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Abstract: The existence of landscape constraints in the home range of living organisms that adopt
Lévy-flight movement patterns, prevents them from making arbitrarily large displacements. Their
random movements indeed occur in a finite space with an upper bound. In order to make realistic
models, by introducing exponentially truncated Lévy flights, such an upper bound can thus be taken
into account in the reaction-diffusion models. In this work, we have investigated the influence of the
λ-truncated fractional-order diffusion operator on the spatial propagation of the epidemics caused
by infectious diseases, where λ is the truncation parameter. Analytical and numerical simulations
show that depending on the value of λ, different asymptotic behaviours of the travelling-wave
solutions can be identified. For small values of λ (λ & 0), the tails of the infective waves can decay
algebraically leading to an exponential growth of the epidemic speed. In that case, the truncation has
no impact on the superdiffusive epidemics. By increasing the value of λ, the algebraic decaying tails
can be tamed leading to either an upper bound on the epidemic speed representing the maximum
speed value or the generation of the infective waves of a constant shape propagating at a minimum
constant speed as observed in the classical models (second-order diffusion epidemic models). Our
findings suggest that the truncated fractional-order diffusion equations have the potential to model
the epidemics of animals performing Lévy flights, as the animal diseases can spread more smoothly
than the exponential acceleration of the human disease epidemics.

Keywords: exponentially truncated Lévy flights; truncated fractional-order diffusion; epidemics
spatial spread; infective waves

1. Introduction

Infectious pathogens, such as viruses are the microorganisms that can cause infectious
diseases following their presence and growth in humans and animals (hosts) [1]. One
of the characteristics of infectious diseases is the ability of pathogens to be transmitted
between individuals by either close contact between infected and non-infected (susceptible)
individuals or a secondary host that carries the pathogens. Infectious diseases are thus also
called communicable or transmissible diseases. Influenza, novel coronavirus (COVID-19),
malaria, dengue fever, and West Nile virus are examples of infectious diseases. The prop-
agation of infectious pathogens into non-infected regions leads to the spatial expansion
of transmissible diseases and as a result, a large number of susceptible individuals can be
infected so that an epidemic occurs. In some cases, a human epidemic can propagate over
the entire globe, which is known as a pandemic. The 1918 Spanish influenza and COVID-19
are examples of classic and novel pandemics, respectively [2,3].

In epidemiology, mathematical models have been widely used to study the temporal
and spatial dynamics of infectious diseases. Assuming the spatial homogeneity of the
environment leads to the models that encompass the temporal dynamics of infectious
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diseases [4–7]. These models vary based on the characteristics of the particular disease,
such as the transmission mechanism by either close contact or secondary hosts (see [8]
for an extensive review of various mathematical models of animal and human infectious
diseases). One of the purposes of such models is to derive the basic reproductive number
that indicates the potential for the propagation of infectious diseases within a population.
When its value is greater than unity, it shows that the infection is capable of invading the
susceptible population, leading to the occurrence of an epidemic. Since this number is
dependent on the model parameters, some strategies can be taken into account to control
the propagation of the epidemics [9,10]. However, considering the random mobility of
hosts and also the spatial heterogeneity of the environment lead to the reaction-diffusion
models that describe the spatial dynamics of infectious diseases [11–13]. As an original
model of this type, Källén et al. [14] studied the spatial spread of rabies among foxes.
The main advantage of the reaction-diffusion epidemic models is to understand how fast
an infectious disease can propagate. In that case, in order to control the spatial spread of
the diseases, the parameters that govern the epidemic speed can be distinguished [15].

The type of host random mobility is a key factor that affects the epidemic speed and
the patterns of the epidemic spread. Brownian motion and Lévy flight are two differ-
ent patterns of random movements. Brownian motion is a normal dispersion process in
which particles (walkers) make short movements such that the probability distribution
function (pdf) of the displacement is obtained by the normal (Gaussian) distribution [16].
Considering Brownian motion pattern of susceptible and infective individuals leads to a
second-order reaction-diffusion epidemic model. In that case, the epidemic waves propa-
gate at a constant speed and the tails of the epidemic’s fronts decay exponentially. Such
classical models have been applied to estimate the propagation speed of the plague in the
14th century and rabies in Europe [15,17]. However, Lévy-flight mobility pattern repre-
sents an anomalous diffusion process in which the walkers make occasionally large jumps
between many short movements such that the pdf of the displacement is obtained by a
power-law distribution with an asymptotic behaviour as l−(α+1), where l is the length
of the displacement and 0 < α < 2 [18]. Different studies have shown that the random
movement of many living organisms can be described by Lévy flights, including large ma-
rine predators [19,20], fruit flies [21], bumblebees [22], honeybees [23,24], albatrosses [25]
and even humans [26]. Considering a population of the walkers performing a Lévy-flight
mobility pattern leads to a fractional-order reaction-diffusion equation whose solution
represents the walker densities [18,27]. From an applied point of view, fractional-order
models have been used in a broad range of problems in ecology [28,29], biology [30], plasma
turbulence [31,32], finance [33] and also recently numerous studies have been conducted
on the subjects of bifurcation analysis, stability, and optimal control of fractional-order
systems, such as predator-prey models [34,35], diffusive mussel-algae models [36], and neu-
ral networks [37–39]. As an application of space fractional-order diffusion equations in
epidemiology, Hanert et al. [40] have shown that such equations can be applied to model
the modern epidemics, such as avian influenza, and even SARS and also that the fractional-
order diffusion operators make the epidemic waves travel at an exponential speed and the
tails of the wave solutions decay algebraically as a power-law.

