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Abstract

Qatar’s rapid industrialization, notably in its capital city Doha, has spurred a surge in land

reclamation projects, leading to a constriction of the entrance to Doha Bay. By reducing and

deflecting the ocean circulation, land reclamation projects have reduced the effective disper-

sion of wastewater introduced into the bay and hence degraded the water quality. Here, we

assess fluctuations in water residence time across three distinct eras (1980, 2000, and

2020) to gauge the impact of successive land reclamation developments. To do this, we

couple the multi-scale ocean model SLIM with a Lagrangian model for water residence time

within Doha’s coastal area. We consider three different topographies of Doha’s shoreline to

identify which artificial structures contributed the most to increase water residence time. Our

findings reveal that the residual ocean circulation in Doha Bay was predominantly impacted

by northern developments post-2000. Between 1980 and 2000, the bay’s residence time

saw a modest rise, of about one day on average. However, this was followed by a substan-

tial surge, of three to six days on average, between 2000 and 2020, which is mostly attribut-

able to The Pearl mega artificial island development. Certain regions of the bay witnessed a

tripling of water residence time. Given the ongoing population expansion along the coast, it

is anticipated that the growth of artificial structures and coastal reclamation will persist,

thereby exacerbating the accumulation of pollutants in the bay. Our findings suggest that

artificial offshore structures can exert far-reaching, non-local impacts on water quality,

which need to be properly assessed during the planning stages of such developments.

Introduction

The Arabian/Persian Gulf (hereafter the Gulf, Fig 1a) has undergone a rapid transformation

over the past two decades, propelled by the surge in oil and gas extraction. This rapid develop-

ment has led to extensive coastal alterations, including the construction of artificial islands,
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waterfronts, causeways, and ports [1]. These developments were facilitated through a combi-

nation of land reclamation, dredging, and construction activities. However, these modifica-

tions have not been without environmental consequences. They have resulted in significant

marine habitat loss, severely affecting coral reefs, seagrass meadows, and mangroves [2, 3].

Moreover, these alterations have had far-reaching impacts, as they have modified ocean circu-

lation and wave propagation patterns. Changes in the dynamics of currents and waves have

influenced the transport of sediments, biological material, and energy across separated areas

within the seascape [4]. These processes have led to an increase in sediment volume upstream

of the structures and a decrease downstream, alterations to larval connectivity pathways, and

changes in pollutant dispersal patterns [5].

Doha Bay (hereafter the Bay), a semi-enclosed ocean body bordering Qatar’s capital city of

Doha, epitomizes the rapid transformations that have occurred in the Gulf’s coastal topogra-

phy. The Bay’s distinctive crescent-shaped shoreline is a product of a substantial land reclama-

tion project, initiated in 1974, which spanned 750 hectares and led to the establishment of the

Diplomatic Quarter, also known as West Bay, at its northern extremity [6] (Fig 1b, location 3).

The pace of development within the Bay intensified towards the end of the 1990s, leading to

the reclamation of more land along the coastline to develop new projects such as Hamad Inter-

national Airport and Doha’s Port extension to the south (Fig 1c, locations 7 and 8). This was

subsequently followed by the major undertakings of Lusail City and The Pearl projects, to the

north of the Bay, in the mid-2000s ([7], Fig 1d, locations 9 and 10). The continuous modifica-

tion of Doha’s shoreline topography over the last 40 years has resulted in an increased constric-

tion of the Bay’s entrance that reduced the water exchanges with the Gulf.

Ref. [8] followed a stakeholder participatory approach to highlight the detrimental impacts

of these significant land reclamation projects. Their findings revealed that land reclamation

projects, when executed without adequate planning, can inflict severe damage on coastal and

marine environments. Consequences include heightened sedimentation, odor, and turbidity,

coupled with pH value fluctuations. These conditions could potentially disrupt the food chain

and deplete oxygen levels crucial for marine life survival. Similar effects of artificial structures

on the surrounding water quality have been observed elsewhere in the Gulf as well. This is for

instance the case around the Palm Jumeirah Island (Dubai, UAE) where the altered current

patterns in the surrounding waters have reduced wastewater dispersal, hence leading to nutri-

ent enrichment, increased concentrations of Chlorophyll-a and decreased levels of dissolved

oxygen [9, 10]. More broadly, several studies have underscored the detrimental impacts of

land reclamation on water quality, particularly when carried out without comprehensive plan-

ning. Notable examples include reclamation projects in Qinzhou and Bohai Bay in China [11,

12], and along the Shihwa coast in the Republic of Korea [13].

