
 594 

       

  

 

2014,26(4):594-607 
DOI: 10.1016/S1001-6058(14)60067-6 

A fully-explicit discontinuous Galerkin hydrodynamic model for variably-satu- 
rated porous media* 
 
 
De MAET T., HANERT E. 
Earth and Life Institute, Environmental Sciences, Université catholique de Louvain, B-1348 Louvain-la-Neuve, 
Belgium 
Georges Lemaître Centre for Earth and Climate Research, Université catholique de Louvain, B-1348 Louvain-  
la-Neuve, Belgium, E-mail: thomas.demaet@uclouvain.be 
VANCLOOSTER M. 
Earth and Life Institute, Environmental Sciences, Université catholique de Louvain, B-1348 Louvain-la-Neuve, 
Belgium 
 
 
(Received April 23, 2014, Revised June 10, 2014) 
 
 
Abstract: Groundwater flows play a key role in the recharge of aquifers, the transport of solutes through subsurface systems or the 
control of surface runoff. Predicting these processes requires the use of groundwater models with their applicability directly linked to 
their accuracy and computational efficiency. In this paper, we present a new method to model water dynamics in variably- saturated 
porous media. Our model is based on a fully-explicit discontinuous-Galerkin formulation of the 3D Richards equation, which shows 
a perfect scaling on parallel architectures. We make use of an adapted jump penalty term for the discontinuous-Galerkin scheme and 
of a slope limiter algorithm to produce oscillation-free exactly conservative solutions. We show that such an approach is particularly 
well suited to infiltration fronts. The model results are in good agreement with the reference model Hydrus-1D and seem promising 
for large scale applications involving a coarse representation of saturated soil. 
 
Key words: 3D subsurface flow model, discontinuous Galerkin method, slope limiters, explicit time integration 
 
 

Introduction  
A good understanding of subsurface water dyna- 

mics is essential in many hydrological, environmental 
and engineering applications. However, predicting 
such dynamics is still a difficult task. The difficulty 
mainly comes from the heterogeneity of the soil pro- 
perties, the nonlinearity of the flow process and the 
absence of fast techniques to measure the hydraulic 
properties everywhere, at the appropriate scale. Given 
these issues, modeling the water flow in heteroge- 
neous and often partially saturated porous media qui- 
ckly and robustly is still a challenge. 

By using a continuum approach, the water flow 
in variably saturated heterogeneous porous media can 
be modeled with the Richards equation (RE). This 
equation concerns both the water saturated zone (SZ) 
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and the unsaturated zone (UZ). In the former, the 
equation models an incompressible fluid, leading to a 
constant water content θ . The pressure head h  then 
reacts instantaneously to the boundary conditions. In 
the latter, the equation represents capillary physics 
and is complemented with the so-called retention- 
curve equation, which links the two variables. It is 
usual to refer to the -θ form and the -h form of the 
RE for the equations obtained by incorporating the re- 
tention curve in the conservation law to keep either θ  
or h  as the sole model variable, respectively. On the 
one hand, the -θ form is not valid in the SZ, but is 
known to be more efficient in the UZ. On the other 
hand, the -h form is valid everywhere, although it is 
not mass conservative once discretized in time. The is- 
sues associated with the -θ  and -h forms are usually 
overcome by combining both variables into a mixed 
formulation. When only the SZ is considered, the RE 
reduces to the groundwater equation that has its own 
numerical issues such as those associated with the 
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treatment of the free surface[1,2]. 
Despite the abundance of subsurface-flow mode- 

ls, the development of efficient and accurate discreti- 
zations of the RE is still an active field of research. 
The presence of two very different dynamics (in the 
SZ and UZ) leads to strong nonlinearity in the consti- 
tutive relations and then in the coupling between para- 
bolic and elliptic partial differential equations. Impli- 
cit schemes have difficulties to handle such nonlinea- 
rities resulting in a lack of convergence[3]. Moreover, 
as the system dynamics can be highly transient, ada- 
ptive time steps are often mandatory[4]. In infiltration 
cases, this results in very small time steps, well below 
what is needed to reach a sufficient level of accuracy. 
As a result, the efficiency of implicit models for the 
RE is generally sub-optimal when infiltration fronts 
occur. 

The efficiency of implicit models is further im- 
paired by their poor scaling on parallel architectures. 
The current trend in computer designs is indeed to in- 
crease the performances relying on parallel architectu- 
res instead of enhancing the computational power of 
each processor individually. Current subsurface flow 
models therefore have to take advantage of parallelism, 
and some steps in that direction have been made with 
ParFlow[5,6], ParSWMS[7,8] and DuMux[9]. These mo- 
dels however only achieve sub-optimal scaling for the 
RE, except for some fully unsaturated test cases[8]. 
This is due to the use of implicit solvers as they re- 
quire a large amount of communication between com- 
putational nodes to solve linear systems. Unlike impli- 
cit solvers, explicit solvers require only one exchange 
of information between nodes per time step. As im- 
plementing an explicit solver is simple, one can easily 
achieve a super-linear scaling, i.e., a scaling better 
than 100%, thanks to the additional computer caches 
coming from additional resources. Moreover, explicit 
solvers do not require any global matrix linear solver 
or the computation of a Jacobian, which are complex 
and costly. 

In this paper, we present a 3D model of RE based 
on the discontinuous Galerkin (DG) finite element 
method (FEM) and an explicit time integration sche- 
me. The model relies on slope limiters to locally ensu- 
re the monotonicity of the solution. It scales optimally 
at least up to 64 processors. A special treatment on the 
interface term between elements allows the existence 
of physical discontinuities in the water content bet- 
ween different types of soils. The model is mass-con- 
servative at the machine precision. In the next two 
sections we present the mathematical formulation of 
the model and the explicit DGFEM discretization. In 
the fourth section, we present 1D and 3D numerical 
results, which focus on different physical and numeri- 
cal aspects of groundwater flows. 
 
