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The coupling of physically-based models for surface and subsurface water flows is a recent concern. The
study of their interactions is important both for water resource management and environmental studies.
However, despite constant innovation, physically-based simulations of water flows are still time consum-
ing. That is especially problematic for large and/or long-term studies, or to test a large range of
parametrizations with an adjoint model. As the current trend in computing sciences is to increase the
computational power with additional computational units, new model developments are expected to
scale efficiently on parallel infrastructures. This paper describes a coupled surface–subsurface flow model
that combines implicit and explicit time discretizations for the surface and subsurface dynamics, respec-
tively. Despite that the surface flow has a faster dynamics than the subsurface flow, we are able to use a
unique nearly-optimal time step for each submodel, hence improving the resources use. The surface
model is discretized with an implicit control volume finite element method while the subsurface model
is solved by means of an explicit discontinuous Galerkin finite element method. The surface and subsur-
face models are coupled by weakly imposing the continuity of water pressure. By imposing a threshold on
the influence coefficients of the control volume finite element method, we can prevent the occurrence of
unphysical fluxes in anisotropic elements. The proposed coupling is shown to produce results similar to
state-of-the-art models for four different test cases while achieving better strong and weak scalings on up
to 192 processors.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

The anthropogenic impact on the environment intensifies con-
tinuously with the expansion of the population and the develop-
ment of its standard of living. To study how human activities
influence its surrounding environment, it is important to fully
understand the biogeochemical exchanges across the biosphere.
Such exchanges are mainly driven by surface and subsurface water
flows, which are difficult to predict without appropriate tools.
Numerical models are increasingly used for this purpose.

Physically-based models are competing with statistically-based
models. The formers are based on complex mathematical equa-
tions that can be difficult to parametrize [1] but with the added
value of an understanding of the underlying processes. The laters,
based on simple generic formulas, can provide an easy and precise
fit with observations data but lack of flexibility when a change
occurs in the system [2]. It is possible to mix both approaches with
an uncertainty analysis to assess the variability of the results [3].
The main sources of uncertainty of physically-based models are
the physical model hypotheses, the mathematical approximations,
the numerical discretization, the heterogeneity and variability of
the parameters, and the calibration of non-linear models with
uncertain measures.

In a physically-based model of the terrestrial water cycle, the
processes are usually modeled by means of the shallow water
equations for the surface flows and the Richards’ equation for the
subsurface flows. The shallow water equations are a convenient
2D approximation of the full 3D Navier–Stokes equations when
the water height is small, which is the case for surface flows. It
can be complemented by additional 1D equations for rivers and
channels to handle the jump in the physical process scales. The
Richards’ equation approximates the soil as a porous medium with
highly non-linear parameters. It assumes an isothermal and lami-
nar flow with no chemical gradients or inertial forces and water
as the unique fluid phase, hence neglecting the air component
[1]. It can be complexified by adding hysteresis, fractures, multiple
phases or macropores, although those extensions are difficult to

http://crossmark.crossref.org/dialog/?doi=10.1016/j.compfluid.2015.03.028&domain=pdf
http://dx.doi.org/10.1016/j.compfluid.2015.03.028
mailto:thomas.demaet@uclouvain.be
http://dx.doi.org/10.1016/j.compfluid.2015.03.028
http://www.sciencedirect.com/science/journal/00457930
http://www.elsevier.com/locate/compfluid


T. De Maet et al. / Computers & Fluids 116 (2015) 74–87 75
spatialize and parametrize. Since the physical complexity of the
shallow water equations goes beyond what is required for sur-
face–subsurface flow interactions, simpler models are generally
used. The most popular ones are the non-inertia or diffusive wave
model and the kinetic wave model. Some simplified approaches
based on the kinetic wave equation are going further in the
approximations, simulating the surface water via a tree-structured
network of water reservoirs, following the topographical slopes [4].
While being fast, this method is based on strong underlying
hypothesis and is hence inappropriate for natural reservoirs.
Among the many existing approaches [5–7], a state-of-the art
method to discretize the non-inertia equation is the control vol-
ume finite element (CVFE) method, also called the influence coeffi-
cient method [8–12]. This method applies upwind fluxes between
the nodes of a mesh element. Its main advantage over the classical
continuous Galerkin formulation is to avoid the issues related to
zero or negative water depths. As the non-inertia equation is
nearly elliptic when the water height becomes significant, an
implicit time integration scheme is recommended.

The numerical discretization of the Richards’ equation has been
extensively studied, as it presents various numerical difficulties
such as unphysical oscillations, mass conservation errors or a lack
of robustness. These issues can be partly circumvented by care-
fully selecting the non-linear solver [13,14] as well as the space
discretization [9,15,16]. Most Richards’ equation models rely on
implicit time integration schemes and hence present convergence
issues [17] or sub-optimal scaling on parallel infrastructures [18–
23]. The time step of implicit time integration schemes is unre-
stricted for simple diffusion equations, but the non-linearities of
the Richards’ equation put an upper limit to it [17]. Recently, De
Maet et al. [24] have proposed a model using an explicit time inte-
gration scheme and a discontinuous Galerkin (DG) finite element
(FE) spatial discretization. Such an approach achieves an optimal
strong scaling as it does not require linear or non-linear solvers
and hence avoids the associated convergence issues. It relies on
the use of slope limiters to increase the scheme robustness and
a special DG interface term that allows physical discontinuities
in the water content at the elements interface. The interface
between two different soils is precisely represented by the DG
FE approximation, therefore no mixing between the different
properties is necessary as it is the case in continuous Galerkin
FE models. A detailed review of Richards’ equation models can
be found in [16].

In the last decade, the coupling of the shallow water equations
and the Richards’ equation has been an increasingly active domain
of research (see for instance [25] or [26] for an overview). The com-
plexity of studies in this field are mostly due to the fact that surface
and subsurface interactions are difficult to measure. Another issue
is the difficulty to model water fluxes that often exhibit a large spa-
tial and temporal variability. Indeed, processes occurring at small
spatial scales, like river flows, coexist with processes occurring at
large spatial scales, like groundwater flows. Similarly, slow pro-
cesses like the dynamics of the vadose zone coexist with rapid pro-
cesses like surface runoff.

In a continuous world, when surface water is present, the most
physically consistent coupling is to match the hydrostatic pressure
of the surface flow with the pressure head of the subsurface flow at
the top of the soil layer [18,12]. However, a pressure continuity
(PC) coupling strategy would require the soil to be discretized up
to the scale of the smallest water fluxes between surface and sub-
surface, which is rarely feasible in practice because of the associ-
ated computational cost. Additionally, the small features of the
surface linked to those specific fluxes, such as the microtopogra-
phy, the surface soil compression and vegetation cover, are often
very difficult to estimate. Eventually, such a coupling strategy
requires the surface and subsurface models to be connected in
one non-linear solver step. The solution is then provided either
by iterative coupling methods, which require multiple iterations
per time step, or by an implicit time integration scheme, which
produces a non-linear system that is often difficult to solve and
scales poorly on parallel architectures. Another coupling is the
first-order exchange coefficient (FOEC) coupling for which the
pressure continuity is weakly imposed [9,10,12]. The FOEC cou-
pling allows the surface and subsurface to be solved separately
and it can assume additional sub-scale physics at interfaces. It con-
verges towards the PC coupling when the coefficient tends towards
infinity. With an appropriate choice of coefficient it can produce
results very close to the PC coupling with enhanced model perfor-
mances [27,28].