Water residence time is a simple diagnostic to assess water quality in a particular coastal

areas such as a bay, a lagoon or an estuary [14] It measures the time that a water parcel spends

in a particular system before leaving it through a defined boundary [15, 16]. In the context of

water quality, water residence time is important because it influences the dilution and disper-

sion of pollutants [17]. If the residence time is short, pollutants that enter the water are quickly

flushed out and dispersed into a larger body of water, reducing their concentration and poten-

tial impact on water quality. However, if the residence time is long, pollutants can accumulate,

leading to higher concentrations that can negatively impact water quality. Semi-enclosed

coastal areas like bays or lagoons often receive pollutants from various sources, such as urban

runoff and industrial discharges. If these areas also have long water residence times due to fac-

tors like limited circulation with the open ocean, these pollutants can build up and lead to sig-

nificant water quality issues [18]. The accumulation/trapping of particles can also occur due to
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Fig 1. (a) The central Gulf’s bathymetry, featuring Qatar’s Exclusive Economic Zone (EEZ, depicted in green), and

detailed views of the coastal area offshore of Doha with the topographies of (b) 1980, (c) 2000 and (d) 2020. Particular

locations highlighted in the close-up views are: 1. Lusail causeway #1, 2. West Bay, 3. Doha Bay, 4. Old Doha Port, 5.

Lusail causeway #2, 6. Legtaifiya Lagoon, 7. Doha Port extension, 8. Hamad International Airport, 9. Lusail City and

10. The Pearl. The primary wastewater outfalls in Doha, represented by magenta dots in panel (d), are: Diplomatic

Area (O1), Tennis Court (O2), Al-Rumaila (O3), and Souq Waquif (O4). The hatched area shown in the detailed views

is where water residence time is computed. The green line in panel (d) represents the location of the transect along

which residence time values are computed in Fig 5. The base map was sourced from OpenStreetMap and

OpenStreetMap Foundation. This figure contains information from OpenStreetMap and OpenStreetMap Foundation,

which is made available under the Open Database License (ODbL).

https://doi.org/10.1371/journal.pone.0296715.g001
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stronger coastward component of eddy circulations, as seen in the case of Gulf of Kachchh, the

northwestern Arabian Sea [19].

The objective of this study is to assess how coastal reclamation projects have modified water

residence time in the Bay. To achieve this objective, we simulated the ocean circulation in

Doha’s coastal area for the coastal topographies of 1980, when the Bay had already its crescent

shape but prior to all the major development projects, 2000, once the reclamation work for the

new airport and port extension had already been initiated and 2020, after the completion of

Lusail City and The Pearl projects. We select these three distinct years as representative mile-

stones of Doha Bay’s developmental trajectory: the initial situation with limited reclamation,

followed by extensive reclamation in the southern part of the Bay, and then a similar expansion

in the northern part. The model’s spatial resolution reaches less than 50 m along the shoreline

and hence accurately represent the impact of artificial offshore structures on the ocean circula-

tion patterns. We subsequently used the simulated currents to calculate water residence time

in the Bay and hence estimate its increase due to land reclamation.

Materials and methods

Study area

Qatar’s peninsula is located in the central part of the Gulf, a semi-enclosed, hypersaline and

shallow ocean basin connecting the Indian Ocean through the Strait of Hormuz and Sea of

Oman (Fig 1a). The surrounding waters of Qatar are generally not deeper than 20 meters, with

the Bay’s depth not exceeding 10 meters. This shallow depth makes the Bay particularly condu-

cive to land reclamation projects. The period between 1980 and 2000 saw the first major devel-

opments within the Bay, primarily due to land reclamation for the construction of Hamad

International Airport and Doha’s Port extension [7]. Both of these projects were located in the

Bay’s southern region (Fig 1c, locations 7 and 8). During this time, the Legtaifiya Lagoon (Fig

1c, location 6) was also completed, although its construction was primarily land-based. By

2020, the development of The Pearl and Lusail City was largely completed (Fig 1d, locations 9

and 10). These projects significantly altered the topography of the Bay’s northern region.

In the Gulf, the large-scale circulation is predominantly driven by wind and density gradi-

ents [20–22]. However, in shallow coastal regions like those surrounding Qatar, the circulation

becomes more influenced by tide and wind. The bathymetry and features of the coastline then

become crucial in modifying the circulation, leading to the generation of tidal eddies and local

flow intensification exceeding 1 m/s through narrow passages, such as those between breakwa-

ters or within artificial waterways [23]. The Gulf’s primary wind patterns are northerly and

northwesterly, with the Shamal winds contributing significantly [24–26]. These Shamal winds

persist over Qatar during both summer and winter seasons, although they occur more fre-

quently and with greater intensity during the winter [27, 28]. Apart from the Shamal winds,

the easterly Nashi winds have significant influence along the east coast of Qatar [29].