 

1. Mathematical formulation 
The RE is obtained by embedding Darcy’s law 

into a mass conservation equation: 
 

= ( ( + )) +h z s
t
θ∂

∇ ⋅ ⋅∇
∂

K                     (1) 

 
= ( )f hθθ                                  (2) 

 
where θ  is the volumetric soil water content, h  the 
pressure head, z  the depth, s  a sink-source term, 
K  the water conductivity tensor and fθ  the retention 
curve. Equations (1) and (2) are complemented with 
appropriate initial and boundary conditions: 
 

0=h h  on Ω , = 0t                        (3) 
 

= Dh h  on DΓ , [0, ]t T∈                    (4) 
 

( ( + )) = Nh z J⋅∇ ⋅K n  on NΓ , [0, ]t T∈        (5) 
 
with n  the outward normal vector, T  the simulation 
duration, Ω  the computational domain, DΓ  the 

Dirichlet part of the boundary (where the value Dh  is 

imposed) and NΓ  the Neumann part (where the flux 

NJ  is imposed). The constitutive relations defining 

= ( )f hθθ  and K  have been introduced by Van 

Genuchten and Mualem: 
 

= r
e

s r

S θ θ
θ θ

−
−

                               (6) 

 

= (1+ ) v
eS h βα − , 0h <                     (7a) 

 

= 1eS , 0h ≥                             (7b) 
 

1/ 2= (1 (1 ) )pl v v
s e eS S− −K K                     (8) 

 

where eS  is the effective saturation, rθ  the residual 

volumetric water content, sθ  the saturated volumetric 

water content, sK  the anisotropic saturated water con- 

ductivity tensor, α  a parameter related to the air entry 
pressure value, β  a parameter related to the pore-size 

distribution, = 1 1/v β−  and pl  the pore-connectivity 

parameter, usually set to 0.5. 
By splitting the domain between the UZ ( 0)h <  

and the SZ ( 0)h ≥ , the following adapted θ  and 

h -forms can be derived: 
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= + +z s
t C
θ θ∂  ∇ ⋅ ⋅∇ ⋅∇ ∂  

K K  in UZ          (9) 

 

= ( ( + )) +s s
hS h z s
t

∂
∇ ⋅ ⋅∇

∂
K  in SZ           (10) 

 
where = /C f hθ∂ ∂  is the capillary capacity and =sS  

( 0)C h >  is the specific storage. Equation (9) is para- 
bolic and corresponds to a diffusion-reaction equation 
for θ . Equation (10) is elliptic when sS  is negligible 

and then corresponds to a Poisson equation for +h z . 
Both equation types are well known and efficient dis- 
cretization methods exist for both of them. However, 
since the RE couples them in one single formulation 
and in the UZ the RE can become advection-domina- 
ted, the numerical solution of RE remains challenging. 

Here, we modify Eq.(10) by using the false tran- 
sient method to obtain a parabolic equation that can be 
discretized with an explicit scheme. It is done by mo- 
difying the time derivative factor as follows 
 

= [ ( + )] +
K h h z s

tτ
∂

∇ ⋅ ⋅∇
∂

K  in SZ           (11) 

 
where K  is the largest eigenvalue of K  and τ  is 
a free parameter that controls the relaxation towards 
the steady state defined by Eq.(10). When the general 
diffusivity tensor K  is simply a scaled identity ma- 
trix (i.e., for isotropic soil), it obviously reduces to K . 
In Eq.(11), the relaxation parameter τ  can then be in- 
terpreted as the diffusivity. As such, it will constrain 
the stability of any explicit time discretization of that 
equation, i.e. as τ  increases, the time step should de- 
crease. Reciprocally, for a given time step, it is possi- 
ble to determine the maximum value of τ  for ensu- 
ring stability. It should be noted that the approxima- 
tion of Eq.(10) by Eq.(11) is only made for numerical 
purposes in order to deal with a system that includes a 
parabolic component and an elliptic component. In the 
SZ, it physically amounts to increase the value of spe- 
cific storage sS . 

If the -h form of Eq.(1) is used in zones where 
an explicit time integration scheme is stable and 
Eq.(11) is used otherwise, we can easily combine 
them as follows: 
 

= ( ( + )) +m
hC h z s
t

∂
∇ ⋅ ⋅∇

∂
K                 (12) 

 

= max ,m
KC C
τ

 
 
 

                         (13) 

 

Equation (12) is exact when =mC C , which is veri- 

fied in most of the UZ but not in the SZ (except if 
/s sK Sτ ≤ , which is unlikely). In this case, Eq.(12) is 

mathematically identical to the original -h form. For 
practical purpose, the subset of the UZ where =mC C  
will be called the dry zone (DZ) and the subset where 

= /mC K τ  will be called the wet zone (WZ). Equation 
(12) works in both the UZ and SZ with an upper th- 
reshold for the diffusion coefficient equal to τ , as 
shown in Fig.1. Although the -h form of the equation 
is not mass-conservative once discretized in time, the 
whole algorithm is mass-conservative at the machine 
error precision (see Subsection 2.1 related to the mass 
conservation). 
 

 
 
 
 
 
 
 
 
 
 
 
 
Fig.1 The effective diffusion /K C  has to be limited by a 

threshold τ  for the stability of the explicit solver 

 
In the time-stepping algorithm described in the 

next section, the model equations are complemented 
with the following equation 
 

2= ( ( ))f h
t θ
θ λ θ∂

∇ −
∂

                       (14) 

 

where λ  is a free parameter and h  is the value of h  
obtained after the time integration of Eq.(12), refre- 
shed at each time step before the resolution of Eq.(14). 
Equation (14) allows us to spread out, in a mass-con- 
servative way, the possible overshoots that can be cau- 
sed by the approximation made in Eq.(13). 

A weak form of the model equations is obtained 
by multiplying Eqs.(1), (12) and (14) respectively by 
the test functions u , v  and 1( )w H Ω∈ . Taking the 

volume integral over the domain Ω  and using the di- 
vergence theorem, we obtain the following weak for- 
mulations of RE: 
 

= ( ( + ))u h z u
t Ω

Ω

θ∂
⋅∇ ⋅∇ −

∂
K  

 

( ( + )) +h z u su
ΩΩ∂

⋅ ⋅∇n K        (15) 
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= ( ( + ))m
hC v h z v
t Ω

Ω

∂
⋅∇ ⋅∇ −

∂
K  

 

( ( + )) +h z v sv
ΩΩ∂

⋅ ⋅∇n K      (16) 

 
which are coupled with the weak form of Eq.(14) 
 

( ( ))w f h w
t θ Ω

Ω

θ λ θ∂
= ∇ − ⋅∇ −

∂
  

 

( ( ))f h wθ
Ω

λ θ
∂

⋅ ∇ − n             (17) 

 

where n  is the outward normal vector, Ω< ⋅ >  the 

volume integral over Ω  and Ω∂<< ⋅ >>  the integral 

over Ω∂  the boundary of Ω . 
 