Although the research on coupled surface–subsurface models is
well developed, none of the current models achieve an optimal
scaling on parallel architectures. For Richards’ equation, the paral-
lel efficiency (defined as the fraction of available computational
resources fully-used) of a model like PARSWMS is of 75% but it
can decrease to 29% in some cases [20]. For the coupled model
PARFLOW, the efficiency varies between 40% and 72% [18]. As a
general rule of the thumb, performances decrease with the number
of computational units and increase with the number of degrees of
freedom allocated to each computational unit. This is mainly due
to the complexity of the global system solution, which requires
many communications to exchange information between subdo-
mains. That amount of communications limits the parallel effi-
ciency, especially when a large number of nodes is involved.
Those performances are likely to keep decreasing in the future with
the use of newer technologies. Indeed, today new computers
increase their power by adding more computational units. That
implies a change of paradigm for computational code development
as individual computing units are no longer increasing in power.
Instead, the number of computing units increases. To use all capa-
bilities of future devices, adapted algorithms have therefore to be
developed to achieve efficient parallel codes.

In this paper, we present a coupled surface–subsurface flow
model that combines an implicit model for the non-inertia shallow
water equation and an explicit model for the Richards’ equation
[24]. Such an approach allows us to use the same time step for both
models, as the slow dynamics of the groundwater requires an
explicit time step close to the implicit time step required for con-
vergence of the surface flow non-linear solver. Despite using an
implicit scheme for the surface model, the overall scaling is still
nearly optimal as the subsurface model generally needs the largest
part of the computational resources. The FE method has been
selected mostly for its ability to solve the model equations on
unstructured meshes, which are well suited to complex geometries
such as real catchments. Its CVFE declination for surface flow is
close to a finite volume method, increasing first the robustness
and then the scheme convergence. Its DG FE declination for subsur-
face flow allows for physical discontinuities of the water content
and for the use of limiters to also increase the scheme robustness.
As both the non-inertia and the Richards equations are strongly
non-linear, robustness is often favored over precision, which
would be achieved for instance by a higher order spatial discretiza-
tion. The use of similar spatial discretizations for the surface and
the subsurface models allows an easier coupling, as each surface
element has a unique corresponding subsurface element face. We
introduce a flexible coupling approach that lies between an exact
surface–subsurface pressure coupling, and the FOEC formulation.
This hybrid coupling comes together with the DG FE method when
using its Dirichlet boundary condition. It has the advantages to be
easier to solve than a direct coupling, as it is less stringent, to con-
verge towards the pressure continuity coupling after a transitory
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phase, and to be usable with an explicit time integration scheme.
This is not the case of the exact coupling that requires a conjoint
implicit solution of both the surface and the subsurface models.
A number of numerical examples are provided to highlight the
model properties and show how the scaling is affected by the sur-
face and subsurface models.

2. Mathematical formulation

In this section, we give an overview of the subsurface and sur-
face models and describe different approaches to couple these two
models.

2.1. Subsurface model

The 3D subsurface model relies on the three-dimensional
Richards’ equation, which can be expressed as follows:

@h
@t
¼ r � ðK � rðw� zÞÞ þ s; ð1Þ

h ¼ f hðwÞ; ð2Þ

where h [L3L�3] is the volumetric soil water content, w [L] is the
pressure head, z [L] is the upward positive vertical coordinate, s
[T�1] a sink-source term, K[LT�1] the water conductivity tensor
and f h [–] the retention curve. Eqs. (1) and (2) are complemented
with appropriate initial and boundary conditions:

w ¼ w0; on X; t ¼ 0 ð3Þ
w ¼ wD; on CD; t 2 ½0; tend� ð4Þ

�ðK � rðw� zÞÞ � n ¼ JN; on CN ; t 2 ½0; tend� ð5Þ

with n [–] the outward normal vector, tend [T] the simulation dura-
tion, X the computational domain, CD the Dirichlet part of the
boundary (where the value wD is imposed) and CN the Neumann
part (where the flux JN is imposed). The constitutive relations defin-
ing h ¼ f hðwÞ and K are derived from van Genuchten [29] and
Mualem [30]:

Se ¼
h� hr

hs � hr
; ð6Þ

Se ¼
ð1þ jawjbÞ�m

if w 6 0;
1 if w > 0;

(
ð7Þ

K ¼ KsS
lp
e 1� ð1� S1=m

e Þ
m� �2

; ð8Þ

where Se [–] is the effective saturation, hr [L3L�3] is the residual vol-
umetric water content, hs [L3L�3] is the saturated volumetric water
content, Ks [LT�1] is the anisotropic saturated water conductivity
tensor, a [L�1] is a parameter related to the air-entry pressure value,
b [–] is a parameter related to the pore-size distribution, and
m ¼ 1� 1=b [–].

2.2. Surface model

The surface water is modeled with the non-inertia approxima-
tion of the shallow water equations. These equations rely on the
assumption that the flow aspect ratio is very small. The non-iner-
tia approximation further assumes that inertial terms can be
neglected. Gottardi and Venutelli [31] have shown that this
approximation is acceptable to simulate runoff flows as it yields
results very close to the analytical and numerical solution of
the full shallow water equations. The non-inertia approximation
reads:

@h
@t
�r � h3=2

ffiffiffiffi
g
G

r
rðhþ bÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jrðhþ bÞj

p !
¼ qs ð9Þ
for which the z-axis is defined positive upward, where h [L] is the
thickness of the water layer, b [L] is the surface elevation, g [LT�2]
is the gravitational acceleration, G [–] a friction coefficient and qs

[LT�1] a source/sink term. G can be expressed as follows:

G ¼ gn2
x

h1=3 ¼
g

C2
x

¼ f x

8
ð10Þ

where nx [TL�1/3] is the Manning coefficient, Cx [L1/2T�1] is the
Chezy coefficient and f x [–] is the Darcy coefficient.

2.3. Coupling between the surface and subsurface models

The shallow water equations and the Richards’ equation are
coupled through a boundary condition of the subsurface model,
by equating the surface hydrostatic pressure (assumed to be equal
to h) and the subsurface pressure head w when h > 0. To ensure
mass-conservation, the interface flux FBC [T�1] is applied to the sur-
face model as a source term through qs in Eq. (9). The expression of
FBC depends on the coupling method. In this study, we will con-
sider two common coupling strategies and then present a new
one that combines the two previous ones. Each coupling has its
own advantages and drawbacks both in term of numerical dis-
cretization and of physical accuracy.