In addition to being vulnerable to oil spills from the Gulf [30], Doha Bay is subject to pollut-

ant influx from a variety of local sources, including wastewater discharges from sewage and

water treatment facilities. Four primary outfalls—Souq Waquif, Al-Rumaila, Tennis Court, and

Diplomatic Area—serve as conduits for municipal sewage and stormwater, thereby continu-

ously introducing pollutants into the Bay (Fig 1d). A water quality risk assessment conducted

by [31] underscored the eutrophication risk near the Souq Waqif outfall, which drains nutri-

ents from a considerably larger area compared to the other three outfalls. The study also

emphasized the environmental risk tied to the accumulation of particle-bound heavy metals

and other hazardous pollutants within the harbour area at the Souq Waqif outfall and within

250 m of the Al-Rumaila, Tennis Court, and Diplomatic outfalls.
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Ocean circulation model

In this study, we employ the multi-scale ocean model SLIM (Second-generation Louvain-la-

Neuve Ice-ocean Model, www.slim-ocean.be) to simulate the ocean circulation around Qatar.

SLIM solves the ocean circulation governing equations on an unstructured mesh, which allows

for locally increased resolution to accurately capture variations in bathymetry and coastal

topography [32, 33]. Our focus is on simulating the ocean circulation within Doha’s coastal

area, but our model encompasses a wider area, extending approximately 200 km east of Qatar.

Given the area’s shallow depth—less than 10 m—we utilize the 2D barotropic version of SLIM

[34, 35]. The model’s mesh achieves a horizontal resolution of about 50 m along Doha’s shore-

line and around artificial structures (Fig 2). As the complexity of the coastline topography

increases with the addition of new artificial structures, the number of mesh elements corre-

spondingly increases. Specifically, the meshes for the 1980, 2000, and 2020 topographies com-

prise approximately 2.7e4, 3.4e4, and 4.5e4 elements, respectively.

In our model, we parameterize the bottom stress using a Chézy-Manning drag formulation

with a Manning coefficient of n = 0.025 m−1/3s. The model is driven by wind data sourced

from the European Centre for Medium-Range Weather Forecasts’ (ECMWF) ERA5 reanalysis,

which offers a spatial resolution of 31 km and a temporal resolution of 1 hour. At the model’s

open boundary, we impose a combination of depth-averaged velocity and sea surface elevation

Fig 2. Model mesh in Doha’s coastal area, incl. The Bay, for the coastal topographies of 1980, 2000 and 2020, with close-up views on the main artificial

structures. The mesh resolution is about 50 m along the shoreline and around artificial structures. The base map was sourced from OpenStreetMap and

OpenStreetMap Foundation. This figure contains information from OpenStreetMap and OpenStreetMap Foundation, which is made available under

the Open Database License (ODbL).

https://doi.org/10.1371/journal.pone.0296715.g002
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provided by the Mercator global ocean analysis, which is generated by running the global data-

assimilated ocean model NEMO on a 1/12˚ grid, and from the OSU TPXO9-atlas tidal dataset

[36]. The model’s bathymetry is extracted from the GEBCO 2022 global terrain model, which

offers a resolution of 15 arc-seconds [37]. For the purposes of this study, we considered the

bathymetry dataset to be representative of the conditions in 2020. Given the lack of available

bathymetry data for 1980 and 2000, we made the assumption that the bathymetry for these

years mirrored that of 2020. Furthermore, we posited that areas where artificial structures had

not yet been established would have a depth of 2 meters. This is obviously an approximation

but that depth is representative of water depth along Doha’s shoreline. It is further common

for land reclamation projects to take place in relatively shallow waters to minimize the amount

of fill needed and to control costs. Our model has been validated against sea surface elevation

and current velocity observations in Qatar’s coastal waters [23]. For additional validation in

Doha Bay during the time period considered in this study, see S1 Fig. For additional details on

the model formulation, see [23].

Water residence time model

Residence time is typically defined as the duration required for a parcel of water to exit a speci-

fied region of interest for the first time [38]. Given that parcels originating from different loca-

tions and times within the region may take varying durations to exit, residence time is

inherently a function of both location and time. It can be calculated using either a forward-in-

time or backward-in-time numerical integration [39]. In this study, we employ a forward

Lagrangian particle-tracking approach. This method involves releasing a large number of vir-

tual particles in each mesh element within the area of interest and tracking them until they exit

the area. The residence time of each particle is then recorded as the time elapsed between its

release and its departure from the area of interest (see extent in Fig 1). This approach has been

utilized in several studies to estimate water residence time in coastal systems, e.g. [40–42].

