumption of the private good c is given by output minus taxes:

$$c = a l_c - t.$$

The government resources include taxes t and some general financial assistance from abroad, z. Both are used to produce the government good g. The production function in the government sector is given by a concave function of labour input l_g, which we assume to be given by $\sqrt{l_g}$ to obtain explicit solutions, where l_g is labour input in this sector. Along the lines in de la Croix and Delavallade (2009) and de la Croix and Delavallade (2011), a part l_x/ν of the product is diverted from its purpose, with l_x representing the labour input devoted to corruption activities, and ν a parameter measuring the quality of institutions. Given the time spent in corruption activities l_x, if institutions are of high quality, the share of government spending diverted from its purpose is small (corruption is better controlled).

4 In order to compute the equilibrium explicitly we assume constant marginal productivity in the private sector, however it is not crucial for the results. In the online Appendix A, we analyse the case where labour productivity a depends on the government good g through the function $a = \tilde{a}g^\lambda$, with $\lambda \in (0,1)$.

Downloaded from http://oep.oxfordjournals.org/ by guest on February 21, 2013
The effective production of the government good is: $g = (1 - l_x/v)\sqrt{l_g}$. The budget constraint of the government can be rewritten as:

$$\overline{t} + \overline{z} = \overline{\sqrt{l_g}} = \overline{g} + \overline{(l_x/v)\sqrt{l_g}}.$$ \hspace{1cm} (2)

Hourly income in the government sector is equal to average productivity: g/l_g. Bureaucrats’ income is, as in Acemoglu and Verdier (2000), an incentive payment increasing in the effectiveness of government spending. The hourly income from corruption is: $\sqrt{l_g}/v$. At any interior equilibrium, the return from the three possible activities should be equal:

$$a = \frac{\sqrt{l_g}(1 - l_x/v)}{l_g} = \sqrt{l_g}/v.$$ \hspace{1cm} (3)

This relation, which describes the allocation of time by households, acts as a constraint for the donor problem and makes the level of corruption endogenous. We label it the ‘incentive constraint’. Taxes adjust endogenously to balance the budget. Let us now provide a definition of an equilibrium for a given economy and show that, if the quality of institutions is sufficiently poor relative to productivity, such an equilibrium with positive corruption exists.

Definition 1 Given foreign aid z, productivity a and institutional quality v, an equilibrium with corruption is represented by a level of tax $\{t\}$ and a vector of positive labour inputs $\{l_c, l_g, l_x\}$ such that the budget of the government is balanced (eq. (2)), the labour market clears (eq. (1)) and the incentive constraint holds (eq. (3)).

Proposition 1 There exists a threshold $\tilde{v} = 1/a^2$ such that, if $v < \tilde{v}$ (low quality of institutions), then there exists a unique equilibrium with corruption where $t = av - z$, and

$$l_c = 1 - v, \quad l_g = a^2v^2, \quad l_x = v(1 - a^2v).$$

Proof Solving the system of eqs (1) to (3) for the variables t, l_c, l_g and l_x leads to the expression in the proposition. To complete the proof we need to show that $l_c, l_g, l_x \in (0, 1)$. As $a > 1$ by assumption, we have that $v < \tilde{v} \rightarrow v < 1$, and $l_c, l_g, l_x \in (0, 1)$. $v < \tilde{v}$ implies that $l_g, l_x \in (0, 1)$.

Proposition 1 says that there is a unique number of government employees which is compatible with labour market clearing and equality of remunerations across sectors. Any other level of public employment would violate at least one of these conditions and would not be an equilibrium outcome. Finally, in equilibrium, consumption of both goods is given by:

$$c = al_c - t = a + z - 2av.$$ \hspace{1cm} (4)
\(g = \sqrt{\frac{1}{f} (1 - v l_x)} = a^3 v^2. \)

(5)

We measure the corruption level \(x \) by the implicit ‘tax’ rate on the production of the government good:

\[x = \frac{l_x}{v}. \]

Proposition 2 Equilibrium corruption \(x \) is decreasing in productivity \(a \) and decreasing in the quality of institutions \(v \).