When no ponding occurs, the interface flux is driven by the
evapotranspiration. However, over the time scale of a rainfall event
the evapotranspiration flux can be neglected as compared to the
magnitude of the rain flux. All the test cases presented in this paper
are driven by rainfall events and hence neglect evapotranspiration.
Of course, evapotranspiration will have to be taken into account to
achieve realistic, long-term simulations.

When ponding occurs, two main approaches are commonly
used, the PC coupling and the FOEC coupling:

FBC;PC ¼ n � ðK � rðw� zÞÞ; ð11Þ
FBC;FOEC ¼ aFOECðw� hÞ; ð12Þ

where aFOEC [T�1] is an exchange coefficient. If this coefficient is
large, w and h quickly converge. If it is small, the two models are
almost decoupled. The PC coupling could be viewed as a special case
of the FOEC coupling when aFOEC is infinite. This coefficient is able to
model surface features different from the bulk of the soil. The flux of
Eq. (12) is then viewed as the simplest expression of a Darcy flux.
Following the approach of VanderKwaak [9] aFOEC is defined as:

aFOEC ¼ Kz
f
as

f av; ð13Þ

where Kz [LT�1] is the soil conductivity in the z direction, f [L�1] is
the surface exchange interface area to volume ratio, as [L] is the sur-
face coupling length scale, f a [–] is the isotropic porous media area
fraction (used only when macropores are considered) and v [–] is an
exchange scaling coefficient. As these parameters are often difficult
to estimate and measure in practice, it is usual to use the empirical
formula aFOEC� ¼ Kz=lc instead of Eq. (13), where lc [L] is a character-
istic length which acts as a fitting parameter [27].

A third approach is to combine the pressure-continuity and
FOEC fluxes to obtain a hybrid coupling. The coupling flux is then
mathematically expressed as

FBC;DG ¼ rBðw� hÞ þ n � ðK � rðw� zÞÞ; ð14Þ

where rB [T�1] is a penalty parameter quite similar to aFOEC�. On the
one hand, the above definition of aFOEC� involves only parameters that
have a physical meaning, although they are often difficult to measure.
On the other hand,rB is set according to the penalty parameters of the
DG space discretization (see Eq. (32)). rB is defined by assuming that
the soil-surface is like any other inter-element interface within the
soil computational domain and is proportional to Kz=le, where le is a
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characteristic length of the two adjacent elements. The difference
with the aFOEC� formula is that lc is generally user-defined while le is
defined automatically from the model. The interface flux described
by Eq. (14) can be viewed as a compromise between the continuous
coupling and the FOEC coupling, close to a Robin boundary condition.
It is a weak coupling, enhancing the solver convergence, and it con-
verges towards the physical continuity coupling when w has reached
h. It is consistent with the soil domain discretization described there-
after. Indeed, no specific code was necessary to introduce Eq. (14) as it
is already part of the DG FE method when a Dirichet boundary condi-
tion is specified.

As a side note we shall point out that the main advantage of the
PC coupling is its physical meaning, as water pressure does not
exhibit discontinuities. However, as mentioned before, it brings
additional numerical issues. Both the FOEC and the hybrid cou-
plings avoid those issues by relaxing the equality constraint with
a weak coupling. The coefficient rB of the hybrid coupling is coher-
ent with the DG discretization that will be introduced in the next
section and is automatically fixed. The constraint at the coupling
interface has the same strength that the constraint of the subsur-
face model at elements interfaces. The result is therefore close to
the one obtained with the PC coupling. The FOEC coupling can
reach the same goal or can describe near-surface physics, depend-
ing on the user-defined parameter lc . In the present model we do
not use the PC coupling. The hybrid coupling is always used, except
when additional near-surface physical processes are required (like
in Section 4.2). In that case, the FOEC coupling is used and the
parameter lc is calibrated to achieve the best fit with observations.

3. Space and time discretizations

The model equations are now discretized in space and time,
before being coupled. We first present the discretization of
Richards’ equation with a DG FE scheme in space and an explicit
scheme in time. We then consider the discretization of the non-in-
ertia approximation of the shallow water equations with a CVFE
scheme in space and an implicit scheme in time. Finally, we sum-
marize the entire coupling algorithm.

3.1. Discretization of the subsurface model

Before formally discretizing the subsurface model, the ideas of
the resolution procedure are presented for additional clarity. Eq.
(1) is usually expressed in two forms, namely the w-form and the
h-form:

C
@w
@t
¼ r � ðK � rðw� zÞÞ þ s; ð15Þ

@h
@t
¼ r � K

C
� rh� K � rz

� �
þ s; ð16Þ

where CðwÞ ¼ dfhðwÞ=dw [L�1]. Eq. (15) is valid everywhere but gen-
erally leads to mass conservation issues. Eq. (16) is best suited to
dry soils and is not valid in saturated soils. We have adopted the
following approach for approximating the subsurface model:
(1) solving a modified version of Eq. (15) by initially neglecting
the mass-conservation issue, (2) solving Eq. (1) by using the value
of w from the first step as a predictor, (3) updating the w field with

f�1
h ðhÞ [–] in unsaturated areas and (4), if necessary, using a

smoother on h in saturated areas.
The approximation to the step (1) consists in modifying the

function C to allow the use of an explicit time integration scheme.
Indeed, C (almost) reached 0 in saturated areas and an explicit time
integration scheme would require extremely small time steps to
remain stable. We therefore make the following approximation:

C ’ eC ¼maxðC;K=sÞ; ð17Þ
where K [LT�1] is the largest eigenvalue of conductivity tensor K
and s [L2T�1] is a free parameter. In transient situations, we iterate
over step (1) to converge towards the exact solution. The iterations
on h in steps (2) and (4) are perfectly mass-conservative. The
approximation occurs in the saturated zone but also in a small part

of the unsaturated zone where eC > C. When an abrupt transition
occurs in saturated areas, the algorithm can produce spurious mass
fluxes. To correct these in an explicit and mass-conservative way,
the following smoother equation is used:

@h
@t
¼ kr2ðh� f hð~wÞÞ; ð18Þ

where k [L2T�1] is a free parameter and ~w is the value of w at the cur-
rent time step (constant within this equation). The effect of this
equation is simply to filter out unwanted variations of h. Several
iterations of this equation can be applied to increase its effect.