The existence of landscape and physiological constraints in the home range of living
organisms following a pure Lévy-flight mobility pattern, can prevent arbitrarily large
movements. To make realistic displacements, the tails of the power-law distribution must
be truncated. In that case, the pure Lévy distribution is replaced by a truncated power-law
distribution whose tail decays more quickly than it does in the pure Lévy case. Mantegna
and Stanley [41] and Koponen [42] originally introduced truncated Lévy processes and
after that Rosiński [43] proposed an exponentially truncated (tempered) Lévy process
that yields a smoother decay than the abrupt cutoff. The pure power-law distributions
result in diverging measurable quantities, such as variance and moments that cannot be
observed in physically realizable systems. However, the truncated Lévy flight leads to
the finite moments. The exponentially tempered Lévy distribution exhibits an asymptotic
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behaviour as ∼e−λl l−(α+1), where l is the length of the displacement, 0 < α < 2, and λ > 0
is the truncation parameter. When λ = 0, it leads to a pure Lévy flight distribution.
Considering a large number of random walkers performing a truncated Lévy flight leads
to a truncated fractional-order diffusion equation whose solution represents the walker
densities [44,45]. As an application of such equations, Vallaeys et al. [29] estimated isolation
distances between genetically modified (GM) and non-GM crops by considering the fact
that the honeybees mobility pattern can be well described by truncated Lévy flights. del
Castillo Negrete [46] examined the influence of the truncation on the travelling-wave
solutions of a truncated fractional-order Fisher–Kolmogorov equation. It would be of
interest to investigate the results of such an equation in the epidemic models, as modern
epidemics do not follow Brownian dynamics and can lead to accelerated waves of infectious
diseases [47,48]. Hence, in this study, we apply the random mobility of infective individuals
following truncated Lévy flights to an epidemic model and explore the epidemic speed
based on the different values of the truncation parameter.

The remainder of the paper is organized as follows. In Section 2, we introduce the
space fractional-order operators. In Section 3, we first review the classical and untruncated
fractional-order epidemic models, then formulate a truncated fractional-order epidemic
model and finally, discuss the epidemic speed of the new model. In Section 4, we explore
our analytical results by numerically solving the model and conclusion is given in Section 5.

2. Preliminaries for Fractional-Order Operators

In this section, we shall give some definitions and notations that are required for this
work. In the field of fractional models, the classical operators in time and/or space are
replaced by the fractional derivative operators that are defined as follows.

For a given function f , the untruncated space fractional-order derivative operator of
order α with a shorthand notation Dα

x or dα/d|x|α is defined as [44]:

Dα
x f (x) = l −∞Dα

x f (x) + r xDα
∞ f (x), (1)

where −∞Dα
x and xDα

∞ are the positive (left) and negative (right) space-fractional Riemann–
Liouville derivatives, respectively, defined as [49,50]:

−∞Dα
x f (x) =

1
Γ(n− α)

∂n

∂xn

∫ x

−∞

f (ξ)
(x− ξ)α−n+1 dξ, (2)

xDα
∞ f (x) =

(−1)n

Γ(n− α)

∂n

∂xn

∫ ∞

x

f (ξ)
(ξ − x)α−n+1 dξ, (3)

where Γ(.) denotes Euler’s gamma function and n = 1 + [α] such that [α] = max{m ∈
Z|m ≤ α} and Z is the set of integers. For instance, for 1 < α ≤ 2, we get n = 2, and the
parameters l and r are the weighting factors defined as:

l = − 1− β

2 cos(απ/2)
, r = − 1 + β

2 cos(απ/2)
, (4)

where the parameter β ∈ [−1, 1] is a skewness parameter that shows a preferred direction
of displacements that can be seen in heterogeneous systems. When β = 0, the distribution
is symmetric and space derivative represents a symmetric Riesz derivative.

Since the Riemann–Liouville derivatives are singular on the boundaries of a bounded
domain [0, L], where L > 0, instead, Caputo derivatives can be used. The left and right
Caputo derivatives of order α are defined as follow [49,50]:

c
0Dα

x f (x) =
1

Γ(n− α)

∫ x

0

∂n f (ξ)/∂ξn

(x− ξ)α−n+1 dξ, (5)

c
xDα

L f (x) =
(−1)n

Γ(n− α)

∫ L

x

∂n f (ξ)/∂ξn

(ξ − x)α−n+1 dξ. (6)
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The λ−truncated (tempered) fractional-order derivative operator of order α with a
shorthand notation Dα,λ

x is defined as [44].
For 0 < α < 1,

Dα,λ
x f (x) = le−λx

−∞Dα
x(e

λx f (x)) + reλx
xDα

∞(e−λx f (x)) +
λα

cos(απ/2)
f (x), (7)

For 1 < α < 2,

Dα,λ
x f (x) = le−λx

−∞Dα
x(e

λx f (x)) + reλx
xDα

∞(e−λx f (x)) +
λα

cos(απ/2)
f (x)

+
αβλα−1

| cos(απ/2)|
∂ f
∂x

, (8)

where the operators −∞Dα
x and xDα

∞ and the parameters l and r are defined by Equa-
tions (2)–(4), respectively, and λ ≥ 0 is a truncation parameter with SI units m−1. Now,
for 1 < α < 2, we can define the left and right-sided truncated fractional-order operators

−∞Dα,λ
x and xDα,λ

∞ , for β = −1 and β = 1, respectively, as follows:

−∞Dα,λ
x f (x) =

−1
cos(απ/2)

(
e−λx

−∞Dα
x(e

λx f (x))− λα f (x)− αλα−1 ∂ f
∂x

)
, (9)

xDα,λ
∞ f (x) =

−1
cos(απ/2)

(
eλx

xDα
∞(e−λx f (x))− λα f (x) + αλα−1 ∂ f

∂x

)
, (10)

3. Spatial Propagation of an Epidemic

In this section, we investigate the effect of different random movements of individuals
on the spatial spread and speed of an epidemic. To do so, we consider a simple version
of the epidemic models. The model takes into account the densities of two populations
at location x at time t, the susceptibles S(x, t) and the infectives I(x, t). We assume that
the susceptibles catch the disease from the infectives at a constant transmission-efficiency
rate δ and that the infectives disappear either by recovery from the disease or disease-
induced mortality, at a constant rate γ. We model the random movement of susceptibles
and infectives by considering diffusion operators in the model equations. With these
assumptions, the densities of susceptiples and infectives vary according to the following
equations:

∂S
∂t

= −δS(x, t)I(x, t) + diffusion operator︸ ︷︷ ︸
random motion

, (11)

∂I
∂t

= δS(x, t)I(x, t)− γI(x, t) + diffusion operator︸ ︷︷ ︸
random motion

, (12)

In what follows, we shall formulate “diffusion operator” by considering three patterns
of random mobility of individuals, namely Brownian motion, pure (untruncated) Lévy
flight and truncated Lévy flight, and then discuss the epidemic speed in each case.