Our Lagrangian particle tracker employs two-dimensional ocean currents to advect virtual

particles from their release points, incorporating a diffusive component expressed as a random

walk with a diffusivity of K = αΔ1.15, where α = 2 × 10−4 m0.85/s and Δ represents the local

mesh resolution [43]. As this represents a depth-averaged transport model, the transport veloc-

ity must include bathymetry and diffusivity gradient components to be consistent with the 2D

Eulerian advection-diffusion equation [44]. Over a 15-day period, we released one particle

every three hours across all mesh elements within our area of interest. This extended release

period ensured that the particles experienced a wide spectrum of tidal conditions throughout

the entire spring-neap cycle. Consequently, a total of 120 particles were released across all

mesh elements within the area of interest, which yields a total of about 4.36 × 105, 5.39 × 105

and 6.49 × 105 particles for the 1980, 2000 and 2020 meshes, respectively. We then simulated

the transport of these particles over a three-month period. By the end of the simulation, nearly

all particles had exited the area of interest.

For each particle released from a mesh element with index i, we computed the time it takes

for the particle to exit the area of interest. At the end of the simulation, we computed the aver-

age of these durations to derive a unique value of the residence time, denoted as θi, for each

mesh element within the area of interest. The residence time distribution is therefore a piece-

wise constant function. Given the fine mesh resolution in the area of interest, this piecewise

constant representation of the residence time produces smooth results. Once we have the resi-

dence time distribution, we can calculate its average value over the entire area of interest (or a
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portion thereof) using the formula:

�y ¼

PN
i¼1
yiAi

PN
i¼1

Ai

;

where N represents the number of mesh elements in the area where the average is computed,

and Ai denotes the surface area of element i.

Results

We assessed the changes in water residence time between 1980, 2000 and 2020 by simulating

the ocean circulation in the coastal area surrounding Doha Bay for the topographies of those

three years. The ocean circulation in this area is predominantly tidally-driven, yet it is also

influenced by wind patterns. These wind patterns exhibit seasonal variations, largely governed

by the Shamal winds, which intensify during winter and subside in summer [27]. We hence

simulated ocean currents under both winter (01 December 2021—28 February 2022) and sum-

mer (01 June—31 August 2022) wind conditions. These forcings were then maintained across

all three topographies to isolate the influence of topographical changes on the ocean circula-

tion and the subsequent impact on the residence time distribution.

Ocean circulation patterns

Alterations to the Bay’s circulation patterns, driven by topographical modifications, can be

visualized through the computation of residual flow patterns. These patterns were derived by

averaging the simulated ocean currents over the three-month simulation period for both win-

ter and summer seasons (streamlines in Fig 3). By doing that, we obtain a picture of the net

movement of water over each season and hence better identify how currents are moving water

masses through the area. However, since the tidal currents are the most energetic near the

coast, we also computed the mean current speed obtained by averaging the currents amplitude

over each season (background color in Fig 3). In that case, the effect of the tides is not filtered

out and we can identify areas where the flow is most intense.

The offshore residual flow patterns are mostly southward. However, on approaching the

shore, these flows interact with the coastal topography and are deflected by artificial structures.

For instance, Lusail’s causeway #1 (already present in 1980) and #2 (present from 2000) deflect

the southward flow eastward, but only over a limited distance. In the scenarios of 1980 and

2000, the flow resumes its southward direction south of Lusail’s causeways, extending all the

way to the Bay, where it veers east, forming a “leaky” eddy just north of Doha’s Port. Stream-

lines can escape this eddy and merge with the offshore southward flow. However, the flow pat-

terns in 2020 significantly differ as The Pearl development acts as a barrier to the southward

flow, preventing it from reaching the Bay. Instead, it is deflected eastward, where it merges

with the offshore circulation. South of The Pearl, the circulation is weaker and consists of

smaller eddies. These eddies also appear to be less “leaky” than the one present in 1980 and

2000. It’s also noteworthy to mention the intensification of the flow in Legtaifiya Lagoon and

between the main island of The Pearl and the cluster of smaller islands to the east.