Now Eqs. (1), (15) and (18) are discretized in space with the DG
FE method. This method is well-suited to represent advection-
dominated flows like infiltration fronts. The DG FE method also
allows physical discontinuities of h between soils of different prop-
erties, or the use of slope limiters to prevent spurious oscillations.
By partitioning the domain X into N non-overlapping elements Xe

with interfaces Ce, the spatially and temporally continuous model
variables h and w can be approximated by the discrete variables hh

and wh as

hðx; y; z; tÞ ’ hhðx; y; z; tÞ ¼
XNd

j¼1

hjðtÞ/jðx; y; zÞ; ð19Þ

wðx; y; z; tÞ ’ whðx; y; z; tÞ ¼
XNd

j¼1

wjðtÞ/jðx; y; zÞ; ð20Þ

where Nd [–] is the total number of degrees of freedom (DOF’s) and
/j [–] are piecewise first-order Lagrange polynomials defined on
each element Xe. The jump [�] and averaging {�} operators on the
interface Ce are defined as:

½x� ¼M xþ � x�; fxg ¼M xþ þ x�

2
; ð21Þ

where the ‘+’ and ‘�’ superscripts indicate the trace value taken
either on one or opposite side of Ce. At the boundaries, both opera-
tors are defined in terms of an external value derived from the
Dirichlet boundary condition. The resulting weak boundary condi-
tions are known to be more stable than strong ones [32,33] and will
be used further for the coupling as well. The discrete equations are
obtained by deriving the Galerkin formulation of Eqs. (15), (1), and
(18) with the basis functions /i ð1 6 i 6 NdÞ. The interior penalty DG
method is then applied. By using a matrix notation and capitalizing
vectors variables, we obtain

eCM
dW
dt
¼ KW� Z þ P; ð22Þ

M
dH
dt
¼ KW� Z þ P; ð23Þ

M
dH
dt
¼ KðH� f hð ~WÞÞ þ Ph; ð24Þ

where the matrices M; K; K are obtained by assembling the follow-
ing element-wise matrices, with ne the number of nodes per ele-
ment and 1 6 i; j 6 ne over each element e and its neighbors:

Me
ij ¼ h/i/ji; ð25Þ

Ke
ij ¼ hK � r/i � r/ji � hhfðK � r/jÞ � ng½/i�ii; ð26Þ

Ke
ij ¼ hkr/i � r/ji � hhfkr/j � ng½/i�ii; ð27Þ

where h�i is defined as
PN

e¼1

R
Xe
�dX and hh � ii as

PN
e¼1

R
@Xe
�dC. The

vectors Z; P; Ph are assembled in the same way, with 1 6 i 6 ne:
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Ze
i ¼ hK � z � r/i þ s/ii � hh ðK � zÞ � nf g /i½ �ii; ð29Þ

Pe
i ¼ rhh½/i�½wh�ii; ð30Þ

Pe
hi ¼ rhhh½/i�½hh � href �ii; ð31Þ

where the penalty parameters r [T�1] and rh [LT�1] are defined as:

r ¼ 4
le
ðn0 þ 1Þðn0 þ 2ÞKsc; ð32Þ

Ksc ¼ ðK � nÞ � J=kJk; ð33Þ
J ¼ K � rðw� zÞ; ð34Þ

rh ¼
4
le
ðn0 þ 1Þðn0 þ 2Þk; ð35Þ

with n0 [–] the order of the FE approximation (in our case n0 ¼ 1),
Ksc [LT�1] the normal flux-oriented scalar conductivity, J [LT�1]
the water flux, and le [L] a characteristic length of the two adjacent
elements. On the boundaries, r reduces to rB introduced in Eq. (14),
variable which is identical excepted for the le parameter which
relies on the unique adjacent element.

To increase the stability and efficiency of the model, the mass
matrices in Eqs. (22) and (23) have been lumped. Following other
model designs, the diffusivity tensor K has been linearized over
each element in terms of its nodal values [34,12]. Eqs. (22)–(24)
are discretized in time with an explicit Euler scheme. When cor-
rectly implemented, explicit schemes can yield a perfect scaling,
as shown in [24]. Indeed, their inherent simplicity and the absence
of linear system solver limit the communication overhead between
processors. The detailed equations are given in Section 3.3.

3.2. Discretization of the surface model

The surface model has been discretized in space with the CVFE
method. This method appears to be more stable and efficient than
other methods like the continuous or the discontinuous Galerkin
discretizations. It is mainly due to the fact that the CVFE method
naturally avoids zero or negative depth issues. Indeed, the flux
between two nodes of an element is set to zero if no water is pre-
sent in the upwind node. Linear and non-linear solvers achieve a
better convergence with the CVFE method because the equation
coefficients are then constrained to physical values. This allows
the use of larger time steps and thus improves of the overall com-
putational speed.

The CVFE method is based on a continuous Galerkin formula-
tion. The expansion of the model unknowns is similar to Eq. (19)
with the exception that the basis functions /ið1 6 i 6 nÞ are now
piecewise continuous. By applying the classical continuous
Galerkin method to Eq. (9), we obtain the following discrete
equations:

M
dH
dt
¼ NH þ B; ð36Þ

where Ne
ij ¼ hnr/i � r/ji; Be

i ¼ hnrb � r/i þ qs/ii, n ¼ h3=2 ffiffiffiffiffiffiffiffiffi
g=G

p .
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jrðhþ bÞj

p
and Me

ij ¼ h/i/ji.
To obtain a CVFE discretization, the mass matrix M is lumped

and an inter element upwinding is applied. This amounts to modify
diffusive terms in NH þ B as follows:

hnrðuÞ � r/ii ! njðuj � uiÞhr/j � r/ii; ð37Þ

where u ¼ bþ h and

nj ¼
nðxiÞ if ðuj � uiÞhr/j � r/ii < 0;
nðxjÞ if ðuj � uiÞhr/j � r/ii > 0;

(
ð38Þ

When a mesh element is anisotropic, this method can result in neg-
ative influence coefficients, i.e. hr/ � r/ii < 0 [9]. The resulting flux
between two nodes is then non-physical, as it follows the pressure
gradient instead of being opposite to it. As n is a non-linear function
of h, such a flux between two nodes can dominate the other intern-
ode fluxes inside the element. The resulting flow inside the element
is then unphysical. To avoid those issues the simple solution used
here (called approximate CVFE method thereafter) consists in
canceling all the negative coefficients:

n�j ’ maxðnj;0Þ ð39Þ

This approximate CVFE method has only a slight impact on the
model solution as compared to the original CVFE, except for aniso-
tropic elements for which the solution is improved (see
Section 4.3.1). Since triangular elements are less likely to yield neg-
ative influence coefficients than quadrangles, the approximate CVFE
method is mainly used for the latter.

Eq. (36) is discretized in time with an implicit Euler scheme. The
non-linear solver is based on the Newton–Raphson method and the
linear solver is based on the Generalized Minimal RESidual
(GMRES) method [35]. The fully discretized equation is given in
Section 3.3.