Proof Using the value of \(l_x \) from Proposition 1, we obtain:

\[x = 1 - a^2 v, \]

which is clearly decreasing in \(a \) and in \(v \) for all admissible values of the parameters.

Higher productivity \(a \) makes private activity more rewarded, decreasing the amount of time spent on corruption activities. This makes government spending more productive (the increase in productivity spreads over the public sector via the incentive constraint) and it raises the labour input in the government sector. Better institutions \(v \) make corruption less profitable and increase the productivity of the government sector.

Let us now consider the problem of the donor agency, who has to allocate aid across different countries \(i \). Taking a utilitarian perspective, the donor maximizes

\[\sum_i u(z_i) \text{ subject to } \sum_i z_i \leq \bar{z}, \]

where \(\bar{z} \) is the total amount of aid available and \(u_i(z_i) \) is the utility of country \(i \) associated to aid \(z_i \).\(^5\) It is optimal to equalize the marginal utility of aid across countries.\(^6\) We assume that the utility function of each country is logarithmic and separable in \(c_i \) and \(g_i \):

\[u_i = \ln(c_i) + \gamma \ln(g_i), \]

where \(c_i \) and \(g_i \) are given by (4) and (5) and where \(\gamma \) represents the relative weight of the government good. Therefore the marginal utility of aid is given by:

\[u_i'(z_i) = \frac{\partial (\ln(c_i) + \gamma \ln(g_i))}{\partial z} = \frac{1}{c} = \frac{1}{a_i + z_i - 2a_i v_i} \]

\(^5\) Alternatively we can have a formulation where the donor maximizes \(\sum (u(z_i) - \rho z_i) \) where \(\rho \) is the cost of funds. This would lead to exactly the same results.

\(^6\) In Section 4, we show that our main results remain unchanged when substituting a ‘donor interests’ model for this ‘recipient needs’ model.
Optimal aid is obtained by equalizing this marginal utility across countries
\[u'_i = u'_j = \bar{u}, \forall i, j \in I, \] where \(\bar{u} \) is the marginal utility which can be achieved given the resource constraint. Aid in country \(i \) is indeed:

\[z_i = \frac{1}{\bar{u}} + a_i(2v_i - 1) \tag{7} \]

Proposition 3
Optimal aid \(z \) is a positive function of the quality of institutions \(v \). Moreover for \(v_i < 1/2 \) optimal aid is a negative function of productivity \(a_i \).

The first statement of Proposition 3 is in line with the new poverty reduction strategies, in which governance quality is a key conditionality. When institutions are of high quality, public spending and taxes are relatively more important than private consumption. Marginal utility of consumption is high and aid effective in raising utility. Good governments are helped by reducing the need for taxation in their country. The second statement gives a condition under which aid is allocated in priority to poor countries. In this case, when productivity \(a \) is high, both productivity in the private sector and consumption are high, reducing the need for aid. The role of the condition \(v_i < 1/2 \) becomes clear when considering the equilibrium consumption given in eq. (4). The effect of productivity \(a \) on equilibrium consumption \(c \) is a priori ambiguous (hence the ambiguity on aid). Productivity has a direct ‘one to one’ effect on consumption via the production of physical good. But it also has an indirect effect through the government budget constraint: more productivity also implies more taxes and less consumption. This indirect effect dominates the direct one if \(v < 1/2 \).

Finally, remark that the assumption \(v < 1/2 \) is highly realistic; indeed, using the result of Proposition 1, \(v < 1/2 \) implies \(l > 1/2 \), i.e., a majority of hours is spent in the private sector, which should be understood as including formal and informal private activities.\(^7\)