 
2. Space and time discretizations 

The model equations are now discretized in space 
by means of a discontinuous Galerkin FE scheme, and 
then in time with the Euler explicit time integration 
scheme. 
 
2.1 Discontinuous Galerkin space discretization 

Through partitioning the domain Ω  into N  non- 
overlapping elements eΩ  with interface eΓ , the 

model variables θ  and h  can be approximated as 
 

=1

=
dN

h
j j

j
θ θ θ φ∑                          (18a) 

 

=1

=
dN

h
j j

j
h h h φ∑                           (18b) 

 

where dN  is the total number of degrees of freedom 

(DOF) and jφ  are piecewise polynomials defined on 

each element eΩ  such that 
 

( ) = 1j iφ x  =i j                          (19a) 

 

( ) = 0j iφ x  i j≠                          (19b) 

 

=1

( ) = 1
en

j
j

φ∑ x , eΩ∀ ∈x                     (19c) 

 

where ix  is the vector of coordinates for the node i  

and = /e dn N N  is the number of DOF per element. 
Here we use piecewise linear (P1) basis functions for 
both variables. Since the discrete solution can exhibit 
discontinuities between mesh elements, the following 

jump [ ]⋅  and averaging {}⋅  operators on the interface 

eΓ  have to be introduced: 
 

+[ ] =x x x−−                             (20a) 
 

+ +
{ } =

2

x xx
−

                            (20b) 

 
where the superscript “ + ” indicates the trace value 
taken on one side of eΓ  and the superscript “ − ” in- 

dicates the trace value on the other side, from the se- 
cond element. At the boundaries, both operators are 
defined in terms of an external value derived from the 
Dirichlet boundary condition. The resulting weak 
boundary conditions are known to be more stable than 
strong ones[10,11]. 

The discrete equations are obtained by replacing 
the test functions u , v  and w  in Eqs.(15) and (16) 
by basis functions (1 )i di Nφ ≤ ≤ , and the solution θ  

and h  by hθ  and hh , respectively. Since hθ  and 
hh  are discontinuous between mesh elements, integra- 

tion by part is performed over the partition of Ω  into 
elements e of extent eΩ  and the interior penalty 
DGFEM is applied. The discrete equations thus read: 
 

d
= + +

d
j

i j i j j i iM K h B P
t

θ
, 1 di N≤ ≤           (21) 

 

,

d
= + +

d
j

m j i j i j j i i

h
C M K h B P

t
, 1 di N≤ ≤        (22) 

 

d
= ( ( )) +

d
j

i j i j j j iM f h P
t

θ
θ

θ
λ θ −  , 1 di N≤ ≤      (23) 

 

where ,m jC  is the mC  function evaluated at the node 

j , and iP  and iPθ  are penalty terms described fur- 
ther, 
 

=i j i jM φ φ                               (24) 
 

= ( ) {( ) }[ ]i j j i j iK φ φ φ φ⋅∇ ⋅∇ − ⋅∇ ⋅K K n    (25) 

 

= ( ) + {( ) }[ ]i i i iB sφ φ φ⋅ ⋅∇ − ⋅ ⋅K z K z n     (26) 
 

= { }[ ]i j i j j iλ λ φ φ λ φ φ∇ ⋅∇ − ∇ ⋅ n          (27) 

 

=1

= d
e

N

e
Ω

Ω⋅ ⋅∑ ∫                           (28a) 

 

=1

= d
e

N

e
Ω

Γ
∂

⋅ ⋅∑ ∫                         (28b) 
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where eΩ∂  is the contour of the element domain eΩ . 
The material properties are assumed constant by ele- 
ment. 

The DGFEM uses a piecewise linear approxima- 
tion that allows discontinuities between mesh eleme- 
nts. The approximation however becomes continuous 
when the solution is smooth. Discontinuities between 
mesh elements usually appear when the spatial resolu- 
tion is insufficient to represent sharp gradients such as 
the one appearing in infiltration fronts. In this case, 
the size of the jumps between the elements gives dire- 
ct information of the local spatial error. To stabilize 
the diffusion term and enforce a weak continuity con- 
straint between elements, penalty terms iP  and iPθ  
have to be added to Eqs.(21), (22) and (23)[12]. The 
continuity constraint on h  can be expressed as 
 

= [ ][ ]h
i iP hσ φ                          (29) 

 
where 
 

0 0

4
= ( +1)( + 2) sc

e

n n
l

σ K                     (30) 

 
( )

=scK ⋅ ⋅K n J
J

                           (31) 

 
= ( + )h⋅ ∇J K z                            (32) 

 
with 0n  the order of the FE approximation (in our 

case 0 =n 1), scK  the normal flux-oriented scalar con- 

ductivity, J  the water flux, and el  a characteristic 

length of the two adjacent elements. It should be noted 
that the exact solution for the pressure head h  is con- 
tinuous, while the water content θ  can be disconti- 
nuous between different soil horizons. One of the ad- 
vantages of DGFEM is to have the possibility to re- 
present these discontinuities. However, imposing a 
continuity constraint on θ  in a classical way would 
tend to smooth them out. The continuity constraint is 
thus only imposed on h  with Eq.(29) to indirectly sta- 
bilize the Eq.(21). For the Eq.(23), the continuity con- 
straint iPθ  is expressed as 
 

= [ ][ ( )]h
i d i f hθ

θσ φ θ − P                  (33) 

 

where dσ  is similar to σ  but with scK  replaced by 

λ . The presence of ( )f hθ
  weakly ensures similar 

jumps between the couples + /h hθ θ −  and +( ) /f hθ
  

( )f hθ
−
 . A special treatment, described in Subsection 

2.5 related to the slope limiters, is needed at interfaces 
between media with different hydrological properties. 
To increase the stability, the mass matrices i jM  in 

Eqs.(21) and (22) have been lumped. Hence ,m jC  is 

only present on the diagonal, which allows us to avoid 
inverting the product ,m j i jC M  at each time step. Follo- 

wing other model designs, we use nodal element 
values for K . 