3.3. Summary of the numerical solution procedure

The overall solution procedure for the coupled model is summa-
rized below. For a given parametrization, an initial state
ðW0;H0;H0Þ and a time step Dt, we iterate over the following steps:

1. Solve the equation for the intermediate steps Wnþ1;k, given
Wnþ1;0 ¼ Wn:
for k ¼ 1; . . . ;m : ð40Þ
Fk

BC ¼ coupleðHn;Wnþ1;k�1Þ ð41Þ

eCM
W� �Wnþ1;k�1

Dt=m
¼ KWnþ1;k�1 � Z þ P; ð42Þ

Wnþ1;k ¼ limitðW�Þ; ð43Þ

where m [–] is the number of iterations for the w-form, the cou-
pling function is either Eq. (12) or Eq. (14) and the limiter is
described in [24].

2. Solve the equation for Hnþ1;0, given Hn and Wnþ1;m:
FBC ¼ coupleðHn;Wnþ1;mÞ ð44Þ

M
H� �Hn

Dt
¼ KWnþ1;m � Z þ P; ð45Þ

Hnþ1;0 ¼ limitðH�Þ: ð46Þ

3. Compute Wnþ1 by combining Wnþ1;m and the retention curve
relationship:
Wnþ1 ¼ f�1
h ðH

nþ1;0Þ in the dry zone;

Wnþ1;m in the wet and the saturated zones:

(
ð47Þ

4. Weakly correct Hnþ1;0 in the wet and the saturated zones:
fork ¼ 1; . . . ; q : ð48Þ

M
Hnþ1;k �Hnþ1;k�1

Dt
¼ KðHnþ1;k�1 � f hðWnþ1ÞÞ þ Ph; ð49Þ

where q [–] is the number of iterations for the h filter and where
~W is defined as Wnþ1.

5. Implicitly solve the equation for Hnþ1 using FBC:
M
Hnþ1 � Hn

Dt
¼ NHnþ1 þ Bnþ1 þ Pnþ1

h ; ð50Þ
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In the current form of the model, the parameters m and q are set
manually based on indicators of convergence like an excess of
water content. Indeed, a bad convergence in saturated areas cre-
ates non-elliptical fluxes that yields a unphysical water content
above the saturation limit. A method to estimate those two param-
eters along with the time step in order to optimize the computa-
tion time is still needed to obtain a model suitable for long-term
simulations.
4. Results

This section is divided into four subsections presenting different
test-cases that highlight the model properties. First, we verify the
ability of the surface model and of the coupled model to reproduce
results of similar models in three test-cases. Then a well-known
integrated modeling example from a field-scale experiment is
given. A third section analyses the sensitivity of two aspects of
the presented model: the anisotropy of surface elements and the
FOEC coupling. Finally, results for both strong and weak scalings
are presented.

As the whole model is mass conservative at machine precision
and as the ‘double’ C++ floating number precision has been used,
the relative mass balance error for all the simulations stays below
10�15.
4.1. Model verification and validation

The model verification is done through the validation of the two
sub-models and the validation of their coupling. The subsurface
model has been validated in a previous publication [24]. The sur-
face model implementation with the CVFE method is compared
with the tilted V-catchment 2D example from [8] that has been
extensively used to validate surface models (as for instance
[7,36]). As this method has already been proved accurate
Fig. 1. The V-catchment test case assesses the ability of a model to handle the simplest v
outflows presented in [9,12]. The fine/coarse discretizations are of 10/100 m in space an
[8,9,12,11], we only assess the reproducibility of the results with
our implementation.

The hybrid coupling method is used in the two coupled test
cases of this section. The coupled model is firstly validated with
a test case of Kollet and Maxwell [18] to check the model’s ability
to handle an Hortonian runoff process. The second validation case
is the sandbox example of Abdul and Gillham [37] which is based
on experimental outflow results and has been extensively simu-
lated [38,18,7,36]. It presents both infiltration and exfiltration
and is especially challenging for the subsurface model as the
almost totally saturated media loads to for a strong elliptical
behavior. Similar results with some PC coupling models can assess
for a fast-enough convergence of the coupling methods towards
the PC coupling.
4.1.1. Surface model – impermeable V-catchment
The numerical setup of [8] consists in a impermeable

1000 � 800 m plane, with a slope of 2% along its length and 5%
along its width. A 1-m deep and 10-m wide channel is located at
the bottom and carries the water towards the unique outlet of
the domain. The Manning roughness coefficient is set to
0.015 s m�1/3 for the plane and 0.15 s m�1/3 for the channel. Zero-
flux boundary conditions are imposed everywhere except at the
outlet of the channel where a critical depth boundary condition
is used. The initial state is a dry surface. A uniform and constant
rain is then applied for 90 min with a rate of 3� 10�6 m/s. The
resulting outflow, computed on a regular mesh of 100-m resolu-
tion squares and a time step of 100 s, is shown in Fig. 1. The other
model results were obtained with a 100-m resolution and time
steps ranging between 5 and 600 s. It can be seen that our model
produces an hydrograph very close to the ones obtained with
HGS which also uses the CVFE method, SHE [8] or MODFLOW-
SURFACT. The results of di Giammarco [8] (CVFE and finite differ-
ences) converge more quickly to the steady state. This delay can
be reduced by refining both the temporal and the spatial
alley-shaped geometry. The outflow of our model is within the range of other model
d 1/100 s in time.
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discretization as can be seen for the simulation with finer resolu-
tions of 10 m and 1 s in Fig. 1.
4.1.2. Coupled model – Hortonian runoff
Kollet and Maxwell (K&M) [18] present several modeling exam-

ples that focus on the surface–subsurface coupling. Their runoff
production by excess infiltration test case (Hortonian runoff) con-
sists in a 1D surface slope of 0.0005 spread over 400 m and charac-
terized by a Manning coefficient n ¼ 0:019872 s m�1/3. The
underlying soil is uniform and is characterized by
hs ¼ 0:4; hr ¼ 0:08; a ¼ 1; b ¼ 2. The parameter Ks is set either
to 1:1574� 10�7 or 1:1574� 10�6 m/s, to assess two different
behaviors. The initial water depth is set to 1 m below the surface.
A rain of 5:5� 10�6 m/s is applied during 200 min. We kept the
same discretization as K&M, which is of 80 m along the slope
and either 1 or 5 cm vertically.

An analytical solution of this problem exists but only for an
impermeable slope. In order to use that solution, we therefore per-
form simulations without any infiltration. The resulting hydro-
graph is provided as a reference as it represents the situation
without infiltration [31]. Our model reproduces accurately the
beginning of the event and the beginning of the recession, with a
discrepency before reaching the steady state (see Fig. 2). With
the same discretization, our surface model has the same accuracy
as the model of K&M. K&M showed that the analytical profile can
be approached with refinement of the spatial resolution [18].