3.1. Brownian Motion

Brownian motion is a normal dispersion process that the probability distribution
function (pdf) for the displacements is a Gaussian (Normal) distribution. In that case, if we
assume that the mobility of susceptible and infective individuals is described by Brownian
motion, the diffusion operators in Equations (11) and (12) are the second-order diffusion
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denoted K∂2S(x, t)/∂x2 and K∂2 I(x, t)/∂x2, respectively, where K represents the diffusion
coefficient and has units of m2s−1. Therefore, we get

∂S
∂t

= −δS(x, t)I(x, t) + K
∂2S(x, t)

∂x2 , (13)

∂I
∂t

= δS(x, t)I(x, t)− γI(x, t) + K
∂2 I(x, t)

∂x2 , (14)

To obtain the epidemic speed, we consider a situation in which the wave of infectives
propagates into the susceptible population whose density is uniformly set to be S(x, 0) = S0
throughout the entire domain. In that case, the constant epidemic speed at the leading edge,
i.e., where S ≈ S0 and I ≈ 0 is given by c = 2

√
K(δS0 − γ) for K(δS0 − γ) > 0. For more

details, refer to [15,17].

3.2. Pure (Untruncated) Lévy Flights

For pure Lévy flights, the power-law asymptotic behaviour of the pdf for the dis-
placements leads to the space fractional-order diffusion operator Dα

x defined by Equa-
tion (1). If we assume that the susceptible and infective populations perform Lévy flights,
the fractional-order epidemic model reads

∂S
∂t

= −δS(x, t)I(x, t) + KαDα
x , (15)

∂I
∂t

= δS(x, t)I(x, t)− γI(x, t) + KαDα
x , (16)

where Kα is the fractional-order diffusivity with units of mαs−1. Hanert et al. [40] investi-
gated the effect of the left-sided fractional diffusion operator on the left-and right-moving
fronts. It was shown that the epidemic waves travel to the right side at an unbounded and
exponential speed given by c(t) ∼ (1− λ)e((1−λ)/(α+1))t for large values of t and to the
left side at a constant speed given by c = α((1− λ)/(α− 1))(α−1)/α, where λ = γ/δS0. It
should be noted that in the case of the symmetric fractional operator (β = 0), the infective
waves propagating to the left and right sides have the same speed, i.e., both the left- and
right-moving waves accelerate exponentially.

3.3. Truncated Lévy Flights

In this subsection, we investigate the effect of the truncated Lévy flights on the epi-
demic speed. To do so, we consider the left-sided truncated fractional-order diffusion
operator −∞Dα,λ

x defined by Equation (9). Since the movement of susceptible individuals
does not change the front speed, for the sake of simplicity, we suppose that there is no
diffusion term in the S equation. However, infectious individuals move into the susceptible
population. The model equations then read as follows:

∂S(x, t)
∂t

= −δS(x, t)I(x, t), (17)

∂I(x, t)
∂t

= δS(x, t)I(x, t)− γI(x, t)

+ Dα

(
e−λx

−∞Dα
x(e

λx I(x, t))− λα I(x, t)
)

, (18)

where Dα = Kα/| cos(απ/2)|. It should be noted that similar to the assumption used by
del Castilo Negrete [46] for the truncated fractional-order Fisher–Kolmogorov equation,
we do not consider the term ∂I(x, t)/∂x in the I equation. In order to analyse the solutions
of Equations (17) and (18), we first make them dimensionless by introducing the following
variables:

S̄ =
S
S0

, Ī =
I

S0
, x̄ =

x
xc

, t̄ =
t
tc

,
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where xc and tc are characteristic values of x and t, respectively. In what follows, we
estimate these values. The next task is to insert the new dimensionless variables into
Equations (17) and (18). That is, we replace S by S0S̄, I by S0 Ī, t by tc t̄ and x by xc x̄.
The derivative with respect to t̄ is derived through the chain rule as

∂I
∂t

=
∂(S0 Ī)

∂t̄
dt̄
dt

= S0
∂ Ī
∂t̄

1
tc

=
S0

tc

∂ Ī
∂t̄

,
∂S
∂t

=
S0

tc

∂S̄
∂t̄

,

and the left fractional-order derivative with respect to x̄, −∞Dα
x̄ is also derived as follows:

−∞Dα
x(e

λx I) = S0 −∞Dα
x̄(e

λxc x̄ Ī)(
dx̄
dx

)α =
S0

xα
c
−∞Dα

x̄(e
λxc x̄ Ī).

Therefore, Equations (17) and (18) now become

S0

tc

∂S̄
∂t̄

= −δS2
0S̄ Ī,

S0

tc

∂ Ī
∂t̄

= δS2
0S̄ Ī − γS0 Ī +

DαS0

xα
c

e−λxc x̄
−∞Dα

x̄(e
λxc x̄ Ī)− DαλαS0 Ī,

By choosing tc =
1

δS0
and xc =

(
Dα

δS0

)1/α

, we get the following model in a dimen-

sionless form:

∂S(x, t)
∂t

= −S(x, t)I(x, t), (19)

∂I(x, t)
∂t

= S(x, t)I(x, t)− θ I(x, t) + e−µx
−∞Dα

x(e
µx I(x, t)), (20)

where we have dropped the overbar “−”, θ =
γ + Dαλα

δS0
, and µ = λ

(
Dα

δS0

)1/α

are dimen-

sionless parameters.