An element is considered affiliated to the SZ, the 
WZ or the DZ in the following priority order: (1) if 
one node of the element is saturated (i.e., h ≥ 0), the 
element belongs to the SZ, (2) if one node of the ele- 
ment has the value mC C< , the element belongs to 
the WZ, (3) otherwise the element belongs to the DZ. 
 
2.2 Mass conservation 

As was mentioned above, the pure -h form of 
the RE is the easiest to solve but it is not mass-con- 
servative. This is due to the time discretization of the 
C  function which is highly nonlinear. Here we propo- 
se a simple solution to this issue based on the applica- 
tion of Eq.(1) as a post-processing step to achieve 
mass-conservation. 

Using the same discretization as for Eq.(1) and 
an a priori non-conservative -h form as Eq.(12), we 
can yield two equations with the same right-hand side: 
 

d
= ( )

d
M T h

t
θ

                             (34) 

 
d

( ) = ( )
d

hC h T h
t

                           (35) 

 
where M , C , T  are the matrices resulting from 
the spatial discretization. As M  is constant in time, 
one could see that Eq.(34) will produce exactly-conse- 
rvative results for any value of h , as the Darcy flux is 
included in a divergence. On this basis, we can com- 

pute an approximate solution h∗  of Eq.(35) and then 

Eq.(34) could be solved with ( ) ( )T h T h∗≈ . With such 
a method, mass is conserved at machine precision. 
The opposed approach has to be compared to models 
based on the classical chord-slope method[13,14], for 
which the mass-error decreases with the solution-error 
along the successive nonlinear iterations. Using an ex- 
plicit iteration scheme to ensure mass conservation 
could theoretically be applied to any non-conservative 
implicit method. 
 
2.3 Explicit time discretization 

Equations (21) and (22) are discretized in time 
with an explicit Euler scheme. Using a matrix notation, 
the overall solution procedure is the following: 
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(1) Solve the equation for the intermediate steps 
+1,n kH , given +1,0 =n nH H : 

For = 1, ,k m : 
 

* +1, 1
+1, 1= + +

n k
n k

m
H HC M KH B Pt

m

−
−−

∆
        (36) 

 
+1, *= limit( )n kH H                         (37) 

 
where the limiting procedure is described further in 
another subsection. 

(2) Solve the equation for +1,0nΘ , given nΘ  and 
+1,n mH : 

 
*

+1,= + +
n

n mM KH B P
t

Θ Θ−
∆

               (38) 

 
+1,0 *= limit( )nΘ Θ                          (39) 

 
(3) Compute 

+1nH  by combining 
+1,n mH  and the 

retention curve relationship: 
 

+1 1 +1,0= ( )n nH fθ Θ−  in DZ                  (40a) 
 

+1 +1,=n n mH H  in WZ and SZ               (40b) 
 

(4) Weakly correct +1,0nΘ  in WZ and SZ: 
For = 1, ,k q : 

 
+1, +1, 1

+1, 1 +1= [ ( )] +
n k n k

n k nM f H P
t

θ
θ

Θ Θ Λ Θ
−

−−
−

∆
 (41) 

 
+1 +1,= limit( )n n qΘ Θ                        (42) 

 

where we have replaced the reference value “ H ” 
used in Eq.(23) by +1nH . 

In the DZ, this algorithm reduces to the -θ form 
of RE. This form is known to be numerically better 
suited than the -h form, especially in very dry cases. 
In the SZ, it reduces to an approximation of the -h  
form which exponentially converges to Eq.(10) as m  
increases. The resulting approximation error leads to 
approximate fluxes in the SZ but the total mass is exa- 
ctly conserved. Step 4 allows us to bring θ  towards 
its correct value in both SZ and WZ. 

It should be noted that when Eq.(36) has conve- 
rged in the SZ, the result is equal to the one obtained 
with an implicit time integration scheme. Indeed, if 

+1, +1, 1=n m n mH H − , we have reached the incompressi- 
ble state which corresponds to the solution of the im- 

plicit equation for h , and also for θ  once inserted in 
Eq.(38). To satisfy this property, the right-hand sides 
of Eqs.(21) and (22) have to be identical. Another 
point is that increasing m  decreases directly the st- 
rength of the approximation. Indeed, the division of ∆t 
by m  in Eq.(36) allows us to magnify τ  by a factor 
m . 
 
2.4 Selecting the values of τ  and λ  

Any explicit time integration scheme of Eq.(21) 
is fully mass-conservative and valid both in the UZ 
and SZ but requires the field jh  to be known. Inve- 

rting the retention curve, i.e., 1= ( )h fθ θ− , is the ea- 
siest way to obtain it. However there is an underlying 
Courant-Friedrich-Lewy (CFL) stability condition. 
For instance, the explicit Euler time discretization 
reads: 
 

1 1= ( )n nh f hθ
− −                             (43) 

 
+1 + ( )n n ntF hθ θ= ∆                        (44) 

 
where the superscripts indicate the time step, t∆  re- 
presents the time step and ( )F h  the right-hand side 
of Eq.(11). 

One could see that this collapses exactly into the 
-θ form, and simple manipulations show that this is 

unstable when /K C  is beyond the stability limit for 
diffusion, which is 
 

2K lp
C t

∆
≤

∆
                               (45) 

 
where l∆  is the smallest element length and 
0 1p< <  depends on the type of explicit solver used. 
Although our algorithm is slightly more complex than 
that given by Eqs.(43) and (44), we hypothesize that 
its stability condition is similar and, with Eq.(13), it 
leads to the following condition on τ  
 

max

2

=

( )
=

( ) h h

K h lp
C h t

τ ∆
≤

∆
                     (46) 

 

where maxh  is soil-dependent. 