3. Empirical strategy and results

The objective of the model is to disentangle the components of the correlation between corruption and aid across a set of countries. Consider now a set of countries \(I \). Each country is characterized by productivity \(a_i > 1 \) and institution quality \(v_i < 1/2 \), with \(i \in I \). In each country, the level of corruption is \(x_i \) satisfying eq. (6) and aid is \(z_i \) satisfying eq. (7). Taking a first order Taylor Expansion of eqs (6) and (7) around the equilibrium, we obtain:

\[dx_i = -\beta_{11} da_i - \beta_{12} dv_i \tag{8} \]

\[dz_i = -\beta_{21} da_i + \beta_{22} dv_i \tag{9} \]
where dx represents the difference between variable x and its mean (taken over set I). The β coefficients are all positive. Neglecting error terms which will be introduced in eqs (8)–(9) when doing the estimations, the correlation between corruption and aid can be computed as follows:

$$
Q = \text{corr}(dx_i, dz_i) = s \left[\frac{-\beta_{12}\beta_{22}\text{var}(dv_i)}{T_1} + \frac{\beta_{11}\beta_{21}\text{var}(da_i)}{T_2} \right. \\
\left. + \frac{(\beta_{12}\beta_{21} - \beta_{11}\beta_{22})\text{cov}(da_i, dv_i)}{T_3} \right]
$$

with $s = 1/(\sigma_{dx}\sigma_{dz})$. The first term, T_1, shows that when countries differ by the quality of their institutions, more aid is given to countries with better institutions, which are also characterized by lower corruption. Hence the correlation between aid and corruption is negative. The remaining terms, $T_2 + T_3$, arise because productivity varies between countries. It has two components. T_2 is positive and reflects that more aid tends to be given to poor countries, which are also characterized by higher levels of corruption. T_3 has an ambiguous effect: it depends on whether productivity and institutional quality are positively correlated. Hence, If $T_2 + T_3$ is positive and if developing countries differ mostly by productivity levels (high $\text{var}(da_i)$), more than by governance quality (high $\text{var}(dv_i)$), aid and level of corruption may well turn out to be positively correlated.

In the literature, it is standard to regress aid on corruption (Svensson, 2000; Alesina and Weder, 2002) and corruption on aid (Svensson, 2000; Knack, 2001; Tavares, 2003). Our theory shows however that aid and corruption are endogenous and both depend on the institutional quality and the level of productivity. The standard regression therefore suffers from an endogeneity bias. The decomposition we use is more insightful in that it makes explicit the two effects, explain them by differences in productivity on one hand and institutional quality on the other hand, and show that the former overcomes the latter.

We turn now to the estimation of eqs (8)–(9), which will allow us to decompose the correlation between aid and corruption in the two terms detailed above, T_1 and $T_2 + T_3$. We focus on 159 recipient countries over the period 1996–2005. Over this period, winning the Cold War is no longer a motive to provide aid to developing countries Meernik et al., 1998; on the contrary, it is during this period that aid started to be conditioned on improving governance in recipient countries (Burnside and Dollar, 2000).

8 We nevertheless run that regression (a) controlling for productivity and (b) without the control. The coefficient on corruption is significantly negative when controlling for productivity (regression (a)) and significantly positive without controlling (regression (b)). The positive link between corruption and aid is therefore due to more corrupt countries being the poorer. Although this result is consistent with the argument we make, it suffers from an endogeneity bias.
We first run a benchmark estimation of seemingly unrelated regressions (SURE) of the following model:

\[
\begin{align*}
\text{Corrup}_{it} &= \alpha_1 - \beta_{11} \text{GDP}_{it} - \beta_{12} \text{Inst}_{it} + \epsilon_{it} \\
\text{Aid}_{it} &= \alpha_2 - \beta_{21} \text{GDP}_{it} + \beta_{22} \text{Inst}_{it} + \nu_{it}
\end{align*}
\]

\text{Aid} is measured in real dollars per capita (from World Development Indicators, as in Alesina and Weder (2002), it includes both multilateral and bilateral flows. As a proxy for the level of corruption \(x\), \text{Corrup}, we use the ‘Control of Corruption’ index provided by the World Bank. This index is an aggregate of the results of several surveys including questions such as ‘How many government officials do you think are involved in corruption?’. Contrary to Transparency International’s corruption perceptions index, the World Bank one makes possible intertemporal, as well as cross-country, comparisons. Moreover this index has the advantage of measuring mainly public corruption, although it has the drawback to be based on perception surveys. The quality of institutions, \text{Inst}, is measured by the Political stability index available in the Governance Research Indicator Country Snapshot (GRICS). Productivity, \text{GDP}, is measured by the two-year lagged logarithm of GDP per capita from the Penn World Tables.