3.3.1. Theoretical Analysis (Right-Propagating Front)

Here, we look for the speed of the infective waves propagating to the right side. Similar
to the theoretical analysis of the model studied in [40], we replace S(x, t) by 1− s(x, t),
where s(x, t) is the deviation with respect to the initial density of the susceptible population.
Since the epidemic speed can be obtained by the speed of the right-moving fronts in the
leading edge region, i.e, where s ≈ 0 and I ≈ 0, Equations (19) and (20) in that region can
be expressed as

∂s(x, t)
∂t

= I(x, t), (21)

∂I(x, t)
∂t

= (1− θ)I(x, t) + e−µx
−∞Dα

x(e
µx I(x, t)). (22)

Here, we assume that 1− θ > 0, which guarantees the existence of the right-moving
fronts.

Now, we find the analytical solution of Equation (22), by defining the following
localized initial condition:

I(x, t = 0) =

{
A if x < 0
Ae−νx if x ≥ 0,

(23)

where A and ν are positive and non-zero constants. We next follow the same method
as the one used by del Castilo Negrete [46] for the truncated fractional-order Fisher–
Kolmogorov equation. First, we assume a solution of Equation (22) in the form of I(x, t) =
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e−µx+(1−θ)tΦ(x, t). By substituting this solution into (22) and initial condition (23), one gets
the following fractional-order diffusion equation

∂Φ(x, t)
∂t

=−∞ Dα
xΦ(x, t), (24)

with the initial condition

Φ0(x) = Φ(x, t = 0) =

{
Aeµx if x < 0
Ae(µ−ν)x if x ≥ 0.

(25)

Equation (24) with initial condition (25) has the general solution of the form

Φ(x, t) =
∫ ∞

−∞
G(x− y, t)Φ0(y)dy, (26)

where G(x, t) = t−1/α pα(x/t1/α) is the Green function of Equation (24) and pα(η) =
(1/2π)

∫ ∞
−∞ e(ik)

α+ikηdk is a skewed Lévy distribution with exponent α. By substituting
initial condition (25) into Equation (26), we get

Φ(x, t) =
∫ xt−1/α

−∞
Ae(µ−ν)(x−t1/αη)pα(η)dη +

∫ ∞

xt−1/α
Aeµ(x−t1/αη)pα(η)dη

= Ae(µ−ν)x
∫ x/τ

−∞
e(ν−µ)τη pα(η)dη + Aeµx

∫ ∞

x/τ
e−µτη pα(η)dη, (27)

where τ = t1/α. Now, one can find the solution of Equation (22) in the following form

I(x, t) = Ae−νx+(1−θ)t I1 + Ae(1−θ)t I2, (28)

where I1 =
∫ x/τ

−∞
e(ν−µ)τη pα(η)dη and I2 =

∫ ∞

x/τ
e−µτη pα(η)dη.

The next task is to look for the asymptotic behaviour of the integrals I1 and I2 for
x/τ → ∞ with a fixed τ. We first consider the asymptotic behaviour of I2. By considering
the fact that for η > 0 the Lévy distribution pα(η) exhibits fat tails as ∼η−(α+1) [46,51],
and integration by parts, we get

I2 ∼
∫ ∞

x/τ
e−µτηη−(α+1)dη =

[
−1
µτ

e−µτηη−(α+1)
]η=∞

η=x/τ

− α + 1
µτ

∫ ∞

x/τ
e−µτηη−(α+2)dη

=
τα

µ

e−µx

xα+1 −
α + 1

µτ

∫ ∞

x/τ
e−µτηη−(α+2)dη ∼ τα

µ

e−µx

xα+1 . (29)

For the first integral I1, if we define a cutoff Ω with 1 � Ω < xτ so that pα(η) ∼
η−(α+1), we can then write the integral I1 as

I1 ∼
∫ Ω

−∞
e(ν−µ)τη pα(η)dη +

∫ x/τ

Ω
e(ν−µ)τηη−(α+1)dη. (30)

Because of the exponential decay of pα(η) at minus infinity (for more details, refer
to [46,51]), the first integral converges to a finite value C. By applying an integration by
parts to the second integral of Equation (30), we get

∫ x/τ

Ω
e(ν−µ)τηη−(α+1)dη =

[
1

(ν− µ)τ
e(ν−µ)τηη−(α+1)

]η=x/τ

η=Ω

+
α + 1

(ν− µ)τ

∫ x/τ

Ω
e(ν−µ)τηη−(α+2)dη ∼ τα

ν− µ

e(ν−µ)x

xα+1
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Therefore,

I1 ∼ C +
τα

ν− µ

e(ν−µ)x

xα+1 . (31)

By substituting Equations (29) and (31) into Equation (28), we get

I(x, t) ∼ ACe−νx+(1−θ)t + A
(

1
ν− µ

+
1
µ

)
t

xα+1 e−µx+(1−θ)t, ν 6= µ, µ 6= 0. (32)

In order to find the asymptotic behaviour of I(x, t) for large x, one can find the
dominant term in Equation (32) by considering the relative values of ν and µ.

If µ < ν, the truncation decays slower than the initial condition. In that case, the second
term of Equation (32) is the dominant term for large x, i.e.,

I(x, t) ∼ A
(

1
ν− µ

+
1
µ

)
t

xα+1 e−µx+(1−θ)t. (33)

By considering the expansion of the exponential function e−µx, we get

I(x, t) ∼ A
(

1
ν− µ

+
1
µ

)
te(1−θ)t 1

xα+1

(
1− µx +

µ2

2
x2 − . . .