The parameter τ  controls the position of the se- 
paration between the DZ and WZ. As the solution in 
the WZ is approximated, it is better to limit its extent 
as much as possible by increasing τ . However, to re- 
spect Eq.(46) for a constant mesh size l∆ , increasing 
τ  leads to decreasing the time step. In the following, 
we take = 1/ 5p  in 1D case and = 1/15p  in 3D 
case. 
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The quasi-elliptic approximation produces fluxes 
in the SZ resulting in a local mass excess or deficit 
which has to be corrected with Eq.(41). This equation 
has the following stability condition 
 

2lp
tθλ ∆

≤
∆

                               (47) 

 

To optimize the correction, we take the explicit diffu- 
sive limit, i.e., we take the larger stable value of λ  
given the sizes of the adjacent elements, in a similar 
way as for τ . It has been observed that a smaller 
value = 1/ 20pθ  has to be taken for stability, due to 

complex interactions with the UZ/SZ interface. 
The present model could develop unphysical flu- 

xes in the WZ and SZ because of the approximation in 
Eq.(12). The parameters p  and pθ  are a priori fixed 

once for all, and τ  and λ  could then be fixed by the 
choice of t∆ . The free parameters which act on the 
approximation are then t∆ , m  and q . One could 
easily obtain a local error of the quasi-elliptical appro- 
ximation 
 

1
1 1 ( )

= ( )
n n

n n
m

h he C C t
m

−
− − −

−
∆

                 (48) 

 

which is exactly the flux error applied to θ  at the time 
step 1n − . Limiting this error below a certain thresho- 
ld could then be achieved by adapting the values of 
m  and q . 

 

2.5 Slope limiters 
As was mentioned previously, FE schemes can 

produce spurious oscillations when used with highly- 
variable diffusion coefficients[15]. To avoid these, we 
have used a technique designed for advection-domi- 
nated problems which consists in locally modifying 
the slope of the solution when it does not respect the 
monotonicity of the solution. By doing so, we aim to 
achieve a total variation diminishing in the mean pro- 
perty on each element[16]. The slope limiting algorithm 
used is the same as in Ref.[17]. It simply checks that 
the solution at the nodes of an element e  is bounded 
by means of the solution in the neighboring elements 

1 nge e . For each mesh node j , we collect the extre- 

ma max j  and min j  of the means of all the elements 

including the node j . The limited value U ∗  of a va- 

riable U  over one element e  could then be expre- 
ssed as: 
 

* = + ( )e eej e ejU U L U U−                     (49) 
 

*= min(1, )e eL L                            (50) 

,* = min
ee j

e j e eej

extr U
L

U U∈

 −
 
 − 

                     (51) 

 

, = maxe j jextr  if 0eejU U− >               (52a) 

 

, = mine j jextr  if 0eejU U− <               (52b) 

 
where overlines represent the mean over one element, 
the indices e  or j  the affiliation of the variable to 

the element e  or to the node j . This expression is 
correct and mass conservative only if the element has 
the property that the sum of its nodes weighted by 
their number is the mean of the element, i.e., =j ejU∑  

e en U . All elements present in the following test cases 
respect this rule. 

The limited values ejU ∗
 are unchanged (i.e., =eL  

1) if the values inside the element (i.e., ,ejU j e∀ ∈ ) 

are between the maximum and the minimum of the 
means of their neighbors. Otherwise, the value of eL  
is less than one, and the reduction in the gradients 
applies in all directions. It would be possible to in- 
crease the accuracy of this limiter by considering se- 
parately each spatial direction and space derivative. 
However, the simplicity of this algorithm has been 
preferred to reduce the computational cost. A 1D exa- 
mple is shown in Fig.2. 
 

 
 
 
 
 
 
 
 
 
Fig.2 1D example of the slope limiter behavior. The slope of 

the solution on elements located at local extrema (as cΩ ) 

is set to zero, otherwise the solution is bounded by the 
means of solutions in neighboring elements, without 
modifying the local mass (i.e., the mean remains con- 
stant). In this example, the solution slope is limited in 

bΩ , dΩ , fΩ  but not in aΩ  and eΩ  

 
A different behavior is expected on the bounda- 

ries of the domain. Only tangential components to the 
boundary have to be limited while the normal one 
should not. Indeed, we want to stabilize the scheme, 
without limiting the extrema on the boundaries as they 
appear frequently in physical cases. This is achieved 
by using a mirror image of the solution outside of the 
domain. 
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Table 1 Modified Van Genuchten parametrization for the unsaturated infiltration test case 

Sand α  (m−1) β  rθ  sθ  mθ  kθ  aθ  sK  

(m/s) 
kK  

(m/s) 

 4.1 1.964 0.02 0.35 0.35 0.2875 0.02 7.22×10−6 6.95×10−6 

 
Eventually, special care must be taken for the limiter 
and continuity constraint applied to θ . Indeed, both 
have to preserve the physical discontinuities of θ  bet- 
ween different media A  and B . The way to proceed 
is to translate θ  into h  by means of the inverse of 

the retention curve 1 ( )fθ θ− , as h has the property to 

be physically continuous. Once θ  has been transla- 
ted in terms of h  with the properties of the medium 
it belongs to i.e. A  or B , it is translated back into 
θ  using the properties of the medium where the com- 
putation is necessary (resp. B  or A ). Then, if sub- 
scripts are used to represent the medium, one could 
define as  
 

+ 1 1 +2[ ] = ( ( ( ))) + ( ( ( )) )
A B B A

h
A B A Bf f f fθ θ θ θθ θ θ θ θ− − − −− − (53) 

 

( )1min = min( ( ))
A e

A
ej e j

f f Uθ θ
−

∋
                  (54) 

 

( )1max = max( ( ))
A e

A
ej e j

f f Uθ θ
−

∋
                 (55) 

 

the continuity constraint and extrema per node. The 
differences for the continuity constraint and the means 
for the limiter are then coherent with physical discon- 
tinuities of θ . 
 
 
3. Numerical examples 

In this section, we present three numerical exa- 
mples demonstrating the ability of the model to produ- 
ce results similar to the widely-used model Hydrus- 
1D[18], confirming its convergence as the number of 
iterations increase, and showing its scalability in a 3D 
application. 
 