Upon comparing these various flow patterns, it appears that the differences are more pro-

nounced for different topographies than different seasons with the same topography. This

observed limited seasonal variability supports the assertion that the circulation close to the

shore is primarily driven by tidal forces. The residual flow, which is directed southward,

remains mostly unaffected by the southern developments in the Bay that occurred between

1980 and 2020, such as the significant land reclamation for the airport construction. Conse-

quently, alterations to the Bay’s flow patterns between 1980 and 2000 are relatively minor.
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However, from 2000 to 2020, most reclamation projects were situated north of the Bay, thereby

exerting a greater impact on the incoming flow to the Bay. The cumulative effect of these

changes results in a sheltering of the Bay from the southward flow and a weakening of the

overall circulation within the Bay.

Fig 3. Residual flow circulation patterns (black streamlines) and mean current speed in the Bay for winter (top) and summer (bottom), and for

the topographies of 1980, 2000 and 2020. The colorbar is the same for all figures. The base map was sourced from OpenStreetMap and OpenStreetMap

Foundation. This figure contains information from OpenStreetMap and OpenStreetMap Foundation, which is made available under the Open Database

License (ODbL).

https://doi.org/10.1371/journal.pone.0296715.g003
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Residence time patterns

Alterations to ocean circulation patterns directly influence the residence time. Areas that are

sheltered from the main circulation by artificial structures have a larger residence time. For

instance, the region immediately south of Lusail’s causeway #1 (Fig 1b, location 1) had a resi-

dence time exceeding 30 days already in 1980 (Fig 4). In contrast, the remaining coastal area

had a relatively short and uniform residence time in 1980, with a mean of 5–7 days and a stan-

dard deviation of less than 5 days. Overall, the residence time is a bit longer in winter than in

summer. Water from the Bay required approximately 8–10 days to exit the area of interest.

Fig 4. Residence time distribution in the Bay for winter (top) and summer (bottom), and for the topographies of 1980, 2000, 2020. The colorbar is

the same for all figures. The base map was sourced from OpenStreetMap and OpenStreetMap Foundation. This figure contains information from

OpenStreetMap and OpenStreetMap Foundation, which is made available under the Open Database License (ODbL).

https://doi.org/10.1371/journal.pone.0296715.g004
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Between 1980 and 2000, developments were primarily concentrated in the southern part of

the Bay, thus having a minimal impact on the southward residual circulation entering the Bay.

As a result, the distribution of residence time in Doha’s coastal area experienced minor alter-

ations during this period (Fig 4). On average, it saw an increase of roughly one day (+10% in

winter and +25% in summer). These increases were chiefly concentrated in areas immediately

adjacent to the new structures, such as the regions sheltered by Lusail’s causeway #2, the port

extension, and south of the airport reclamation (Fig 1c, locations 5, 7 and 8). Consequently,

the standard deviation rose by 16% in winter and 25% in summer. Despite a more substantial

relative increase in summer, the patterns of residence time remained fairly consistent across

both seasons.

From 2000 to 2020, the residence time experienced a more marked increase. On average,

across the entire area of interest, it rose by approximately 3 days (+40%) in winter and 6 days

(+79%) in summer. However, these average changes conceal significantly larger local differ-

ences. The creation of the Lusail City artificial islands (Fig 1c, location 9) reduced the circula-

tion along the coast and just east of these islands, leading to an increase in the residence time

in that area. There is now an approximately 2 km wide swath where the residence time exceeds

20 days along the entirety of Lusail’s shoreline. The most substantial increase, however, per-

tains to the entire coastal area located south of The Pearl development (Fig 1c, location 10),

which encompasses the Bay. This area undergoes a substantial increase, with residence times

soaring from about 10 days to over 25 days in an area covering roughly 25 km2 between The

Pearl and Doha’s Port at the southern end of the Bay. This increase is clearly evident when cal-

culating the residence time along a north-south transect from The Pearl to Doha’s Port (Fig 5,

see transect location in Fig 1d). In winter, the residence time rose from about 13 days in 1980

to approximately 24–25 days in 2020 (an 80–90% increase). In summer, it escalated from

about 8–9 days to roughly 25–30 days (a 200–250% increase). Interestingly, the increase is not

confined to the immediate vicinity of the structure but extends over more than 7 km away.

More locally, the water residence time in some of the blind channels and pathways within The

Pearl, such as the main marina, approaches nearly 50 days.

To evaluate more accurately the potential water quality concerns near the wastewater out-

falls in the Bay, we also calculated the average residence time within a 1-km radius of each out-

fall (Fig 6). The average residence times across the four outfalls are quite similar. The

difference between the conditions in 1980 and those in 2000 is also relatively minor. For both

winter and summer conditions, we note an increase of approximately 2 to 3 days. Although

the absolute changes are comparable, the average residence time in winter is about 5 days lon-

ger than in summer. When comparing these figures with those obtained using the 2020 topog-

raphy, we once again notice more substantial changes, with an increase of roughly 8 days in

winter and 12 days in summer. This results in average residence times exceeding 25 days for

all four outfalls.