Table 1 presents the results. All the \(\beta\) coefficients have the expected sign and they are all significant at the 1\%-level. We use them to decompose the correlation between aid and corruption. We compute the standard error of the terms \(T_1\) and \(T_2 + T_3\) using the delta method Oehlert (1992), considering that the variances and covariances of the variables are known. We conclude that aid is significantly and positively correlated with the level of corruption: \(T_2 + T_3\), the positive correlation due to differences in productivity levels between recipient countries, is stronger than \(T_1\), the negative correlation due to differences in governance quality. To fix ideas about the magnitudes involved, if, in Rwanda, the quality of institutions and the level of productivity improved and were comparable to Honduras (the level of GDP per capita would double, from 1150 to 2300), the level of corruption would decrease but the level of total aid received as well (from 55 m to 48 m dollars).

4. Robustness analysis

In this section we analyse the extent to which the findings of the previous section are robust to the measurement of the variables, to the estimation method and to the

9 Other indices used to measure public corruption (e.g., from Business International (Ehrlich and Lui, 1999) or Political Risk Services Mauro (1997) have the same disadvantages. But the World Bank index reduces each source-specific bias by combining them.

10 Productivity is not corrected to deduce the effect of natural resources (see Hall and Jones, 1999). We do not want this correction here because natural resources are part of the country income and should be kept in \(a\).

11 Notice that we do not report the residual component of the correlation since it is a combination of differences in productivity levels and differences in institutional qualities, which makes its interpretation vague. In most regressions, this residual component is not significant.
inclusion of additional variables. In general we find that the size of coefficients and correlations can change substantially but their sign and significance remains unaltered by alternative specifications.

4.1 Alternative measures and sample
We consider alternative measures for institutions quality, aid and productivity. First, we replace the variable regulatory quality by (a) rule of law, (b) government effectiveness, (c) political stability, and (d) voice and accountability, respectively. Second, we use specifications with total aid excluding debt relief and only multilateral aid. Third, we also estimate the model where the variable GDP per capita is replaced by (I) GDP per worker and (II) the log of the total factor productivity index TFP (with a five-year lag to avoid endogeneity arising from business cycles through, e.g., variable utilization of capital) taken from the World Productivity database published by the United Nations Industrial Development Organization (UNIDO) (Isaksson, 2007). This index is constructed as a Solow residual, by estimating the level of technology from an aggregate production function and benchmarking it to the level of technology in the US. Finally, in the benchmark model we have pooled all the data available. However, there is little variation in the variables over time, so it might be that the significance of the coefficients is artificially inflated by a large number of similar observations. To address this issue, we run the regression for each year separately.

The results are displayed in Table 2. When using different measures of institutional quality, all coefficients have the expected sign and they are all significant at the 1%-level except when we measure the quality of institutions by the rule of law. In that case, rule of law and corruption are highly correlated and productivity has a smaller effect on corruption. This would plead for using instrumental variables methods in order to correct for the possible simultaneity bias in the coefficients. Then, when measuring productivity by GDP per worker or by TFP instead of GDP per capita, the estimation is very close to the benchmark. Limiting the sample to specific years, all coefficients have the same sign as in the benchmark and are significant. The correlation between corruption and aid as in Alesina and Weder (2002) is not significant. But we provide here a rational explanation for the absence of correlation: both the institutions part and the productivity part of the correlation

<table>
<thead>
<tr>
<th>Obs.</th>
<th>Parameters estimates</th>
<th>Correlation decomposition</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>β_{11}</td>
<td>β_{12}</td>
</tr>
<tr>
<td>939</td>
<td>0.273 (0.00)</td>
<td>0.384 (0.00)</td>
</tr>
</tbody>
</table>

Notes: P-values in brackets. All countries have equal weights.
decomposition, T_1 and $T_2 + T_3$ respectively, are significant. Hence, the positive effect of differences in productivity on the correlation between aid and corruption compensates the negative effect of the gap in the quality of institutions.

Our results are also robust to the restriction of the sample to specific years in the period 1996–2005. They are also robust to the inclusion of time dummies in the pooled estimation (they are not significant) and to the exclusion of countries with extremely high levels of aid per capita, because of their very small size, such as Micronesia, Marshall Islands, Tonga, or Kiribati.