3.1 Unsaturated infiltration 
This simulation is based on data numerically re- 

produced as a benchmark test in the Hydrus-1D 
code[18]. The experimental setup consists in a homoge- 
neous column of soil of 0.6 m that is assumed to have 
an initial constant pressure head of −1.5 m. The chara- 
cteristics of the soil are the same as in the Hydrus 
code and are represented by the modified van 
Genuchten-Mualem relations from Vogel and 
Cislerova (1988) summarized in Appendix, with the 
parameter values given in Table 1. The material pro- 
perties are homogeneous and isotropic. At the be- 
ginning of the simulation, the pressure of a thin layer 
of water with the height assumed to be approximately 

zero is imposed at the top of the column. Mathemati- 
cally, this is done by imposing the Dirichlet boundary 
condition ( = 0) = 0h z . A zero-flux boundary condi- 
tion is imposed on all the other boundaries. The spa- 
tial discretization is made with 30 equidistant layers in 
the vertical direction. Here, a time step of 1 s was used, 
with only one sub-iteration for h  and θ  (i.e., =m  

=q 1). 

Pressure head profiles at different instants of the 
simulation are displayed in Fig.3. The maximum over 
one element remains below the means of the neighbo- 
ring elements thanks to the slope-limiting algorithm. It 
can be seen that our results are very close to the ones 
obtained with Hydrus-1D[18]. In this test case, the false 
transient approximation does not apply. Indeed, all the 
elements except the top one lie in the DZ. For most 
natural infiltrations, dynamics happen in the DZ and 
are therefore not approximated. 
 

 
 
 
 
 
 
 
 
 
 
 
 
Fig.3 Pressure head profiles for an infiltration in an initially dry 

sandy soil at simulation times =t 1/12 min, 1 min,    
15 min, 30 min, 45 min, 60 min, 90 min, from left to right. 
Our model results are represented by solid lines, and 
Hydrus-1D results by the signs “ + ” 

 
The mass balance error of Hydrus at the end of 

the simulation is 1.95×10−6 m versus 2×10−16 m for 
our code (with a maximum at 6×10−16 m). Spatial or 
temporal convergence studies are difficult to fulfill 
with the proposed model. Indeed classical converge- 
nces orders are disrupted by the false transient appro- 
ximation in the WZ and SZ, as will be shown in the 
next subsection. Those zones should therefore be limi- 
ted to isolate proper convergences when keeping m  
and q  constant as they are not the studied variables. 

Since the size of the WZ increases with the time step 
and decreases with the mesh size, we have to impose a 
maximum time step of 1 s and minimum mesh size of 
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0.01 m. For the mesh convergence study, the top fifth 
of the domain is kept fixed with a discretization of   
0.02 m to make sure the WZ is always discretized 
with the same resolution and hence prevent the false 
transient approximation from interfering with the con- 
vergence analysis. Figure 4 shows a temporal conve- 
rgence rate of 1 and a spatial convergence rate of 1.5. 
The first order explicit time integration scheme beha- 
ves as expected but it is not the case of the spatial in- 
tegration scheme which is theoretically second-order 
accurate. Such a discrepancy is likely due to the slope 
limiters. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.4 Mesh element size and time step convergence studies for 

the unsaturated infiltration test-case. The 2L  norm error 

is computed from the finest runs (0.01 m for the mesh 
element size and 1.25 ×10−3 s for the time step) 

 
Table 2 Van Genuchten parameter values for the ground- 

water filling test case 

 α  (m−1) β  rθ  sθ  sK  (m/s) 

Sand 14.5 2.68 0.045 0.43 8.25×10−5 

Loam 3.60 1.56 0.078 0.43 2.89×10−6 

Clay 0.80 1.09 0.068 0.38 5.56×10−6 

Loam 3.60 1.56 0.078 0.43 2.89×10−6 

 
3.2 Filling of groundwaters 

This second test case highlights the effects of the 
“quasi-elliptic” approximation in the SZ given by 
Eq.(11). We consider a soil of one-meter depth descri- 

bed by four equally-thick layers of sand, loam, clay 
and loam whose properties are given in Table 2. Each 
layer is assumed homogeneous and isotropic. Initially, 
the groundwater fills half of the domain and the sys- 
tem is at physical equilibrium. This is achieved by 
taking a linear initial pressure field going from 0.5 m 
at the bottom to –0.5 m at the top. A Neumann boun- 
dary condition is imposed at the top to represent a st- 
rong infiltration of 10−5 m/s that stops after 2 h. All 
the other boundaries are impervious. The soil column 
is discretized into 40 equidistant layers, the time step 
was equal to 1 s. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.5 Infiltration profiles in a soil column initially at equili- 

brium. Our model results are represented by solid lines, 
while Hydrus-1D results are represented by the markers 
“ + ”, “ × ”, “ o ” and “ * ”. Our model results are very 
close to those obtained with Hydrus until t ≈ 2.15 h. 
Afterwards, a slight discrepancy appears due to the app- 
roximation (11) 

 
Figure 5 shows the evolution of the h and θ pro- 

files during the simulation. The discontinuity between 
different types of soils in the -θ profile is in good ag- 
reement with the physics, while a classic continuous 
representation would have to rely on the mean of the 
soil properties at the interfaces. In this model each 
DOF belongs to a particular material and all properties 
are well defined, even at the interfaces between diffe- 
rent soil layers. 

The results are similar for both models until the 
infiltration front reaches the groundwater depth, at 
around =t 2.15 h. Before this point, we set = =m q 1. 
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The succession of the large conductivity of the 
sand and the conductivity of the loam inferior to the 
incoming flux causes an accumulation of water at this 
interface. However, some of water passes through this 
capillary barrier and eventually fills the loam layer. 
Once the loam layer has been filled, the depth of the 
incompressible water column instantaneously increa- 
ses from half to nearly 3/4 of the computational do- 
main. 

After =t 2.15, the -h profile is not instantaneou- 
sly adapted as it should, and a curvature appears, as 
shown in Fig.6. This generates fluxes in the SZ lea- 
ding to an increase in the water content, which is visi- 
ble in the last panel of Fig.5. However, this excess is 
spread over time and the model converges towards the 
steady solution. Increasing m  and q  improves the 
convergence of the solution, as shown in Figs.6 and 7. 
It can be seen that a value of m ≈ 25 is sufficient on 
this quick event to transport the information through 
30 saturated elements. 
 