)
. (34)

For µx � 1, the solution of I(x, t) thus decays algebraically as

I(x, t) ∼ te(1−θ)tx−(α+1), (35)

However, for µx � 1, the algebraic decaying tail of the solution is tempered with the
exponential factor e−µx as

I(x, t) ∼ te−µx+(1−θ)tx−(α+1). (36)

If µ > ν, the truncation decays faster than the initial condition. In that case, the first
term of Equation (32) is the dominant term for large x, i.e.,

I(x, t) ∼ e−νx+(1−θ)t, (37)

which shows an exponentially decaying tail of the solution.
Until now, we have assumed that ν 6= µ. To explore the case ν = µ, we cannot use

Equation (32). Instead, we need to go back to Equation (30) and write the integral I1 as

I1 ∼
∫ Ω

−∞
pα(η)dη +

∫ x/τ

Ω
η−(α+1)dη. (38)

By defining the finite value C =
∫ Ω

−∞
pα(η)dη and solving the second integral of

Equation (38), we have

I1 ∼ C− τα

α

1
xα

. (39)

By substituting Equations (29) and (39) into (28), we obtain the solution I(x, t) as

I(x, t) ∼ ACe−νx+(1−θ)t + A
(

1
µxα+1 −

1
αxα

)
te−νx+(1−θ)t. (40)

In this case, the first term of Equation (40) decays slower than the other term. Therefore,
it is the dominant term for large x. We conclude that for the case ν = µ, the solution tail
exhibits an exponentially decaying as

I(x, t) ∼ e−νx+(1−θ)t (41)
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Obviously, the solution of Equation (21), the susceptibles equation, is obtained from
the solution of the infectives equation. Thus, the asymptotic behaviour of the susceptible
front is the same as the infective front.

The above results are based on the assumption µ 6= 0. However, in the absence of
the truncation parameter, i.e., µ = 0, we have to explore the asymptotic behaviour of the
following integrals

I1 =
∫ x/τ

−∞
eντη pα(η)dη, I2 =

∫ ∞

x/τ
pα(η)dη. (42)

The analysis of the asymptotic behaviour of these integrals has been studied in [40]
and it was shown that the solution I(x, t) has the same algebraically decaying tail as
Equation (35).

In order to derive the epidemic speed, we first compute a Lagrangian trajectory xL(t)
of infective fronts such that I(xL(t), t) = I0, where I0 ≈ 0. Given xL(t), the epidemic speed
is given by c(t) = dxL(t)/dt.

In the case of a power-law decaying tail, we find xL(t) from Equation (35) such
that I(xL(t), t) = te(1−θ)txL(t)−(α+1) = I0. After some calculation, xL(t) and c(t) can be
computed as

xL(t) = I−1/(α+1)
0 t1/(α+1)e((1−θ)/(α+1))t, c(t) ∼ (1− θ)e((1−θ)/(α+1))t. (43)

For the truncated algebraically decaying tail, we use Equation (36) to find I(xL(t), t) =
te−µxL(t)+(1−θ)txL(t)−(α+1) = I0. Thus, xL(t) satisfies the following equation

ln t + (1− θ)t− µxL(t)− (α + 1) ln xL(t) = ln I0, (44)

and c(t) can be expressed as

c(t) =
(1− θ) +

1
t

µ +
α + 1
xL(t)

. (45)

When t→ ∞, the velocity of the fronts converges towards a constant value represent-
ing the maximum value of the epidemic speed given by cmax = (1− θ)/µ.

Finally, in the case of exponentially decaying tail, we can use Equation (37) to find
I(xL(t), t) = e−νxL(t)+(1−θ)t = I0. Thus, xL(t) = (− ln I0 + (1− θ)t)/ν and the front moves
at a constant velocity c(t) = c̄ = (1− θ)/ν.

3.3.2. Theoretical Analysis (Left-Propagating Front)

For exploring the impact of the left-sided truncated operator defined by Equation (9)
on the left-moving fronts, we consider a travelling-wave solution of a constant shape as
follows:

I(x, t) = I(z), s(x, t) = s(z), z = x + ct,

where c represents the speed of the epidemic waves moving to the left side. Substituting
this solution into Equations (21) and (22), one can find the following system:

c
∂s
∂z

= I, (46)

c
∂I
∂z

= (1− θ)I + e−µz
−∞Dα

z (e
µz I). (47)

Now we define a solution of the following form

I(z) = Îekz, s(z) = ŝekz, (48)
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where k is a parameter depending on the value of c. Considering the fact that −∞Dα
z ekz =

kαekz and substituting the solutions (48) into Equations (46) and (47), we get the following
system: [

ck −1
0 ck− (k + µ)α − (1− θ)

][
ŝ
Î

]
=

[
0
0

]
. (49)

If ck(ck− (k + µ)α − (1− θ)) = 0, we can find a non-trivial solution. In that case, we
get the following relation representing the value of the epidemic speed as a function of the
parameter k:

c(k) =
1− θ

k
+

(k + µ)α

k
. (50)

In order to obtain the minimum epidemic speed, one can minimize Equation (50) with
respect to k. For 0 < α < 2 and µ 6= 0, we cannot analytically calculate the minimum speed
cmin. In the next section, we thus find it numerically. However, for 0 < α < 2 and µ = 0,
as it is discussed in [40], cmin = α((1− θ)/(α− 1))(α−1)/α and the corresponding rate of
the exponential decay is equal to kmin = ((1− θ)/(α− 1))1/α. For α = 2, the minimum
speed of the classical model is given by cmin = 2

√
1− θ.