4.2 Instrumentation

Although institutions and productivity are exogenous in the model, it might not be the case in reality. We therefore estimate the two equations with an instrumented three-stage least squares method to account for possible endogeneity biases affecting the four coefficients estimates. We use four standard instrumental variables correlated either with productivity or with the quality of institutions.

Table 2 Robustness analysis - variable definitions and samples

<table>
<thead>
<tr>
<th></th>
<th>β_{11} (t)</th>
<th>β_{12} (t)</th>
<th>β_{21} (t)</th>
<th>β_{22} (t)</th>
<th>φ (t)</th>
<th>T_1 (t)</th>
<th>$T_2 + T_3$ (t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>0.026 (0.05)</td>
<td>0.834 (0.00)</td>
<td>0.666 (0.00)</td>
<td>0.493 (0.00)</td>
<td>0.085 (0.01)</td>
<td>-0.233 (0.00)</td>
<td>0.321 (0.00)</td>
</tr>
<tr>
<td>(b)</td>
<td>0.055 (0.00)</td>
<td>0.809 (0.00)</td>
<td>0.564 (0.00)</td>
<td>0.307 (0.00)</td>
<td>0.085 (0.01)</td>
<td>-0.137 (0.00)</td>
<td>0.279 (0.00)</td>
</tr>
<tr>
<td>(c)</td>
<td>0.344 (0.00)</td>
<td>0.312 (0.00)</td>
<td>0.671 (0.00)</td>
<td>0.731 (0.00)</td>
<td>0.085 (0.01)</td>
<td>-0.170 (0.00)</td>
<td>0.421 (0.00)</td>
</tr>
<tr>
<td>(d)</td>
<td>0.199 (0.00)</td>
<td>0.508 (0.00)</td>
<td>0.575 (0.00)</td>
<td>0.323 (0.00)</td>
<td>0.085 (0.01)</td>
<td>-0.115 (0.00)</td>
<td>0.312 (0.00)</td>
</tr>
<tr>
<td>(i)</td>
<td>0.260 (0.00)</td>
<td>0.369 (0.00)</td>
<td>0.536 (0.00)</td>
<td>0.694 (0.00)</td>
<td>-0.085 (0.02)</td>
<td>-0.200 (0.00)</td>
<td>0.265 (0.00)</td>
</tr>
<tr>
<td>(ii)</td>
<td>0.229 (0.00)</td>
<td>0.383 (0.00)</td>
<td>0.769 (0.00)</td>
<td>0.795 (0.00)</td>
<td>0.00 (0.00)</td>
<td>-0.238 (0.00)</td>
<td>0.334 (0.00)</td>
</tr>
<tr>
<td>(I)</td>
<td>0.245 (0.00)</td>
<td>0.401 (0.00)</td>
<td>0.573 (0.00)</td>
<td>0.419 (0.00)</td>
<td>0.100 (0.00)</td>
<td>-0.136 (0.00)</td>
<td>0.319 (0.00)</td>
</tr>
<tr>
<td>(II)</td>
<td>0.544 (0.00)</td>
<td>0.395 (0.00)</td>
<td>0.791 (0.00)</td>
<td>0.300 (0.00)</td>
<td>0.083 (0.00)</td>
<td>-0.083 (0.00)</td>
<td>0.222 (0.00)</td>
</tr>
<tr>
<td>1996</td>
<td>0.305 (0.00)</td>
<td>0.303 (0.00)</td>
<td>0.491 (0.00)</td>
<td>0.406 (0.00)</td>
<td>0.024 (0.80)</td>
<td>-0.106 (0.02)</td>
<td>0.306 (0.00)</td>
</tr>
<tr>
<td>2004</td>
<td>0.275 (0.00)</td>
<td>0.423 (0.00)</td>
<td>0.767 (0.00)</td>
<td>0.729 (0.00)</td>
<td>0.056 (0.50)</td>
<td>-0.263 (0.00)</td>
<td>0.528 (0.00)</td>
</tr>
</tbody>
</table>