 
 
 
 
 
 
 
 
 
 
 
 
Fig.6 Pressure profile at =t 2.2 h. The shift results from the 

approximation (11), which replaces an elliptic equation 
by a parabolic one. This approximation converges to 
correct the solution as m  increases. There are no visible 
differences for =m 125, 625 and 3 125 

 
 

 
 
 
 
 
 
 
 
 
 
 
Fig.7 Error convergence computed as the 2L  norm of the di- 

fference with a solution where =m 3 125. The chosen 
times are such as the error is maximal 

 
The mass balance error of Hydrus-1D at the end 

of the simulation is 4.78×10−6 m versus 5×10−16 m for 
our code (with a maximum at 10−15 m). For this result, 

the limiter on θ  has been removed. It adds robustness 
to the algorithm but is not mandatory. The limiter app- 
lies some additional multiplications and additions to 
the mass variable θ , which increase the mass balance 
error. Despite that, with the limiter the mass balance 
error is not larger than 1.2×10−14 m. 
 

 
 
 
 
 
 
 
 
 
 
 
 
Fig.8 Top and side views of the landfill design (left) and its dis- 

cretization (right). The dimensions of the pit are 5 m× 
100 m×100 m, each soil layer being 0.5 m deep. The bor- 
ders slope is set to 20%. The computational domain, re- 
presented in grey color in the schematic top view, is dis- 
cretized into 9 layers of prisms for a total of 26 028 ele- 
ments 

 

Table 3 Van Genuchten parameters for the capillary ba- 
rrier test case 

 α  (m−1) β  rθ  sθ  sK  (m/s) 

Waste 1.430 1.51 0.032 0.345 2.78×10−6 

Sand 6.340 1.53 0.046 0.345 6.57×10−5 

Gravel 469.0 2.57 0.074 0.419 3.50×10−3 

 
3.3 Capillary barrier in a simple landfill design 

For this theoretical test case, a simulation of the 
water dynamics within the simple landfill represented 
in Fig.8 is considered. The waste is stocked over a ca- 
pillary barrier made of sand and gravel. An imper- 
vious geotextile placed under the gravel diverts the 
water to the bottom where it is drained. The efficiency 
of the capillary barrier is assessed for an important 
flux of water into an initially dry system. We take ad- 
vantage of the symmetries of the computational do- 
main to model the problem only over one eighth of the 
domain. The waste layer is defined by soil-like prope- 
rties given in Table 3 with the properties of the sand 
and gravel. The material properties are considered ho- 
mogeneous and isotropic within each layer. The mesh 
is constituted of nine layers of 2 892 prisms for a total 
of 156 168 DOF, refined over corners as shown in 
Fig.8. Water input is taken as a homogeneous flux of 
0.005 m/h on the top of the waste that is stopped after 
12 h. The geotextile is assumed to be perfectly impe- 
rvious while the drain continuously covers the bottom 
of the landfill. The drain boundary condition is defi- 
ned as follows: 
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if ch h<  or flux < 0 : zero flux (Neumann), 

if ch h≥  and flux 0≥ : = ch h  (Dirichlet), 

where ch  is the air-entry pressure of the gravel layer. 

It should be mentioned that such a boundary condition 
is quite difficult to apply in an implicit model. Indeed, 
conditional statements frequently produce oscillatory 
states into the convergence process, as a continuous 
and monotone system is theoretically required to en- 
sure convergence. The mesh used is made of prisms 
obtained by extruding a 2D triangular mesh. Here, we 
set = = 1m q  and use an adaptive time step which va- 
ries from 50 s at the beginning of the simulation to 
0.075 s when the gravel, which is very conductive, 
reaches saturation. The adaptive time step algorithm 
simply set the time step as the minimum between 50 s 
and that given by the CFL condition. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.9 Clipped view of the water content in a vertical plane at 

the middle of the landfill domain. The infiltration in the 
waste ( = 4 h)t  and in the sand ( = 12 h)t  is homoge- 

neous as expected. After one day, the water concentrates 
in the bottom of the sand layer, leading after 60 h to an 
infiltration visible at the bottom of the slope. These 
graphs are scaled in the vertical direction 

 
 

 
 
 
 
 
 
 
Fig.10 Bottom view of the water content in the computational 

domain. After 3 d, the infiltration reaches the bottom of 
the gravel. Then it quickly flows towards the bottom of 
the landfill, where it is drained 

 
Water infiltration at the beginning of the simula- 

tion is visible on Fig.9. As expected, water crosses the 
capillary barrier first at the external lower corner of 
the domain and at the bottom of the slope, where it ac- 
cumulates before being drained out, as shown on 
Fig.10. In the middle of the slope plane, the capillary 
barrier plays its role and diverts most of the water 
which slowly flows to the bottom of the sand layer, 
towards the drainage zone. The effect of the capillary 
barrier is also visible at the top of the corner, where a 
small area stays dry. On such a configuration, the 
most sensitive parts are the corners where the geote- 
xtile has to divert the strongest fluxes and sustains the 
largest water. 
 
3.4 Parallel efficiency 

The parallel scaling of a model is the ratio bet- 
ween speed-up and the number of nodes N , i.e., the 
fraction of available computational resources fully- 
used. In assessing the parallel efficiency, it is usual to 
distinguish between weak scaling and strong scaling. 
The former emphasizes the ability of a model to han- 
dle a greater computational domain with additional re- 
sources while the latter shows the scalability limit of a 
model for a fixed problem size. The weak scaling is 
the most frequently used for large-scale simulations. 
The ParSWMS model, on 64 nodes with 7 690 DOF 
per node, achieves a weak scaling of 75% in the best 
cases but could decrease to 29% in the worst cases as 
was shown in Ref.[7]. The ParFlow model has been 
tested for coupled surface/subsurface flows. On 100 
nodes, for 2 000 DOF per node, ParFlow reaches 40% 
of weak scaling and for 50 000 DOF per node it 
reaches 72%[5]. A terrain-following grid formulation 
has been developed by Ref.[6] to avoid staircase 
boundaries. They presented a test case using 500 000 
DOF per node on 16,384 nodes and achieved a weak 
scaling of 78% with an asymmetric preconditioner and 
51% with a symmetric preconditioner. The cost per 
iteration is greater for the asymmetric than for the 
symmetric preconditioner. In the framework of DUNE, 
DuMux has achieved a strong scaling of 36% on 64 
nodes with about 7 341 DOF per node. They proposed 
the use of an algebraic multigrid solver to overcome 
the bad scaling of the linear solver[9]. 