We then consider the case with the lower soil conductivity
(Fig. 3), for which most of the rain input leaves the domain without
infiltrating in the soil. When spatial and temporal discretization
are refined, our model converges towards a slightly different solu-
tion than K&M, which can be explained by the different coupling
approaches. The value of aFOEC chosen by K&M is not specified
but it is expected to be smaller than our value of rB in the 1 cm
case and larger in the 5 cm case. Indeed, the infiltration is less
important in their 1 cm case, due to a weaker coupling. The oppo-
site can be seen for the 5 cm case. This is seemingly due to the use
of a similar value of aFOEC for both their 1 cm and 5 cm cases,
Fig. 2. Analytical solution of a rain outflow over a simple impermeable slope and its reso
time and space discretization (180 s, 80 m), which can explain the divergence from the
resulting in different fluxes (see Section 4.3.2 for details). Our
model is less sensitive to a coarser spatial discretization, as the
rB adapts itself to the subsurface element size. The coarse temporal
resolution of 180 s is less appropriate for our explicit subsurface
model, but it can still be handled with additional sub-iterations
ðq ¼ 10;m ¼ 2Þ.

The case with the higher soil conductivity is shown in Fig. 4. A
space–time resolution of 1 cm/180 s has proved to be too coarse in
time for the explicit solver. We found that a 1 cm/10 s resolution
was required, which increased the number of sub-iterations to
q ¼ 10 and m ¼ 2. Our model is in good agreement with the
K&M one, except at the end of the simulations where a change of
regime occurs. This is due to a complete saturation of the soil,
which means that runoff is non-Hortonian at the end of the simu-
lation. The soil pressure head has therefore to switch from an infil-
tration profile to an incompressible groundwater profile, which are
very different. The explicit model needs extra iterations when this
abrupt change occurs, to produce the same results in the 5 cm
cases. The discretization of 1 cm was too fine to converge towards
this regime change with a reasonable number of iterations. It can
be seen again that our model is less sensitive to the coarser dis-
cretization than the K&M model, seemingly for the same reasons
as above.

4.1.3. Coupled model – Sandbox
Abdul and Gillham [37] have studied the effect of the capillary

fringes over the overland flow generation. The model domain con-
sists in the sandbox shown in Fig. 5 with its related parameters.
The geometry allows the use of a 2D model for subsurface flow
and 1D model for surface flow. The water table is initially at a
steady state and at the same height as the outlet located at the bot-
tom of the surface slope. A rainfall is applied uniformly for 20 min
at a constant rate of 4.3 cm/h. The discharge is monitored from the
beginning of the rainfall to almost the end of the recession period.

The 2D mesh is unstructured and made of 252 triangles with a
higher resolution near the surface. The characteristic lengths of the
elements goes from 2.4 to 25.1 cm. The 1D surface model is dis-
cretized according to the topmost segments of the 2D mesh. A
lution by our model and the Kollet & Maxwell model. The models results use coarse
analytical solution.



Fig. 3. Outflow for a simple slope over homogeneous soil with Ks ¼ 1:1574� 10�7 m/s. The results obtained by K&M [18] are shown in blue. The other results are from our
model. In those runs, q and m are kept to 1 excepted for the 1 cm/180 s case which needed more convergence with q ¼ 10 and m ¼ 2. It can be seen that our model converges
towards a slightly different solution than the K&M one as the spatial or temporal resolutions are refined. Our results are less influenced by the coarser spatial resolution. The
analytical solution of Fig. 2 is kept for comparison. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 4. Outflow for a simple slope over homogeneous soil with Ks ¼ 1:1574� 10�6 m/s. The results obtained by K&M [18] are shown in blue. The other results are from our
model. The q and m for the 5 cm/10 s and 5 cm/180s cases are 1 excepted between 258 and 267 min where they were manually set to 100 to achieve convergence. Our model
results are close to the fine-resolution result of K&M, even for the coarser resolution. The analytical solution of Fig. 2 is kept for comparison. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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constant time step of 0.1 s is used. The beginning of the simulation
requires an increased number of iterations for w, so m is manually
set to 100. After 200 s, m is set to 10. During the whole simulation,
the maximum number of iterations for the filter q is set to 4.

Different models are presented for comparison in Fig. 6. The
temporal and spatial discretizations are of 10 s and 1� 4 cm
quadrilaterals for ISWGM [36], of 0.1–10 s and 2� 2:8 cm
quadrilaterals for Cast3M [7], of 10 s and 1� 2 cm quadrilaterals
for Parflow [18] and of 60 s (max) and 2 cm sided squares for
InHM [9]. Fig. 6 shows that our model is consistent with exper-
imental data and other published models results. The origin of
the discrepancy between the models results is difficult to assess
as the model resolutions are different. It should be noted that all
models reach a steady state slightly ahead of the real system.
K&M suggested that this is due to the presence of air phase
compression in the experiment [18]. As the simulated flow



Fig. 5. Geometry and physical properties of the sandbox test case. A uniform
rainfall is applied on the top and the unique outlet is situated at the top right corner
of the domain.
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profile is very similar to those already published, it is not shown
here.

4.2. Integrated 3D modeling example

A field-scale experiment has been performed by Abdul [39] in a
small catchment of the Canadian Forces Base Borden, Ontario,
Canada. The area of 1070 m2 is grass covered except for a channel
approximately 60 cm wide, located 22 cm below the streambed.
The sandy soil is characterized by the following parameters:
hs ¼ 0:34; hr ¼ 0:0612; a ¼ 6 m�1, b ¼ 1:9. Ks has an isotropic
value of 10�5 m/s. The initial water table is at a depth of 20 cm
below the channel.
Fig. 6. Derived and simulated hydrographs of the sandbox test case a
The 3D mesh is constituted of triangular prisms vertically
extruded over 6 layers from the 2651 triangles that constitute
the surface mesh, for a total of 95.436 subsurface DOF’s (see
Fig. 7). The surface mesh is refined in and near the channel while
the subsurface mesh is refined near the soil surface. The time step
is set to 5 s. The parameters m and q that specify the number of
iterations are set to 4 and 1, respectively. A uniform rain of
5:55� 10�6 m/s is applied during 50 min.

Most of the surface-subsurface models use this test case as a bench-
mark. The four we are showing use finite difference (MODFLOW)
or CVFE (Groundwater, Hydrogeosphere and Vanderkwaak)
schemes in space and Euler implicit schemes in time. They are
all using the non-inertia approximation of the shallow water
equations. The spatial mesh of the surface is the same for all models.
The vertical resolution at the surface is coarser in our case: 10 cm
compared to 1 cm, which leads to 15 layers for the other models.

In this test case, the FOEC coupling described by Eq. (12) is used.
Indeed, it appeared that the hybrid coupling underestimated the
surface flux, as most of the rain infiltrates. This is the physical
behavior with the present parametrization for a dry soil, as the rain
flux is below the saturated conductivity. Therefore the rain has to
infiltrate until non-Hortonian overland flow occurs. As experimen-
tal data show a non-negligible amount of surface water, we deduce
that something slows down the infiltration. It may be the vegeta-
tion or some surface compaction of the soil. We therefore had to
calibrate the model outflow with a specific value of aFOEC , as sug-
gested by Ebel et al. [27]. Manual calibration leads us to take
aFOEC ¼ 0:25 s�1. This value is around 0.1 s�1 for InHM [9], and
10�4 s�1 for GroundWater and Hydrogeosphere [11,12]. Despite
the coarser vertical resolution, the hydrograph obtained with our
model is close to observed and modeled values (see Fig. 8).