Notes: Alternative measures of φ: (a) rule of law, (b) government effectiveness, (c) voice and accountability, (d) regulatory. Alternative measures of aid: (i) total aid excluding debt relief, (ii) multilateral aid only. Alternative measure of productivity: (I) GDP per worker, (II) total factor productivity. P-values in brackets. All countries have equal weights.
(see Burnside and Dollar, 2000): the 20-year lagged log of GDP per capita (or per worker), the five-year lagged log of trade openness (sum of exports and imports as a percent of GDP), the 20-year lagged illiteracy rate, and the log of the number of years after independence. On the whole, sign and significance of coefficients and correlations do not change, as shown in Table 3. However, the size of β_{21} and β_{22} is higher compared to the benchmark. As a consequence, both partial correlations are increased too.

To test the relevance of the instruments, we look at the Fisher-statistics corresponding to the first stage of the instrumentation regression of productivity and quality of institutions. We also run a Sargan overidentification test of the null hypothesis that instrumental variables are not correlated with the error terms of the equation of interest. The high values of the F-statistics, all except two superior to 10, indicate that the instruments are not weak: the coefficients are well identified and the inference is robust (Staiger and Stock, 1997). The results of the Sargan test suggest that our instruments are not correlated with the error terms as far as the first three measures of ν are instrumented (political stability, rule of law, and government effectiveness).

4.3 Missing variables

The equations estimated above were deliberately simple, and included only two variables: productivity and institutions. These two should be of first-order importance as far as aid and corruption are concerned. We now generalize our approach assuming that the donor puts weights θ_i on the countries i, in accordance with its political agenda. These weights may for example represent closer ties, due to a colonial past, political or strategic alliances (Alesina and Dollar, 2000). Thus, the donor maximizes:

$$\sum_i \theta_i u_i(z_i) \text{ subject to } \sum_i z_i = \bar{z}.$$

Optimal aid is obtained by equalizing this marginal utility across countries $\theta_i u_i = \theta_j u_j = \bar{u}, \forall i, j \in I$. \bar{u} is the weighted marginal utility which can be achieved given the resource constraint. Aid in country i is now:

$$z_i = \frac{\theta_i}{\bar{u}} + a_i(2v_i - 1),$$

while corruption is, in theory, unchanged. Arguably, aid and corruption levels might also be affected by geographical endowments, the political and legal infrastructure as well as global factors. So as to take into account the donors’ political agenda and the institutional legacy, we include variables identical to those used in

12 The omission of a war component for example in the regression of aid may lead to a negative bias in the estimation of the marginal effects of both productivity and institutional quality on the level of aid received: a war dummy may be negatively correlated with both productivity and institutional quality but positively with the level of aid. Instrumenting enables to reduce this negative bias.
Table 3 Robustness analysis - instrumentation