Discussion and conclusions

Over the last 40 years, land reclamation initiatives along Doha’s coastline have resulted in an

increased water residence time within Doha’s coastal waters and in the Bay in particular. This

increase is primarily attributed to projects undertaken after 2000, north of the Bay, namely

The Pearl and Lusail City. Earlier developments to the south of the Bay, including the port

extension and airport reclamation, had a less significant impact. The alterations in residence

time are a direct consequence of changes to the ocean circulation along the coast and within

the Bay itself. The artificial islands and offshore developments deflect the southward residual

circulation off Doha. Developments to the north of the Bay lead to increased sheltering from
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the main circulation, thereby reducing the Bay’s flushing capacity. While the Bay’s water qual-

ity is currently within the acceptable limits [31], our findings indicate a potential for rapid

deterioration in the face of Doha’s growing population, driven mostly by temporary visitors,

coastal-based industries and activities, and future land reclamation projects that could further

limit water exchanges with the Gulf.

Our research underscores the extensive impact that inadequately planned artificial struc-

tures can have on water quality. The Pearl development, for instance, has led to the sheltering

of the Bay from the primary southward ocean currents, resulting in a weakened flushing of the

Bay’s waters and promoting the accumulation of pollutants discharged into the Bay. From

1980 to 2020, the average rise in water residence time across the studied area, which includes

and extends beyond the Bay, spans roughly 4 to 7 days. However, our findings reveal that the

water residence time in the region directly south of The Pearl, which encompasses the Bay and

Doha’s most iconic waterfront, experienced a staggering increase of up to 20 days, effectively

more than tripling the initial duration. This surge is primarily attributable to the construction

of The Pearl. Notably, this increase is not confined to narrow, blind channels within the artifi-

cial structure itself, but extends several kilometers away from the structure.

Fig 5. Residence time values along a 7.5km north-south transect connecting The Pearl to Doha’s Port. It highlights the residence time increase in

the entire Bay area following the construction of The Pearl. The location of the transect is shown in Fig 1.

https://doi.org/10.1371/journal.pone.0296715.g005
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The Pearl, a mega artificial island with a striking geometric design visible from space, exem-

plifies the wave of such projects that have swept across the Gulf over the past two decades.

These projects, designed to capture public attention and offer prime real estate, include The

Palm and The World Islands in Dubai (UAE), Durrat Al Bahrain and Diyar Al Muharraq in

Bahrain, and Towers Island in Kuwait [45]. During their design phase, the extensive environ-

mental impact of these projects was occasionally underestimated. Beyond introducing new

sources of pollution offshore, the construction of these structures led to significant seafloor

alterations and the destruction of marine ecosystems, including coral reefs, seagrass meadows,

and mangroves [2, 46]. By altering ocean currents, these developments also have non-local

consequences. They can exert far-reaching downstream effects, impacting water quality several

kilometers away [9]. These observations concur with the findings of Zhang et al. [12] who

showed that land reclamations in Bohai Bay (China) significantly altered the residual circula-

tion and tidal prisms. Such alterations led to a decline in water quality, characterized by height-

ened retention of dissolved inorganic nitrogen in the bay and a rise in phytoplankton carbon

concentrations.

To mitigate the environmental impact of land reclamation projects in Gulf countries, a

multifaceted approach that balances development with environmental preservation is essential.

Enhancing the effectiveness of Environmental Impact Assessment (EIA) is a critical step,

where EIA must be comprehensively integrated into decision-making processes, ensuring

thorough consideration of environmental impacts and alternatives [47]. Gulf countries should

strengthen EIA legislation, including detailed procedural guidelines for assessments, public

participation, and monitoring of ecological impacts. This can be achieved by adopting a strate-

gic approach to environmental assessment, which accounts for cumulative effects of multiple

projects and involves stakeholders in a more meaningful way, thereby improving water quality

management and preserving key ecosystems. Furthermore, establishing a legal framework

mandating spatial mapping of sensitive coastal and marine environments would aid in identi-

fying and protecting vulnerable areas from the adverse effects of reclamation activities. By

doing so, Gulf countries could ensure a more sustainable approach to development, where the

Fig 6. Average residence time within 1km of each outfall in the Bay for winter (left) and summer (right), and for the coastal topographies of 1980,

2000 and 2020.

https://doi.org/10.1371/journal.pone.0296715.g006
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preservation of biodiversity and ecological integrity is given equal importance as economic

growth.