The origin of the early delay between most of the simulated
results and the observations is difficult to assess. A possible expla-
nation is that a local surface storage is present and has to be filled
before any outflow can occur, or that the initial rain is overesti-
mated. Both cases can delay the measures. Another possible expla-
nation is that the runoff is non-Hortonian. In this case, it possible
that the initial water table depth is above the specified value, or
that the subsurface water is not at equilibrium and more water
nd our model results are in good agreement with observed data.



Fig. 7. The 3D mesh used for the Borden test case. The channel is displayed in blue, grass land in green and the subsurface part in brown. The surface mesh is refined inside
the channel. The first three of the six vertical layers are refined to represent the larger fluctuations present in the unsaturated zone. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

Fig. 8. Hydrographs obtained after a 50 min rainfall event over the Borden catchment. Our model results are in good agreement with observed values and other state-of-the-
art models.
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is present in the unsaturated area [10], or that the rain is underes-
timated. In such cases, it is possible to reach a non-Hortonian run-
off with the hybrid coupling earlier in the simulation and hence
explain the absence of outflow during the infiltration.

4.3. Sensitivity analysis

Two issues were experienced during the model implementa-
tion. Both were linked to the spatial discretization. The first one
is related to the CVFE method used for the surface model that is
not well suited to anisotropic elements. The second one concerns
the FOEC method used to add extra physics at the soil-surface
interface that is strongly dependent of the subsurface discretiza-
tion. In this section, we describe those issues and present the solu-
tions that we implemented in our model.

4.3.1. Surface model – anisotropic elements
The above V-catchment test case produce unphysical results

when the CVFE method is applied with a coarse discretization of
quadrangles. We have therefore studied the effect of different
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mesh resolutions on the model results. The time discretization
error is negligible as the time step is set to 1 s.

When the mesh resolution is larger than 10 m, we have to use
rectangular elements in order to still be able to represent the
10 m wide channel of the V-catchment. The anisotropy of the mesh
elements and the non-linearity of the equations can produce
unphysical fluxes going in the wrong direction if the influence
coefficient method is not modified. Fig. 9 shows that for the 40 m
discretization the approximate CVFE method keeps a correct value
for the discharge when the mesh is coarsened, which is not the
case with the original CVFE method. This is highlighted for the
100 m discretization, where the result is just slightly different with
the modified method, but totally wrong with the classical method
for which unphysical fluxes are clearly visible in the channel (not
shown). The results – with and without the approximation – for
the mesh with a discretization of 10 m are not differentiable graph-
ically as the mesh is entirely made of square elements (i.e. isotro-
pic) and can therefore not produce negative coefficients.

4.3.2. Coupled model – effect of the parameter aFOEC

It has been observed in the Borden test case that the first layers
of the subsurface discretization have a large influence on the infil-
tration. To highlight this aspect of the FOEC coupling, a 1D vertical
example has been considered, where the surface water can only
flow in the soil or accumulate. The same properties as in the
Borden test case are used, i.e. the depth, rain and initial conditions
correspond to the ones of a column in the middle of the 3D chan-
nel. A uniform vertical discretization is used with different resolu-
tions ranging from 1 cm to 80 cm. The surface water depth is
monitored during 75 min (see Fig. 10). When refining the subsur-
face discretization and keeping aFOEC constant, infiltration
decreases, and the surface water depth thus increases. This effect
vanishes when the grid size reaches 5 cm and the infiltration front
is sufficiently resolved. However, the use of a large vertical dis-
cretization is desirable for large-scale and/or long term studies.
Fig. 9. The outflow of the V-catchment experiment is greatly influenced by anisotropic
which the negative influence coefficients are set to zero (i.e. only positive coefficient are
CVFE formulation.
One simple explanation to the phenomenon is that large subsur-
face elements have a larger storage capacities. They are therefore
less sensitive to a given influx than smaller ones. The coupling flux
based on a nearly constant value of the pressure head is also nearly
constant, and therefore remains important. To circumvent this
issue it is possible to increase the value of aFOEC and to use it as a
fitting parameter like in the Borden test-case. Its optimal value is
then obviously problem and mesh-dependent.

Effects of the near-surface vertical resolution on the results
have already been discussed for subsurface models. It has been
observed in the case of a 2D groundwater finite volume model that
the vertical discretization highly affects the results [40]. Downer
and Ogden [41] point out the necessity to use fine vertical dis-
cretization at soil surface (�1 cm) in a finite difference model with
a Dirichlet (when ponding) or Neumann (when dry surface) bound-
ary condition coupling. They showed in particular that the amount
of infiltration is highly dependent on the element size. It increases
as the grid size decreases. They highlight the importance of the
evaluation of K in their coupling. Indeed as the value of K in ini-
tially dry soil is very low, classical boundary fluxes relying on local
K values are strongly under-estimated. Their observations are how-
ever not relevant to our issues as in our case the amount of infiltra-
tion decreases as the grid size decreases. We already circumvented
their issue by taking the upwind value of K in interface fluxes. This
means that K ¼ Ks at the surface when infiltration occurs and the
surface is thus considered as either fully saturated or dry.

4.4. Model efficiency

The model efficiency with the hybrid coupling is assessed based
on strong and weak scaling test cases. The former highlight the
ability of a model to use small computational domains per nodes,
which lead to an increasing domain surface/domain volume ratio.
That implies an increase of the intra-nodes communication then
a decrease of the scalability. A model still scalable with a large ratio
elements when using the original CVFE method. The proposed approximation, in
kept), greatly improves the results on coarser meshes as compared to the original



Fig. 10. The surface water height obtained with a single 1D infiltration model without surface fluxes strongly depends on the vertical grid resolution. The grid size has to be
fine enough to capture the infiltration front otherwise the h—w difference thus the coupling flux stay important.

Fig. 11. The black line represents an optimal strong scaling, i.e. doubling the computational power doubles the speed. The letters are for the small mesh (S), the medium mesh
(M) and the big mesh (B). Two components of the model are highlighted: the explicit iterations from the subsurface model and the linear solver from the surface model. The
model strong scaling is optimal for the explicit discretization of the Richards’ equation, but not for the implicit discretization of the non-inertia shallow water equation, as
expected. The latter reduces the scaling of the overall model but can handle much bigger time steps than an explicit discretization of the non-inertia equation.
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has a good strong scalability. The latter is used to assess the capac-
ity of a model to extend its computational domain still keeping a
good scalability. This is certainly a good property for large-scale
simulations.
4.4.1. Strong scaling
The first 50 s of the Borden test case where taken as benchmark

to assess the model strong scaling. For those computations, two
additional meshes of 4:48� 105 and 1:37� 107 DOF’s have been
used. With 192 processors, the load per processor is then of 497
DOF’s for the mesh previously used and respectively of 2:9� 103

and 7:15� 104 DOF’s for the two larger ones. The 6 layers of depth
were kept, leading to a subsurface/surface DOF number ratio of 7.
To limit the side effect of memory-sharing between the processors
of a same node, we set a whole node of 12 processors as the refer-
ence. The partitioning of the whole domain into sub-domains has
been done for the surface model. This sub-domain and the soil col-
umn under it are associated to a unique processor core.