<table>
<thead>
<tr>
<th></th>
<th>β_{11}</th>
<th>β_{12}</th>
<th>β_{21}</th>
<th>β_{22}</th>
<th>ϕ</th>
<th>T_1</th>
<th>$T_2 + T_3$</th>
<th>Sargan stat.</th>
<th>F-stat.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>eq.(8)</td>
<td>eq.(9)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(dep. var: a)</td>
<td>(dep. var: v)</td>
</tr>
<tr>
<td>bench.</td>
<td>607</td>
<td>0.342</td>
<td>0.317</td>
<td>1.123</td>
<td>1.454</td>
<td>0.165</td>
<td>-0.331</td>
<td>0.738</td>
<td>5.720</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.00)</td>
<td>(0.00)</td>
<td>(0.00)</td>
<td>(0.00)</td>
<td>(0.00)</td>
<td>(0.00)</td>
<td>(0.00)</td>
<td>(0.06)</td>
</tr>
<tr>
<td>(a)</td>
<td>615</td>
<td>0.137</td>
<td>0.666</td>
<td>1.822</td>
<td>2.576</td>
<td>0.169</td>
<td>-0.897</td>
<td>1.075</td>
<td>6.037</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.00)</td>
<td>(0.00)</td>
<td>(0.00)</td>
<td>(0.00)</td>
<td>(0.00)</td>
<td>(0.00)</td>
<td>(0.00)</td>
<td>(0.05)</td>
</tr>
<tr>
<td>(b)</td>
<td>615</td>
<td>0.113</td>
<td>0.762</td>
<td>2.074</td>
<td>3.284</td>
<td>0.169</td>
<td>-1.312</td>
<td>1.252</td>
<td>20.771</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.03)</td>
<td>(0.00)</td>
<td>(0.00)</td>
<td>(0.00)</td>
<td>(0.00)</td>
<td>(0.00)</td>
<td>(0.00)</td>
<td>(0.00)</td>
</tr>
<tr>
<td>(c)</td>
<td>615</td>
<td>0.479</td>
<td>0.025</td>
<td>0.596</td>
<td>0.268</td>
<td>0.169</td>
<td>0.004</td>
<td>0.338</td>
<td>27.224</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.00)</td>
<td>(0.73)</td>
<td>(0.00)</td>
<td>(0.11)</td>
<td>(0.00)</td>
<td>(0.74)</td>
<td>(0.00)</td>
<td>(0.00)</td>
</tr>
<tr>
<td>(d)</td>
<td>615</td>
<td>0.305</td>
<td>0.383</td>
<td>1.373</td>
<td>1.944</td>
<td>0.169</td>
<td>-0.402</td>
<td>0.952</td>
<td>28.305</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.00)</td>
<td>(0.00)</td>
<td>(0.00)</td>
<td>(0.00)</td>
<td>(0.00)</td>
<td>(0.00)</td>
<td>(0.00)</td>
<td>(0.00)</td>
</tr>
<tr>
<td>(i)</td>
<td>553</td>
<td>0.355</td>
<td>0.217</td>
<td>0.847</td>
<td>1.551</td>
<td>0.00</td>
<td>-0.223</td>
<td>0.462</td>
<td>11.371</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.00)</td>
<td>(0.00)</td>
<td>(0.00)</td>
<td>(0.00)</td>
<td>(0.95)</td>
<td>(0.00)</td>
<td>(0.00)</td>
<td>(0.00)</td>
</tr>
<tr>
<td>(ii)</td>
<td>552</td>
<td>0.312</td>
<td>0.257</td>
<td>1.214</td>
<td>1.493</td>
<td>0.13</td>
<td>-0.255</td>
<td>0.538</td>
<td>8.575</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.00)</td>
<td>(0.00)</td>
<td>(0.00)</td>
<td>(0.00)</td>
<td>(0.00)</td>
<td>(0.00)</td>
<td>(0.00)</td>
<td>(0.01)</td>
</tr>
<tr>
<td>(I)</td>
<td>602</td>
<td>0.305</td>
<td>0.362</td>
<td>0.947</td>
<td>1.220</td>
<td>0.157</td>
<td>-0.319</td>
<td>0.603</td>
<td>3.451</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.00)</td>
<td>(0.00)</td>
<td>(0.00)</td>
<td>(0.00)</td>
<td>(0.00)</td>
<td>(0.18)</td>
<td>(0.18)</td>
<td>(0.00)</td>
</tr>
<tr>
<td>1996</td>
<td>77</td>
<td>0.233</td>
<td>0.703</td>
<td>0.855</td>
<td>1.710</td>
<td>0.001</td>
<td>-0.720</td>
<td>0.540</td>
<td>1.529</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.01)</td>
<td>(0.00)</td>
<td>(0.00)</td>
<td>(0.00)</td>
<td>(1.00)</td>
<td>(0.07)</td>
<td>(0.00)</td>
<td>(0.47)</td>
</tr>
<tr>
<td>2004</td>
<td>92</td>
<td>0.395</td>
<td>0.255</td>
<td>0.899</td>
<td>1.189</td>
<td>0.119</td>
<td>-0.217</td>
<td>0.658</td>
<td>2.083</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.00)</td>
<td>(0.06)</td>
<td>(0.00)</td>
<td>(0.00)</td>
<td>(0.26)</td>
<td>(0.09)</td>
<td>(0.00)</td>
<td>(0.35)</td>
</tr>
</tbody>
</table>