4. Numerical Examples

In order to illustrate the analytical results obtained for the asymptotic behaviour of
the infective waves, we numerically solve the model equations on a finite domain [0, L],
where L > 0. Here, we have used the same method as the one performed by Vallaeys
et al. [29] for solving a symmetric truncated fractional-order diffusion equation. To study
more numerical methods for solving the space fractional-order diffusion equations, refer
to [52–54]. We discretize Equations (19) and (20) by finite-element (FE) method based on a
Galerkin formulation. To illustrate this method more precisely, we discretize the following
simple diffusion equation:

∂I(x, t)
∂t

= e−λx
0Dα

x(e
λx I(x, t))− λα I(x, t). (51)

In this method, the exact solution (unknown variable) I(x, t) is expressed as a sum of
the unknown coefficients ej(t) and basis functions φj(x) as follows:

I(x, t) ≈ Ĩ(x, t) =
N

∑
j=1

ej(t)φj(x). (52)

By introducing a partition of the domain [0, L] into N − 1 subintervals [xj, xj+1] with
a constant length h, i.e., x1 = 0, xN = L, and xj+1 − xj = h for j = 1, . . . , N − 1, we can
consider the piecewise linear basis functions φj(x) for j = 1, 2, . . . , N as follows:

φ1(x) =


x2 − x
x2 − x1

: x1 ≤ x ≤ x2,

0 : x 6∈ [x1, x2].

for j = 2, . . ., N − 1,

φj(x) =


x− xj−1

xj − xj−1
: xj−1 ≤ x ≤ xj,

xj+1 − x
xj+1 − xj

: xj ≤ x ≤ xj+1,

0 : x 6∈ [xj−1, xj+1].
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and for j = N,

φN(x) =


x− xN−1

xN − xN−1
: xN−1 ≤ x ≤ xN ,

0 : x 6∈ [xN−1, xN ].

We also discretize the exponentially truncated unknown solution, i.e., eλx I(x, t) as
follows

eλx I(x, t) ≈ Ĩl(x, t) =
N

∑
j=1

el
j(t)φj(x). (53)

where el
j(t) is the unknown coefficient corresponding to the left truncated solution.

By using a Galerkin formulation, we replace Ĩ(x, t) and Ĩl(x, t) in Equation (51) and
then by orthogonalizing the discrete equation with respect to all φj, we get the following
equation:(∫ L

0
φiφjdx

)dej

dt
(t) =

(∫ L

0
φie−λx

0Dα
xφjdx

)
el

j(t)− λα

(∫ L

0
φiφjdx

)
ej(t),

for i, j = 1, . . ., N.
By introducing the matrices M :=

∫ L
0 φiφjdx and D :=

∫ L
0 φie−λx

0Dα
xφjdx, we get the

following semi-discrete equation in a matrix form

M
de
dt

(t) = Del(t)− λαMe(t), (54)

where e(t) = [e1(t) . . . eN(t)]
T and el(t) =

[
el

1(t) . . . el
N(t)

]T
are the vector of unknown

coefficients at time t. It should be noted that by considering the same method in [55], the dif-

fusion matrix D can be expressed as: D = −
∫ L

0 e−λx(
dφi
dx
− λφi) 0Dα−1

x φjdx. Here we use
the left Caputo derivative of order α− 1 of φj defined by Equation (5) as Caputo derivatives
are easier to handle and also for many applications could prevent mass-balance errors on
bounded domains, while such errors can be made by Riemann–Liouville derivatives (for
more details, see [56]).

In order to solve Equation (54), the vector el(t) needs to be computed in terms of the
vector e(t). To do so, we use Galerkin formulation for Equations (52) and (53) as follows:∫ L

0
φieλx Ĩdx =

∫ L

0
φi Ĩldx →

(∫ L

0
φieλxφjdx

)
ej(t) =

(∫ L

0
φiφjdx

)
el

j(t).

By defining the matrix W :=
∫ L

0 φieλxφjdx, we get el(t) = M−1We(t). we can thus
express Equation (54) as follows

M
de
dt

(t) =
(

DM−1W− λαM
)

e(t), (55)

Finally, in order to discretize Equation (55), we use a third-order Adams–Bashforth
method.

In order to solve the model Equations (19) and (20), we use the following initial
conditions:

S(x, t = 0) = S0(x) = 1− hS

(
1± tanh (

x− x0

wsL
)

)
,

I(x, t = 0) = I0(x) =

{
hIe−ν(x−x0) : x ≥ x0,
hIeν(x−x0) : x ≤ x0,

where hS = 0.37, wS = 0.003, hI = 0.14, and ν = 0.001. we consider the “+” sign and
x0 = 9L/10 for the left-moving front and the “−” sign and x0 = L/30 for the right-moving
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front. The dimensionless length of the domain is set to L = 105 and L = 3× 105 for the left-
and right-moving fronts, respectively. For all simulations, θ = 0.5, and the value of the
fractional order α is set to 1.2. According to the analytical results, we can consider three
different asymptotic behaviours for the right-moving fronts, i.e., y1 = x−(α+1) (power-law
decay), y2 = e−µxx−(α+1) (truncated power-law decay), and y3 = e−µx (exponential decay).
In what follows, we shall show how different values of the truncation parameter µ lead to
these different asymptotic behaviours.

The algebraic decaying tail of the right-moving fronts are shown in Figure 1. Here, we
take µ = 5× 10−6 < ν. Figure 1a shows the densities of both the susceptibles and infectives
at different times. Figure 1b,c show that the right-moving fronts for both the susceptibles
and infectives exhibit a power-law decaying tail as y1 = x−(α+1). The Lagrangian trajectory
xL(t) and the epidemic speed c(t) corresponding to this case are shown in Figure 2a,b,
respectively. Figure 2a shows the time evolution of the Lagrangian trajectory xL(t) such
that I(xL(t), t) = I0, where I0 = 0.01. Figure 2b shows the time evolution of the numerical
estimation of the instantaneous speed of the points with density I0 = 0.01. Both Figure 2a,b
also show that the results obtained numerically agree well with the asymptotic expansions
obtained by Equation (43). It should be noted that the truncation parameter here has no
influence on the rapid propagation of the epidemic and the fronts move at an exponential
speed similar to the fractional-order epidemic model based on pure Lévy flights [40].