Improving the design of artificial structures is another avenue to reduce their environmen-

tal impact. Artificial structures built on land reclamation should include open channels allow-

ing ocean currents to partially flow through the structure. This permeability would facilitate

the flushing of the area downstream and hence improve its water quality [48]. Very Large

Floating Structures (VLFS) also present an interesting alternative to traditional land reclama-

tion methods, especially in terms of reducing their impact on ocean currents dynamics and

subsequently on water quality [49]. They consist in expansive, man-made platforms that float

on the water’s surface and have been designed for various purposed such as airports, hotels, or

agricultural space [50]. While they are most cost-effective in areas where water depth is signifi-

cant and might thus not be suitable everywhere in the Gulf, their environmental impact is

much lower than land reclamation. VLFS do not create physical barriers that could alter ocean

currents, which is crucial for maintaining water quality. Furthermore, they do not require the

installation of permanent structures over the sea bed, thus preserving benthic habitats. They

can further be dismantled if the sea area is needed for other purposes in the future.

As with any modelling study, it is important to acknowledge the limitations and assump-

tions inherent to our approach. Firstly, our model focuses solely on ocean currents, excluding

wind-generated waves. Consequently, we do not account for transport pattern alterations

resulting from wave deflection by artificial structures. The impact of waves on transport pro-

cesses, particularly through the Stokes drift, can be significant for sediment erosion and accre-

tion near structures built perpendicular to the shoreline [51]. The influence of Stokes drift on

pollutant transport dynamics in Doha Bay is however expected to be limited. On the one hand,

the narrow and curved configuration of the Strait of Hormuz prevents swell waves from pene-

trating into the Gulf, leading to a wave climate in both the Gulf and Doha Bay that is predomi-

nantly shaped by locally generated wind waves [52]. On the second hand, the bay is sheltered

from the prevailing southeastward Shamal winds and wave growth is thus fetch-limited as the

winds move off the land and back onto the water [53]. Another assumption is that our model

employs a two-dimensional barotropic approach, meaning that the vertical ocean circulation

dynamics are neglected. This assumption is supported by Doha Bay’s shallow depth and signif-

icant tidal amplitude. Lastly, we use residence time as a surrogate for water quality. This is an

approximation, as water quality is affected by various pollutants, each undergoing distinct

chemical reactions like hydrolysis, oxidation-reduction, photolysis, biotic transformation,

adsorption, among others [54]. In this study, we implicitly assume that these complex chemical

processes occur more slowly than the Bay’s flushing by ocean currents. Thus, in the short

term, flushing is presumed to be the primary determinant of water quality in the Bay.

While Qatar’s population growth is not projected to be particularly strong in the near future

[55], Doha is anticipated to continue being a hub for major international events, such as the

2022 World Cup. There are for instance talks of a potential bid to host the 2036 Olympic

Games [56]. These high-profile events draw a considerable number of visitors to Doha, thereby

increasing the strain on the city’s sewage system and the wastewater discharge into the Bay.

Simultaneously, other offshore projects are under consideration, which could further alter the

Bay’s topography. One such project is the Sharq Crossing, a proposed infrastructure develop-

ment that aims to link West Bay with Hamad International Airport via a 10-kilometer network

of bridges and tunnels crossing the Bay [57]. The combination of increased wastewater dis-

charge and the additional narrowing of the Bay’s entrance due to these developments could

potentially exacerbate water quality issues in the Bay. Therefore, we strongly advise that any

future developments along Doha’s shoreline should be planned with a comprehensive assess-

ment of their overall environmental impact.
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Supporting information

S1 Fig. Ocean model validation. Although the model we employ has previously been vali-

dated for sea surface elevation and current velocity within Doha Bay and northeast of Qatar,

we had the opportunity to access additional sea surface elevation measurements from the cen-

ter of the Bay (25˚19’48.0“N, 51˚33’36.0“E) taken between December 8, 2021, and January 17,

2022. This period aligns with the winter season simulated in our model. While the model’s

generated sea surface elevation exhibits a slightly smaller magnitude than the observed data,

the simulation closely mirrors the actual observations. The root mean square error (RMSE)

between the simulated and observed elevations amounts to 9.6 cm. This result also indicates

that the tidal amplitude within the Bay exceeds one meter. Given the Bay’s limited water

depth, this suggests that the flow within the Bay is predominantly influenced by the tides.

(TIF)
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22. Kämpf J, Sadrinasab M. The circulation of the Persian Gulf: A numerical study. Ocean Science. 2005;

2:27–41.