The results in Fig. 11 show a good scaling for the larger problem,
a correct one for the medium problem and a poor scaling for the
small problem. The identification of the scaling performance for
the different parts of the algorithm highlights the source of the
poor scaling. Although the solution of subsurface model is the most
expensive, it scales optimally as shown in [24]. However, the sur-
face part relies on an implicit solver which requires many inter-



Fig. 12. Weak scaling of the model over up to 16� 12 ¼ 192 processors. The black line represents an optimal weak scaling. In the absence of a surface flow, the model weak
scaling is optimal as expected from the explicit time discretization of the subsurface model. When there is a surface flow, the model overall scaling is impacted by the
suboptimal scaling of the linear solver used for the implicit time discretization of the surface model. The poor scaling of the surface model is particularly clear when more
than 96 processors are used.
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processor communications, especially when the surface water is at
rest. Therefore the scaling of the surface model decreases when to
the number of DOF’s per processor goes down. The summation of
these two effects does not preclude an overall good scaling, as long
as the load associated with the surface model is below the load of
the subsurface model, which is one order of magnitude larger on
one processor in this test case.
4.4.2. Weak scaling
The weak scaling is interesting as it does not benefit from the

extra resources coming from the additional nodes, as each new
node has to handle the same computational burden as the others.
The scaling is then restricted to a maximum of 100%. Obtaining a
good weak scaling is often sufficient for fine resolution and/or large
scale applications that allocate a large sub-domain per processor.
Maxwell [19] has presented a non-dimensional test case optimized
for weak scaling. It consists in a sinusoidaly-shaped layer of homo-
geneous soil. We slightly differ from this test case by considering
that tanðxÞ ’ x when x is close to zero, resulting in the topography
formula z ¼ sinðx=5Þ=2� cosðy=5Þ=2. The problem size per proces-
sor is decreased from a 100� 100 to a 50� 50 square, with a con-
stant depth of 25. The regular mesh is composed of hexahedrons
with 2� 2 horizontal sides and a depth of 1. In this test case, all
quantities are dimensionless. The number of DOF’s per processor
has then been decreased from 5� 105 to 1:25� 105.

The soil properties are set to K ¼ 0:25� I3; hs ¼ 0:25,
hr ¼ 0:025, a ¼ 1 and b ¼ 3. The initial w is set to �10 at the ground
surface, hydrostatic equilibrium being imposed vertically i.e. the
water table is following the topography, and is then initially out
of equilibrium. No rain is applied, which means that the surface
domain remains completely dry. The duration of the simulation
is set to 10 with a time step of 2.

Fig. 12 shows the weak scaling result for this test case. Our
model exhibits a nearly-optimal weak scaling. The negative effect
of the surface model on the scaling is absent as its solution is trivial
when the surface is dry. As this test does not show the ability of the
whole coupled model to achieve a good weak scaling, we have
added a homogeneous time-dependent rainfall rðtÞ ¼ 0:2þ 0:01t,
which triggers a surface flow. The resulting scaling is depicted in
Fig. 12, and like with the strong scaling test case, the weak scaling
of the coupled model is negatively impacted by the surface model.
5. Conclusion

In this study, we have presented a new coupled model for the
surface–subsurface water interaction. The subsurface flow is
described by the Richards’ equation, which has been discretized
in time with an Euler explicit scheme and in space with a first-
order DG FE scheme. The surface flow is described by the non-
inertia approximation of the shallow water equations. It is
discretized with an implicit scheme in time and a control volume
finite element scheme in space. Both models are coupled by weakly
imposing the continuity between surface and subsurface pressures.

The CVFE method is well designed for the non-inertia shallow
water equation as it naturally handles the zero-depth issue.
However, the influence coefficients of this method can become
negative for anisotropic elements. Negative coefficients lead to
unphysical fluxes between mesh nodes, which can severely impair
the model accuracy if left unchecked. We have shown that by sim-
ply setting negative coefficients to zero we can avoid that issue.

The proposed coupling lies between the pressure continuity
coupling and the FOEC coupling methods. Indeed, it uses both a
weak imposition of the continuity between the surface hydrostatic
pressure and the subsurface pressure head, improving the scheme
robustness, and it reduces to the pressure continuity coupling
when the surface and subsurface pressures have converged. The
FOEC can be used to add sub-scale surface–subsurface interactions
as a slower interface conductivity, which is not the case of our
hybrid coupling. However the FOEC flux can be discretization-de-
pendent if the infiltration front is not fully resolved, which means
that it has to be used with caution for coarse vertical discretization,
as it is often the case in large-scale and/or long-scale studies. With
the hybrid coupling presented in this study, the coefficients are
element-size dependent and are coherent with the inter-element
treatment of the rest of the subsurface domain. The proposed cou-
pling comes handily along with the DG FE discretization without
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having to fix a free parameter value, and seems more robust for
coarser subsurface discretization. This coupling also uses a unique
time step which is designed for both surface and subsurface mod-
els. Indeed, an explicit scheme is well suited to the slow dynamics
of the subsurface flow, while the fast surface flow requires an
implicit solver. By coupling then two sub-models together, we
can use a unique nearly-optimal time step for the global model.

The explicit discretization of the Richards’ equation leads to a
perfect strong scaling. The surface model being implicit, it cannot
achieve the same optimal scaling as the subsurface model.
However, as the computational load of the non-inertia equation
is generally one order of magnitude smaller than the load of the
Richards’ equation, the negative influence of the implicit scheme
on the overall scaling remains limited. As a result, the proposed
coupled model shows both good weak and strong scalings. We
believe that such a modeling approach will prove useful in the
future as the current trend in high-performance scientific comput-
ing is to favor large scale parallel architectures that require scal-
able models. However, to become an operational large-scale and
long-term model, several improvements are still mandatory.
First, an purely elliptic solver should be used in the saturated areas,
such as the multi-grid method. That would slightly degrade the
scaling, but it is necessary to handle large aquifers. Secondly, an
adaptive time stepping scheme which also adapts the number of
sub-iterations is required to automatically optimize the perfor-
mances over time, while keeping a specified accuracy. Eventually,
evapotranspiration will have to be taken into account for long term
studies, as it is a key component of the terrestrial water cycle.
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