(a)

(b)

Figure 1. Cont.
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(c)

Figure 1. (a) Profiles of the susceptible and infective waves moving to the right side at different
times obtained by solving Equations (19) and (20) with α = 1.2 and µ = 5× 10−6 < ν. The arrow
shows the direction of the front propagation. (b,c) Highlighting an algebraic decaying tail for the
susceptible and infective waves, i.e., 1− S and I ∼ y1 = x−(α+1) shown by the black dashed curves.
The duration of the simulation and the time interval between curves equal 30 and 6, respectively.

(a)

(b)

Figure 2. (a) Time evolution of the Lagrangian trajectory xL(t) at the leading edge of the infec-
tive waves such that I(xL(t), t) = I0, where I0 = 0.01. The value of µ is equal to 5 × 10−6.
The dashed curve corresponds to the asymptotic expansion of the Lagrangian trajectory, i.e., xL(t) ∼
t1/(α+1)e((1−θ)/(α+1))t. (b) Time evolution of the instantaneous velocity of the right-propagating
infective waves obtained by c(t) = dxL(t)/dt. The dashed curve corresponds to the asymptotic
expansion of the Lagrangian velocity, i.e., c(t) ∼ (1− θ)e((1−θ)/(α+1))t, highlighting the exponential
speed of the epidemic and also the agreement of the numerical result with the analytical velocity.
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By increasing the value of the truncation parameter µ, the algebraically decaying tail
of the solutions can be tamed. If we take µ = 10−4 < ν, both the susceptible and infective
fronts propagate so that their tails exhibit a tempered algebraic decaying, i.e., 1− S and
I ∼ y2 = e−µxx−(α+1) (see Figure 3). Figure 4 shows that the Lagrangian trajectory xL(t)
and the velocity c(t) obtained by numerically solving Equations (19) and (20) are in good
agreement with the results obtained analytically by Equations (44) and (45). As expected,
the infective fronts initially propagate at the minimum average speed cmin = 5× 102 and
then the front speed gradually increases so that after some time, it converges towards the
maximum front speed value cmax = 5× 103.

Figure 5 shows the dynamics of the right-moving susceptible and infective fronts for
µ = 10−3. As expected, for µ ≥ ν, the tails of the solutions for the susceptible and infective
fronts exhibit an exponential decay, i.e, 1− S and I ∼ y3 = e−νx (see Figure 5b,c). Figure 6
shows that the Lagrangian trajectory xL(t) and the velocity c(t) obtained by numerically
solving the model equations are in good agreement with the analytical results. In this case,
similar to the classical epidemic models, the infective fronts propagate at a constant speed
c = 5× 102. It should be noted that since in the first case (µ = 5× 10−6), the epidemic
fronts propagate over the entire domain during a shorter time compared to the other cases
(µ = 10−4 and µ = 10−3), for the first case, we consider the simulation duration equals 30.
However, for the others, it is equal to 90.

Figure 7 shows the time evolution of the susceptible and infective waves propagating
to the left side. Figure 7a shows the densities of the susceptibles and infectives at different
times. Figure 7b,c show that the tails of the solutions decay exponentially as ∼y = eνx.
Here, the simulation duration is equal to 90. In this case, for all values of the truncation
parameter, the fronts move at a constant velocity that is equal to c = 5× 102.

It should be noted that when we consider both the left-and right-sided truncated
fractional-order diffusion operators by choosing the strict values of the skewness parameter
β, i.e., −1 < β < 1, (β = 0 leads to a symmetric operator), both the left- and right-sided
derivatives affect the epidemic speed and the asymptotic behaviour of the front’s tail. In that
case, both the left- and right-moving front tails exhibit the same asymptotic behaviour
based on the values of the truncation parameter. For instance, if the truncation parameter µ
is set to 10−4, the tails of both the left- and right-moving fronts decay as ∼e−µxx−(α+1).

Figure 8a shows the time evolution of the Lagrangian trajectory xL(t) for the constant
value of the fractional-order derivative α = 1.2 and different values of the truncation
parameter µ. As we see, in all cases, the values of xL(t) initially increase linearly at a
constant speed on average equals 5 × 102 and then, for µ = 5 × 10−6, xL(t) increases
exponentially leading to an exponential and unbounded velocity of the infective fronts
(see Figure 2b), but for µ = 10−4, xL(t) increases gradually leading to the convergence
of the epidemic speed to the maximum velocity value cmax ≈ 5 × 103 (see Figure 4b),
and finally for µ = 10−3, xL(t) increases linearly leading to the constant speed c = 5× 102

(see Figure 6b).
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(a)

(b)

(c)

Figure 3. (a) Profiles of the susceptible and infective waves moving to the right side at different times
obtained by solving Equations (19) and (20) with α = 1.2 and µ = 10−4 < ν. The arrow shows the
direction of the front propagation. (b,c) Highlighting an exponentially tempered algebraic decaying
tail for the susceptible and infective waves, i.e., 1− S and I ∼ y2 = e−µxx−(α+1) shown by the black
dashed curves. The duration of the simulation and the time interval between curves equal 90 and 9,
respectively.
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(a)

(b)

Figure 4. (a) Time evolution of the Lagrangian trajectory xL(t) at the leading edge of the infective
waves such that I(xL(t), t) = I0, where I0 = 0.01. The value of µ is equal to 10−4. The dashed
curve corresponds to the analytical Lagrangian trajectory satisfies in the equation ln t + (1− θ)t−
µxL(t) − (α + 1) ln xL(t) = ln I0. (b) Time evolution of the instantaneous velocity of the right-
propagating infective waves obtained by c(t) = dxL(t)/dt. The dashed curve corresponds to the
analytical Lagrangian velocity obtained by c(t) = ((1− θ) + 1/t)/(µ + (α + 1)/xL(t)), highlighting
the agreement of the numerical result with the analytical velocity and also the convergence of
the epidemic speed towards the maximum epidemic speed value cmax ≈ 5× 103 (see the black
dashed line).
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(a)

(b)

(c)