23. Hanert E, Mohammed AV, Veerasingam S, Dobbelaere T, Vallaeys V, Vethamony P. A multiscale

ocean modelling system for the central Arabian/Persian Gulf: From regional to structure scale circula-

tion patterns. Estuarine, Coastal and Shelf Science. 2023; 282:108230. https://doi.org/10.1016/j.ecss.

2023.108230

24. Al Senafi F, Anis A. Shamals and climate variability in the Northern Arabian/Persian Gulf from 1973 to

2012. International Journal of Climatology. 2015; 35(15):4509–4528. https://doi.org/10.1002/joc.

4302

25. Yu Y, Notaro M, Kalashnikova OV, Garay MJ. Climatology of summer Shamal wind in the Middle East.

Journal of Geophysical Research: Atmospheres. 2016; 121(1):289–305. https://doi.org/10.1002/

2015JD024063

26. Aboobacker V, Shanas P, Al-Ansari EM, Sanil Kumar V, Vethamony P. The maxima in northerly wind

speeds and wave heights over the Arabian Sea, the Arabian/Persian Gulf and the Red Sea derived

from 40 years of ERA5 data. Climate Dynamics. 2021; 56:1037–1052. https://doi.org/10.1007/s00382-

020-05581-z

27. Rao PG, Hatwar H, Al-Sulaiti MH, Al-Mulla AH. Summer Shamals over the Arabian Gulf. Weather.

2003; 58(12):471–478. https://doi.org/10.1002/wea.6080581207

28. Aboobacker VM, Shanas PR, Veerasingam S, Al-Ansari EM, Sadooni FN, Vethamony P. Long-term

assessment of onshore and offshore wind energy potentials of Qatar. Energies. 2021; 14(4):1178.

https://doi.org/10.3390/en14041178

29. Aboobacker V, Samiksha S, Veerasingam S, Al-Ansari EM, Vethamony P. Role of shamal and easterly

winds on the wave characteristics off Qatar, central Arabian Gulf. Ocean Engineering. 2021;

236:109457. https://doi.org/10.1016/j.oceaneng.2021.109457

PLOS ONE 40-year impact of land reclamation on Doha Bay’s water residence time

PLOS ONE | https://doi.org/10.1371/journal.pone.0296715 January 31, 2024 15 / 17

https://doi.org/10.1016/j.jhydrol.2012.08.027
https://doi.org/10.3390/w14040634
https://doi.org/10.1016/j.scitotenv.2022.154183
http://www.ncbi.nlm.nih.gov/pubmed/35231516
https://doi.org/10.1016/j.oceaneng.2022.113483
https://doi.org/10.1016/j.oceaneng.2022.113483
https://doi.org/10.1016/j.ocecoaman.2013.12.018
https://doi.org/10.4319/lo.2002.47.5.1545
https://doi.org/10.4319/lo.2002.47.5.1545
https://doi.org/10.1016/0278-4343(84)90014-1
https://doi.org/10.1007/s10236-006-0067-0
https://doi.org/10.1016/j.marpolbul.2012.05.033
https://doi.org/10.1016/j.marpolbul.2012.05.033
http://www.ncbi.nlm.nih.gov/pubmed/22732143
https://doi.org/10.1002/2015JC011038
https://doi.org/10.1016/j.apm.2011.05.040
https://doi.org/10.1016/j.ecss.2023.108230
https://doi.org/10.1016/j.ecss.2023.108230
https://doi.org/10.1002/joc.4302
https://doi.org/10.1002/joc.4302
https://doi.org/10.1002/2015JD024063
https://doi.org/10.1002/2015JD024063
https://doi.org/10.1007/s00382-020-05581-z
https://doi.org/10.1007/s00382-020-05581-z
https://doi.org/10.1002/wea.6080581207
https://doi.org/10.3390/en14041178
https://doi.org/10.1016/j.oceaneng.2021.109457
https://doi.org/10.1371/journal.pone.0296715


30. Anselain T, Heggy E, Dobbelaere T, Hanert E. Qatar Peninsula’s vulnerability to oil spills and its implica-

tions for the global gas supply. Nature Sustainability. 2023; 6(3):273–283. https://doi.org/10.1038/

s41893-022-01037-w

31. Al Mamoon A, Keupink E, Rahman MM, Eljack ZA, Rahman A. Sea outfall disposal of stormwater in

Doha Bay: Risk assessment based on dispersion modelling. Science of the Total Environment. 2020;

732:139305. https://doi.org/10.1016/j.scitotenv.2020.139305 PMID: 32438164
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