Notes: Alternative measures of v: (a) rule of Law, (b) government effectiveness, (c) voice and accountability, (d) regulatory quality. Alternative measures of aid: (i) total aid excluding debt relief, (ii) multilateral aid only. Alternative measure of productivity: (I) GDP per worker. P-values in brackets. All countries have equal weights.
Alesina and Weder (2002) and Alesina and Dollar (2000). The results are presented in Table 4. Model (1) introduces two dummies with value one respectively if the recipient country is Israel or Egypt because of their geostrategic position, and FrdJapan and FrdUSA which give the percentage of times in which the recipient has voted in the UN with Japan or with the USA. Model (2) incorporates dummies equal to one if the country’s legal system has a French or a British origin, legfr and legbr respectively. The following models incorporate the absolute value of the latitude of the country\(^ {13}\) – latitude (Model 3); tropical, which is equal to one if the country is located between the tropic of Cancer and the tropic of Capricorn (Model 4); yrind which stands for the logarithm of the number of years of independence of the state (Model 5); the world GDP growth rate – GDPgrowth (Model 6); and the world GDP per capita – GDPpercap (Model 7).\(^ {14}\) The \(\beta\)-coefficients are not affected by the introduction of these control variables, assessing the robustness of the previous estimations: the level of aid is affected by donors’ strategic interests and by the country’s legal origin but these effects does not overcome the ‘selectivity’ effect according to which more aid is given to poorer countries with better institutions (Models 1 and 2). In the subsequent models, the coefficients of control variables are not significant.

4.4 Unobserved heterogeneity

To account for potential unobservable country characteristics and idiosyncratic shocks, we estimate a random-effects model with AR(1) unobserved disturbances as developed by Baltagi and Wu (1999). Table 5 reports results that are very close to our main estimates. The \(\beta\)-coefficients are all significant and have the expected sign. \(T_1\) is negative, showing that if differences between countries were only due to differences in the quality of their institutions, the correlation between aid and corruption would be negative. \(T_2 + T_3\) is positive and higher than \(T_1\), implying that the positive correlation between aid and corruption is due to large differences in productivity levels between countries, outweighing differences in the quality of their institutions.

5. Conclusion

Despite the official claim of multilateral organizations to be conditioning foreign aid on institutional reforms of the recipient country, aid is not negatively correlated with corruption across countries. This correlation is, if anything, positive. In this note we provide a rationale, as well as theoretical and empirical grounds, for this fact which can a priori be viewed as irrational, as well as theoretical and empirical grounds for it.

\(^{13}\) The index is available on New York University’s web site.

\(^{14}\) The sample size drops dramatically when one introduces the percentage of natural resources exports in GDP or settler mortality rates, disabling robust inference.
<table>
<thead>
<tr>
<th>Table 4 Robustness analysis - missing variables</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Notes: P-values in brackets. All countries have equal weights.
The rationality for giving more aid to more corrupt countries arises because corruption is itself endogenous, and negatively related to productivity. Since it is optimal for donors to give more aid to countries with lower productivity, it turns out that aid and corruption are positively correlated at equilibrium, at least as long as productivity is the main source of differences across countries.

We have evaluated this prediction by estimating the effect of productivity and quality of institutions on both corruption and foreign aid. The positive correlation between aid and corruption due to differences in productivity levels is significant and stronger than the negative correlation arising from differences in governance quality. This result is robust to changes in time period, to the way institutional quality is measured and to the use of alternate model specifications.

This paper sheds new light on this debate over policy selectivity. It proposes a new approach to policy measurement by distinguishing between two of its components (corruption and institutional quality, the former being endogenous to the latter). Our results are in line with the views that aid is not policy selective as long as corruption is concerned – more corrupt countries may receive more foreign aid – but it is policy selective insofar as other types of institutions are concerned.

Supplementary material

Supplementary material (the Appendix) is available online at the OUP website.

Acknowledgements

We thank the referees, Luc Bauwens, Frédéric Docquier, Michel Lubrano, Carine Staropoli, Aude Le Lannier, and the participants at the ATOM seminar and at the T2M and CSAE conferences who contributed to improve this paper in one way or another.

Funding

This research is part of the ARC project 09/14-018 on ‘sustainability’ (French speaking community of Belgium)

References