Figure 5. (a) Profiles of the susceptible and infective waves moving to the right side at different times
obtained by solving Equations (19) and (20) with α = 1.2 and µ = 10−3 = ν. The arrow shows the
direction of the front propagation. (b,c) Highlighting an exponential decaying tail for the susceptible
and infective waves, i.e., 1− S and I ∼ y3 = e−νx shown by the back dashed curves. The duration of
the simulation and the time interval between curves equal 90 and 9, respectively.
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(a)

(b)

Figure 6. (a) Time evolution of the Lagrangian trajectory xL(t) at the leading edge of the infective
waves such that I(xL(t), t) = I0, where I0 = 0.01. The value of µ is equal to 10−3. The dashed
curve corresponds to the asymptotic expansion of the Lagrangian trajectory, i.e., xL(t) = (− ln I0 +

(1 − θ)t)/ν. (b) Time evolution of the instantaneous velocity of the right-propagating infective
waves obtained by c(t) = dxL(t)/dt. The dashed curve corresponds to the constant Lagrangian
velocity, i.e., c(t) = c̄ = (1− θ)/ν, highlighting the agreement of the numerical result with the
analytical velocity.
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(a)

(b)

(c)

Figure 7. (a) Profiles of the susceptible and infective waves moving to the left side at different times
obtained by solving Equations (19) and (20) with α = 1.2 and different values of the truncation
parameter µ = 5× 10−6, 10−4 and 10−3. The arrow shows the direction of the front propagation.
(b,c) Highlighting an exponential decaying tail for the susceptible and infective waves, i.e., 1− S and
I ∼ y = eνx shown by the black dashed curves. The duration of the simulation and the time interval
between curves equal 90 and 9, respectively.

Figure 8b shows the time evolution of the Lagrangian trajectory xL(t) for different
values of the fractional-order derivative α and a constant value of the truncation parameter
µ = 10−4. Since, the value of µ is constant, in all cases the Lagrangian velocity converges
towards a plateau showing the maximum average speed, but the time to reach that plateau
is not the same for different values of α. As we see, the smaller the value of α, i.e., the closer
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it is to 1, the faster the Lagrangian trajectory accelerates leading to the faster convergence
of the front speed towards the maximum speed compared to values of α that are closer to 2.

(a)

(b)

Figure 8. (a) Time evolution of the Lagrangian trajectory for fractional-order derivative α = 1.2
and different values of the truncation parameter µ. The blue, red and black curves correspond to
µ = 5× 10−6, µ = 10−4, and µ = 10−3, respectively. (b) Time evolution of the Lagrangian trajectory
for different values of the fractional-order derivative α and the truncation parameter µ = 10−4.
The blue, red and black curves correspond to α = 1.2, α = 1.6, and α = 1.99, respectively.

5. Conclusions

In this work, we have investigated the spatial propagation of the epidemics caused by
infectious diseases. We have considered a simple version of the epidemic models consisting
of susceptible and infective populations. The diffusion process resulting from the random
mobility of the infective individuals is taken into account in our model. Based on the
previous studies, in the case of the Brownian motion, the infective waves propagate into
the susceptible population at a constant speed and the tails of the travelling-wave solutions
exhibit an exponential decay, while in the case of pure (untruncated) Lévy flights, the left-
sided fractional derivative leads to an exponential and unbounded speed of the infective
waves moving to the right side, but generates a constant speed at the left side. In that
case, right-moving fronts have an algebraic tail. However, left-moving fronts exhibit an
exponential tail.

As a new study, we have applied the truncated Lévy flight to the proposed model.
Similar to the results obtained for the λ-truncated fractional-order Fisher–Kolmogorov
Equation [46], for the right-moving fronts, we have shown that the epidemic speed is
dependent on the level of the truncation parameter. In this case, we have considered a
left-sided truncated fractional-order diffusion operator. For small values of λ (λ & 0),
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the tails of the infective waves can decay algebraically leading to an exponential growth of
the epidemics. In that case, the truncation has no impact on the superdiffusive epidemics.
By increasing the value of λ, the algebraic decaying tails can be tamed leading to either an
upper bound on the epidemic speed representing the maximum speed or the generation of
the infective waves of a constant shape propagating at a minimum constant speed similar
to the classical models (second-order diffusion epidemic models). For the left-moving
fronts, our numerical results show that for different values of the truncation parameter,
the truncated left-sided fractional derivative generates the waves of a constant shape
moving at a constant speed. Obviously, considering the strict values of the skewness
parameter β, i.e., −1 < β < 1, leads to the effect of both the left-and right-sided truncated
fractional-order diffusion operators on the epidemic speed. In that case, based on the value
of the truncation parameter, the tails of both the left- and right-moving fronts have the
same asymptotic behaviour.

From an applied perspective, the untruncated power laws (pure Lévy flights) have
some drawbacks. As discussed in [57], in nature, due to the finite space, landscape and
physiological limitations, the occurrence of arbitrarily large displacements by the indi-
viduals following a pure Lévy flight is not realistic. In that case, one individual cannot
make displacements beyond an upper bound. By introducing truncated power-laws, such
an upper bound can thus be taken into account in the fractional-order diffusion models.
As mentioned by Hanert et al. [40], since modern epidemics caused by human infectious
diseases can propagate over the entire globe very quickly, the untruncated fractional-order
diffusion epidemic models can better represent such epidemics. However, concerning the
infectious diseases of animals doing a Lévy flight, the propagation of the epidemics is more
smooth, our findings thus suggest that truncated fractional-order diffusion models are
more appropriate for modelling the animal diseases.

The space fractional-order epidemic models could be further improved by considering
the non-Markovian diffusion processes in which the pdf for waiting times between dis-
placements have a power-law asymptotic behaviour as ∼τ−(γ+1), where 0 < γ < 1. In that
case, the time derivative of order one is replaced by a time fractional derivative of order
γ [18]. As an example of such diffusion processes, Brockmann et al. [26] observed that
the dispersion of bank notes has memory effects. In order to numerically solve time-space
fractional diffusion equations, Hanert [52] has proposed an efficient and flexible scheme.
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