The first reason for the suboptimal scaling obse- 
rved with all these models is the reduction of the com- 
putational domain (CD) related to each node, compa- 
red to the extent of the interfaces (I) between different 
CDs which require communication between nodes. A 
second reason is the elliptic behavior of the equation 
in the SZ, which implies that any change impacts the 
entire SZ. The information has to pass through several 
CDs to cover the whole SZ. It therefore requires a lot 
of communication (often via additional linear solver 
iterations). The first case could be magnified by the 
so-called “strong” scaling test cases, which keep the 
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same mesh when increasing N . Then the ratio I/CD 
increases and the scaling is expected to decrease. The 
second case is magnified by “weak” scaling test cases, 
which keep the sizes of the CD and the I constant 
when increasing N and thus the domain size as well. 
This results in an increase in the number of CD, which 
in turn increases the number of linear solver iterations 
and reduces the scalability. But strong scaling test 
cases are also affected by this situation. That is why 
we choose to show a strong scaling test case. 

In studying strong scaling, it is important to look 
at the number of DOF per node, as it is closely related 
to the ratio I/CD. Any model will see its performances 
degraded below a certain ratio I/CD for which the 
communication time begins to dominate the overall 
computation time. It is then more difficult to achieve a 
good scaling with a small number of DOF per node. 
Strong scaling test cases could benefit from additional 
fast-memory caches as N  increases, as the memory 
load per node decreases accordingly. This can lead to 
super-linear scaling. 

It is conceptually difficult to develop a model of 
an elliptic-type equation with a perfect scaling. Ma- 
thematically, any small local change in the model so- 
lution will have a global influence. This leads to a st- 
rong exchange of information between the sub-domai- 
ns linked to each computational node, and thus a poor 
scaling. The multigrid method is specially designed to 
overcome this issue. The false transient method that is 
used here simply reduces this exchange and thus ac- 
hieves a perfect scaling by transferring information at 
a finite speed. The consequence that the information 
in an explicit method is transferred only to neighbor- 
ing elements is that the number of iterations m  
could increase and hence reduce the efficiency as 
compared to implicit methods. The model efficiency 
would therefore be reduced in cases where the SZ oc- 
cupies a large portion of the domain or is discretized 
with a large number of DOF’s. The minimum of m  
in this case is of the order of exp( )cN  where cN  is 

the number of saturated elements in a line. 
 

 
 
 
 
 
 
 
 
 
 
 
 
Fig.11 Scaling of the model. The line represents the theorically- 

expected speed-up and the signs “ + ” are the obtained 
results. It can be seen that the model scaling is optimal 

The scaling of the model has been evaluated on a 
cluster of 64 nodes by running the model on a test- 
case similar to the last one, except for the 3D mesh 
which is now composed of 101 508 prisms, or    
609 048 DOF. Speed-up results are shown in Fig.11 
and exhibit an optimal scaling. 
 
 
4. Conclusions 

We have developed a 3D discontinuous-Galerkin 
model of the Richards equation using an explicit sol- 
ver. As the mass variable θ  is updated with the 
mixed-form of the equation, the mass is conserved up 
to machine-error precision. The DGFEM is well-sui- 
ted to the advection-dominated physics that occurs at 
sharp gradient fronts. The DGFEM also allows the use 
of stabilizing techniques such as slope limiters. These 
limiters remove the oscillations which appear with the 
classical FEM. A discontinuous approximation can 
also nicely capture the physical discontinuities of the 
water content. In our model, the UZ is modeled with 
the -θ form of RE and the SZ by an approximation of 
the -h form of this equation. Such an approximation, 
which results in a finite pressure propagation speed, 
allows us to use the same explicit time integration sc- 
heme for both the saturated and unsaturated zones. 

Explicit methods are constrained by a limit on 
the time step value, depending on the size of the ele- 
ments and on the water conductivity. However, the in- 
crease in the number of time steps is balanced by a 
smaller computational cost per time step and an opti- 
mal scaling on parallel architectures. The latter is 
often hard to achieve with an implicit scheme. Explicit 
methods also allow a direct use of conditional state- 
ments in the resolution of the equation and in the 
boundary conditions, which would hamper the conve- 
rgence with an implicit scheme. Eventually, the pre- 
sent model avoids linear or nonlinear solvers issues, 
and in this sense is more robust. Several codes use an 
explicit time integration scheme in the UZ, either be- 
cause they are dedicated to this zone, or to improve 
the execution speed[19]. In Ref.[20], a term of the 
equation is set explicit to obtain a strictly convex mi- 
nimization problem. To our knowledge, explicit solve- 
rs have never been used for the RE in SZ. 

Accuracy and efficiency could be further impro- 
ved by using a better method to solve the purely elli- 
ptic part of the equation, such as the multigrid method. 
Indeed, if the SZ occupies a large part of the domain, 
the present model could require an important number 
of iterations to converge. That would dramatically re- 
duce the overall efficiency of the method. As the elli- 
ptic part is linear, a linear solver alone is sufficient, 
without the burden of a non-linear solver. Speed im- 
provements could be achieved by using an interpola- 
tion for the constitutive relationships, as the power 
function is very time-consuming. This could be also 
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accomplished by using a multi-rate method, which 
consists in reducing the time steps only on the part of 
the domain where the physical processes have the 
smallest time scale[21]. The latter seems very promi- 
sing for further developments. 
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Appendix: Modified Van Genuchten-Mualem rela- 

tions 
Following Vogel and Cislerova (1988) the rete- 

ntion function and the conductivity functions are de- 
scribed as follows: 
 

( ) = + ( )(1+ ) v
r s rf h h β

θ θ θ θ α −− , sh h<      (A1a) 
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xF x θ
θ θ

  −
 −  −   

                  (A3) 

 
where mθ , aθ , kh , sh , kK , sK  are additional em- 

pirical parameters and = ( )s sf hθθ , = ( )k kf hθθ . 
 




